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Abstract

Partial covalent interactions (PCIs) in proteins, which include hydrogen bonds, salt bridges, 

cation–π, and π–π interactions, contribute to thermodynamic stability and facilitate interactions 

with other biomolecules. Several score functions have been developed within the Rosetta protein 

modeling framework that identify and evaluate these PCIs through analyzing the geometry 

between participating atoms. However, we hypothesize that PCIs can be unified through a 

simplified electron orbital representation. To test this hypothesis, we have introduced orbital based 

chemical descriptors for PCIs into Rosetta, called the PCI score function. Optimal geometries for 

the PCIs are derived from a statistical analysis of high-quality protein structures obtained from the 

Protein Data Bank (PDB), and the relative orientation of electron deficient hydrogen atoms and 

electron-rich lone pair or π orbitals are evaluated. We demonstrate that nativelike geometries of 

hydrogen bonds, salt bridges, cation–π, and π–π interactions are recapitulated during 

minimization of protein conformation. The packing density of tested protein structures increased 

from the standard score function from 0.62 to 0.64, closer to the native value of 0.70. Overall, 

rotamer recovery improved when using the PCI score function (75%) as compared to the standard 

Rosetta score function (74%). The PCI score function represents an improvement over the 

standard Rosetta score function for protein model scoring; in addition, it provides a platform for 

future directions in the analysis of small molecule to protein interactions, which depend on partial 

covalent interactions.
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1. INTRODUCTION

1.1 Partial Covalent Interactions.

Partial covalent interactions (PCIs) in proteins, defined here as hydrogen bonds,1 salt 

bridges,2 cation–π,3 and π–π interactions4 (Figure 1), are abundant in nature and contribute 

to both protein structure and protein-biomolecule interaction.5 These four PCIs are 

composed of a set of noncovalent interaction components.

Hydrogen bonds, a partially positive donor hydrogen atom that interacts with the lone pair 

orbital of an acceptor atom, combine an electrostatic effect with a semicovalent bond. Salt 

bridges, composed of two interacting charged amino acid side chains, are a combination of 

hydrogen bonding and additional electrostatic effects from the formal charges. Cation–π 
interactions are an electrostatic effect between a positively charged functional group in an 

amino acid side chain and a central negative charge, due to the delocalized orbital system, on 

the face of the aromatic ring.6,7 π–π stacking, where two aromatic rings stack either off-face 

parallel or in a “T” arrangement are mostly dominated by the van der Waals effect with a 

quadrapole–quadrapole electrostatic effect hindering a fully eclipsed stacking configuration.
8,9 While these interactions are primarily electrostatic in nature, PCIs cannot be neatly 

explained by assigning a point charge on an atom and subsequently using a Coulombic score 

term. PCIs are defined by the interactions between orbitals and have unique, specific 

geometries that define an optimal interaction.

Quantum Mechanics (QM) methods are used to study the geometry and energetics of PCIs 

with fine-grained analysis of orbital shape and geometries; however, such calculations are 

computationally expensive, thereby limiting research to relatively small model systems and 

are prohibitive for large proteins.10 For example, hydrogen bonds are often analyzed in the 

context of small molecules such as formamide, acetamide, N-methylacetamide, or water 

dimers.11—17 Other interactions, such as π–π and cation–π, are studied using benzene 

dimers and benzene cation pairings, respectively.18 Due to the simplicity of the small 

molecules used, the diverse nature of PCIs can be analyzed to determine optimal geometric 

arrangements. These detailed studies have yielded important insights into the driving forces 

of PCIs.

Hydrogen bonds can be decomposed into two main effects: charge transfer, or the lone pair 

orbital donating electron density to the unoccupied antibonding orbital of the donor (n → 
σ*), and the electrostatic interaction between the partially charged atoms.19 Hydrogen bonds 

have a specific, optimal geometry: the acceptor–hydrogen–donor atoms at an angle of 
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~120.0° and the acceptor base–acceptor–hydrogen–donor torsion angle, which implicitly 

measures the placement of the orbital, at ~180.0° (Figure 1A).

Salt bridges exist in proteins as the interaction between a negatively charged aspartate or 

glutamate and a positively charged arginine, lysine, or histidine. Energetically, the salt 

bridge is composed of two parts: hydrogen bonding between the hydrogen on the arginine, 

lysine, or histidine and the oxygen on the negatively charged residues and electrostatic 

effects between the charged residues20 (Figure 1B).

Cation–π interactions are a predominantly electrostatic interaction.21 The aromatic side 

chains of phenylalanine, tyrosine, and tryptophan have a permanent quadrapole, which 

causes a concentration of partial negative charge above and below the face of the ring 

coupled with an increased ring of partial positive charge along the hydrogens on the edge of 

the ring. A positively charged side chain of arginine or lysine residues can then interact with 

this electronegative face.6 Primarily, these interactions take two geometric forms in proteins: 

a T-shaped form where a partial positively charged hydrogen atom of arginine or lysine 

approaches the aromatic ring (Figure 1C) or a parallel stacked interaction where the 

negatively charged π-electronical system of the arginine side chain interacts with the π-

electronical system of the aromatic amino acid (Figure 1D).7 While quite different in nature, 

these interactions combine into a larger motif called the “aromatic box motif’ where a 

positively charged amino acid is surrounded in a box or cage of aromatic residues.7 An 

analysis of these interactions in the Protein Data Bank (PDB) found that there is, on average, 

one energetically significant cation–π interaction for every 77 residues in a protein.3

Similarly, two aromatic side chains can interact favorably in a π–π stacking or T-shaped 

arrangement. The precise nature of these interactions is still debated. Current theories posit 

that van der Waals interactions dominate the π–π stacking interaction energy, modulated by 

electrostatic effects from the aromatic quadrupole, which eliminates the centered parallel π–

π stacking.8,9 To avoid the energetically prohibitive centered π–π stacking, yet maximizing 

favorable dispersion effects, the interaction often exhibits an offset parallel arrangement in 

protein structures5 (Figure 1E). The T-shaped arrangement is an alternative conformation 

where partial positively charged hydrogens from the edge of one aromatic ring approach the 

partial negatively charged face of a second aromatic system (Figure 1F).

Here, we describe an approach to unify all protein-centric PCI bonding terms to better model 

these important and common interactions in the protein structure prediction algorithm 

Rosetta.22 We developed a pairwise decomposable knowledge based potential for PCIs, 

which is based on placing orbital proxies on atoms based on their type and hybridization. 

The orientation of these orbital proxies was determined by the Valence Shell Electron Pair 

Repulsion (VSEPR) theory,23 which apply readily to the orbital distribution of the atoms 

types found in proteins (Figure 1). Using experimentally determined structures the relative 

geometry of these orbital–orbital interactions is analyzed to derive the potentials. We test if 

this holistic approach can replace the respective, diverse energy terms in the Rosetta score 

function without a loss in side-chain rotamer recovery or side-chain design. If successful, the 

PCI approach could facilitate not only a holistic approach to describing interactions within 

proteins, but in particular it could be expanded to enable a holistic scoring approach to 
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protein interactions with the more diverse set of functional groups within small molecules, 

nucleic acids, or even inorganic surfaces.

1.2. The Rosetta Knowledge Based Potential Is Inconsistent in Scoring Partial Covalent 
Interactions.

Scoring of protein models in Rosetta is performed using a combination of Knowledge Based 

Potentials (KBPs) and physics-based terms. KBPs are based upon the assumption that the 

frequency of geometries observed in databases of protein structures, such as the PDB,24 

corresponds to their free energy according to the Boltzmann relation.25 The advantage of 

this approach is that the complex rules that determine the geometry of PCIs in larger 

molecules are accurately represented. However, it is not trivial to decompose contributions 

into specific terms which can lead to the double-counting of interactions or 

oversimplification of the geometric parameters. After a set of geometric constraints has been 

determined to make the interaction, the probability density of the relative geometry X of two 

interacting partners is converted into an energy via the formula E(X) = – kT ln[P(X)] where 

E(X) is the energy associated from the measured quantity, k is Boltzmann’s constant, T is 

the absolute temperature, and P(X) is the probability density. Evaluation of the contribution 

during scoring is based upon the lookup of the geometrical measurements in a precalculated 

KBP.

The evaluation and scoring of partial covalent interactions in Rosetta, specifically hydrogen 

bonding, have been continuously modified and refined. The first introduction of a term in 

Rosetta to capture partial covalent interactions was by Simmons et al., who introduced a 

statistically driven pair potential, which captured the effects of both electrostatic interactions 

and hydrogen bonding interactions.26 This method was used for low-resolution modeling 

and evaluated the likelihood of two residues being at a given distance from one another. The 

pair potential was then modified to work in full-atom modeling,27 using this full-atom 

potential Kuhlman et al., successfully designed a novel protein de novo.28

The initial inclusion of a specific hydrogen bond term was by Kortemme et al.,29 who 

created a hydrogen bond KBP based upon frequently observed geometries in high resolution 

protein structures between a polar hydrogen and an acceptor atom.

Around the same time Misura et al.30 developed and analyzed the use of an orientation 

dependent scoring function for side-chain pairs, specifically for π—π and cation–π 
interactions. However, the aromatic specific score terms had a negligible effect and were not 

included in the default score function.

A new default score function, Talaris2013 (and the incremental update Talaris2014),31,32 

addressed the non-native distribution of hydrogen bond geometry from the previous default 

Rosetta score function, score12’. The authors removed the pair term27 and replaced it with 

an atom-centric Coulombic electrostatic model. They reparametrized the hydrogen bond 

function, creating a potential based on the distance and angles between donor and acceptor 

atoms. The function polynomials were fit to match native distribution. As electrostatic 

effects contribute to hydrogen bonding, care was taken to avoid double counting between the 

Combs et al. Page 4

J Chem Inf Model. Author manuscript; available in PMC 2019 September 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Coulombic term and the hydrogen bond term. The two terms, in conjunction with the other 

Talaris score terms, captured nativelike hydrogen bond geometric distributions.

Currently, cation–π and π—π interactions are not explicitly evaluated in the default Rosetta 

score function. While the score function includes standard electrostatic and van der Waals 

terms, they do not capture the aromatic quadrupole, which leads to the unique geometries of 

the cation–π and π—π interactions.

1.3. The Partial Covalent Interaction Score Function.

The present work seeks to develop a holistic approach to treating PCIs in Rosetta. We set out 

to develop a pairwise decomposable KBP for PCIs that 1) captures both covalent and 

electrostatic components of PCIs with 2) a detailed description of their geometry at a 

consistent level of detail and 3) is expandable to all PCIs. Our approach is chemistry-

centered, placing orbital proxies on atoms based on their type and hybridization. The relative 

geometry of these orbital–orbital interactions is analyzed to derive the PCI. Our new score 

function replaces the hydrogen bond and pair KBPs in Rosetta (score12’ and Talaris2014), 

although the score terms can be mixed and matched with any Rosetta score terms. As we 

began working on this formidable challenge before Talaris updates to the Rosetta energy 

function were conceived, we included the previous standard Rosetta energy function 

score12’ as additional reference for comparison.

We find that the PCI KBP score function recapitulates accurate geometries of hydrogen 

bonds, salt bridges, cation–π, and π—π interactions in multiple Rosetta benchmarks 

(geometry, rotamer, and sequence recovery) and performs comparable if not superior to the 

established score functions. This is remarkable as many components of the Rosetta sampling 

and scoring framework have long been optimized for hydrogen bond and electrostatic score 

terms, and it would be unlikely that a novel KBP score function would match or exceed 

recovery results.

2. METHODS

2.1. New Atom Types Help Define Orbital Placement and Interactions.

Partial covalent interactions (PCIs) are mediated by interactions between bonding and 

nonbonding orbitals or two nonbonding orbitals. They are defined here as an antibonding 

(σ*) orbital from a hydrogen atom that engages a nonbonding, (lone pair) p-orbital (n), a σ* 

orbital interacting with a π-orbital of an aromatic system (π), or as two π-orbitals that 

interact with each other. The specific PCI types evaluated in this work being hydrogen bonds 

(n → σ*), salt bridges (n → σ*), cation–π (π → σ*), and π—π (π → π). Because the 

driving interactions are between participating orbitals, this led us to create a score function 

based on explicit orbital placement.

While molecular orbital theory provides a robust approach for modeling orbitals on atoms, 

the calculation of molecular orbitals is computationally expensive as each molecular orbital 

is influenced by the overall molecule and is therefore intractable in a protein system.10 

Further, in order to develop a tractable, pairwise decomposable score function in Rosetta, 

geometric constraints are required to define the strength of the interaction. As molecular 
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orbital theory gives only a probability of the location of an electron, a precise, 

computationally cheap, measurement cannot be performed.

Therefore, we propose a simpler method: the addition of orbitals on atoms with the 

geometry defined by the atom’s Gasteiger type.33 Gasteiger typing classifies atoms based 

upon their geometrical arrangements and orbital occupancy. The generic form is [Chemical 

Symbol]_[Orbitals]. For example, a carbon atom in an aromatic ring system is designated as 

C_TrTrTrPi, where the first letter (C) represents the element, followed by the typing and 

geometrical arrangement of the orbitals (TrTrTrPi). In this case, there are three sigma 

orbitals geometrically arranged trigonally (Tr symbol), and one π-bond, designated by the 

symbol Pi. Since the explicit geometry and type of the orbital is given, orbitals that take part 

in PCIs can be easily assigned. Placement of the orbitals surrounding the atom is based upon 

the occupancy described by the Gasteiger atom types with geometric constraints defined by 

the VSEPR theory.23 The VSEPR theory states that valence shell electron pairs around an 

atom repel each other and adopt a geometrical arrangement that minimizes this repulsion. 

The geometric angle for the orbitals was determined by the surrounding bonded atoms and 

modeled after VSEPR theory.

For the aromatic carbon in a ring system (C_TrTrTrPi), two single point orbitals are placed 

perpendicular, 90°, to the ring system with one above the ring system and one below. The 

distance at which the orbitals are placed is the covalent radius. An important aspect of 

hydrogen bonding is the interaction between the lone-pair orbital and the antibonding orbital 

on the hydrogen atom. However, the hydrogen atom covalent radius is small (~0.2 Å), so to 

simplify geometric representation and increase computational speed, the antibonding σ* 

orbital is placed at the atom coordinates. Since a precise definition of the atom type and the 

occupancy of the orbitals is defined, ligands, nucleotides, and noncanonical amino acids can 

readily be added to this score function.

2.2. Geometric Parameters for PCIs Include One Distance and Two Angles.

In the creation of a KBP score function specific geometries must be defined in order to 

measure their frequency in a database. For each of the PCIs measured, there are a total of 

three parameters, one distance and two angles. For hydrogen bonds and salt bridges (Figure 

2A) the three geometric measurements are 1) the distance (δHOrb) between the orbital and 

hydrogen, 2) the angle (Ψ) between the Acceptor – Orbital – Hydrogen (AOH), and 3) the 

angle (Θ) between the Donor – Hydrogen – Orbital (DHO).

For interactions between π-orbitals, cation–π and π–π interactions (Figure 2B) the 

parameters are 1) the distance (δOrbOrb) between the two orbitals, 2) the angle (Ψ) between 

the Acceptor – Orbital – Orbital (AOO), and 3) the angle (Θ) between the Donor – Orbital – 

Orbital (DOO).

Inclusion of a direct measurement between angles involving the orbital removes the need to 

indirectly calculate the relationship between the acceptor, hydrogen, and donor using torsion 

angles between four atoms as has been previously done with the hydrogen bond potential.29
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2.3. Knowledge-Based Potential Derivation.

A KBP was created by observing the frequency and geometry of each pair of atom types that 

can form an interaction. For example, in the case of hydrogen bonds, the interaction can be 

defined as (n → σ*). In proteins, the nonbonding orbital, n, is found on atom types 

O_Tr2Tr2TrPi and O_Te2Te2TeTe, and the antibonding σ* orbital is found on atom types 

O_Te2Te2-TeTe, N_TrTrTrPi2, and N_Tr2Tr2TrPi. With the level of detail being modeled in 

the PCI method the antibonding orbital is represented by the hydrogen atom bound to the 

hydrogen bond donor (O_Te2Te2TeTe, N_TrTrTrPi2, and N_Tr2Tr2TrPi). This results in six 

total KBPs that describe both hydrogen bonds and salt bridges in proteins (Table 1). Overall 

a total of 16 PCI interactions are calculated.

For derivation of the PCI KBP, the RosettaFeatures reporter31 was used to obtain and store 

the geometric parameters using the top8000.34 The top8000 data set contains monomeric 

proteins with at least 25% of side chains present, greater than 38 residues, and has a 

MolProbity score of <2.0.35 Missing hydrogen atoms were added to all crystal structures 

using Reduce36 and then converted to Rosetta hydrogen atom types via a Python script.

The probability distributions are initially computed by the shortest distance (δHOrb or 

δOrbOrb) between a hydrogen atom and an orbital or between any two orbitals. Once the 

shortest distance is calculated, the cosine of both Ψ and Θ is calculated (as defined in Figure 

2). By taking the cosine of Ψ and Θ, a simple normalization is applied to each angle to 

account for a bias in observing a given angle by chance. Angles close to 90° are much more 

likely to occur in a protein environment than angles close to 0° or 180°. Therefore, the more 

likely angles, near 90°, are in the steepest part of the cosine function, whereas 0° and 180° 

are in the shallow part of the function. Use of the cosine avoids also computationally time-

consuming calls to both the cosine and arccosine functions.

The observed frequencies were then binned by a two-dimensional table, by distance and 

angle. Two two-dimensional tables were created for each of the atom type pairs (see list in 

Table 1), one by distance and cos(Ψ) and the other by distance and cos(Θ). Bin sizes were 

set to 0.1 Å for distances δHOrb and δOrbOrb and 0.05 for both cos(Ψ) and cos(Θ). 

Pseudocounts were added to each bin fraction.

The inverse Boltzmann relation was then used to convert the propensity of the observed 

geometries into an energy: E(X) = –RT ln(Pobserved(X)/Pbackground(X)) where E(X) is the 

energy X is the feature observed (distance and two angles), R is the gas constant, T is the 

temperature, Pobserved(X) is the probability of the feature observed, and Pbackground(X) is the 

probability of the given observation seen by chance. The total energy for a given PCI is 

determined by the summation of E(PCI | X) where PCI is the partial covalent interaction 

being modeled, and X are the geometric measurements for the interaction. The expected 

background probabilities for the distances δHOrb and δOrbOrb were determined by dividing 

each bin fraction by the squared distance (r2), as short distances between features are less 

likely to occur than long distances by chance. The cosine function sets the expected 

background distribution probability function to 1 for both angle measurements. A bicubic 

interpolation of the energy for all distance/angle pairs for every PCI type was then 

performed. This has two effects: the energy function becomes a continuous, differentiable 
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function, and it also ensures that δHOrb, cos(Ψ) and δHOrb, cos(Θ) remain tightly coupled 

and continuous during minimization.

2.4. Orbital Score Function Optimization.

The overall energy score, E, computed by Rosetta is a linear combination of weighted 

scoring terms. The base score function in Rosetta is composed of a decomposed Lennard-

Jones potential (fa_atr, fa_rep, fa_intra_rep), a solvation term (fa_sol), a Coulombic 

electrostatic potential (fa_elec), proline ring closure energy (pro_close), a decomposed 

hydrogen bond potential for alpha helices, beta sheets, side chain to backbone, and side 

chain to side chain, respectively (hbond_sr_bb, hbond_lr_bb, hbond_bb_sc, hbond_sc), a 

disulfide bond potential (dslf_fa13), a phi/psi potential for each amino acid (rama), an 

omega backbone dihedral potential (omega), likelihood of rotamer (fa_dun), probability of 

an amino acid with a given phi/psi angle (p_aa_pp), a penalty for placing a tyrosine 

hydroxyl out of plane (yhh_planarity), and an amino acid reference penalty (ref):37,38

E = WatrEatr + WrepErep + Wintra−repEintra−rep + WsolEsol + Whbond_scEhbond_sc
+ Whbond−sr−bbEhbond−sr−bb + Whbond−Ir_bbEhbond−Ir_bb + Whbond−bb−scEhbond−bb−sc
+ WdunEdun + W p−aa−ppEp−aa−pp + WpairEpair + WrefEref

The relative weights for all scoring terms were optimized by redesigning proteins in a data 

set of high resolution experimental structures to maximize the probability of recovering the 

native amino acid at each position in the protein.27,29 Modification, addition, or removal of 

scoring terms therefore requires adjustment of the individual weights.

For simplification of score terms, the 16 total atom type interactions were divided into three 

classes: n → σ* orbitals are termed lone pair hydrogen interactions, orbital interactions 

involving π → σ* are termed bonding – π hydrogen interactions, and π → π interactions 

are termed bonding π – bonding π. Each PCI class is controlled by a separate weight and 

given the following names: pci_lone_pair_h (n → σ*), pci_bonding_pi_h (π → σ*), 

pci_bonding_pi_bonding_pi (π → π) (Table 1).

An advantage of KBPs is the ability to implicitly capture interactions that are difficult to 

model. However, care must be taken to avoid double-counting interactions. Consequently, 

with the introduction of the PCI score terms we removed all standard side-chain hydrogen 

bonding interactions, yielding the new total energy formula:

E = WatrEatr + WrepErep + Wintra_repEintra_rep + WsolEsol + Whbond_sr_bbEhbondsr−bb
+ Whbond−Ir bbEhbond−Ir bb + WdunEdun + Wp_aa_ppEp_aa_pp + Wfa−elecEfa−elec + WrefEref
+ Wpci_lone_pair_hEpci_lone_pair_h + Wpci_bonding_pi_hEpci_bonding_pi_h
+ Wpci_bonding_pi_bonding_piEpci_bonding_pi_bonding_pi

With the addition, and removal, of score terms, the weights need to be reoptimized. An 

iterative approach was used to optimize weights for the new PCI score function. The 
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following weights were changed iteratively by a factor of 0.05 and tested against a rotamer 

recovery benchmark: the new terms: pci_lone_pair_h, pci_bonding_pi_h, and 

pci_bonding_pi_bon-ding_pi, and the standard terms fa_atr (the attractive portion of the 

Lennard-Jones potential), fa_rep (the repulsive portion of the LJ potential), fa_sol (solvation 

term), and fa_elec (Coulombic term). Because PCIs counterbalance the cost of desolvating 

polar residues and are partially covalent, the weight for the solvation and the attractive and 

repulsive potential needed to be adjusted.

Once the highest possible rotamer recovery was achieved, the particle swarm optimization 

algorithm, OptE, was used to optimize the weight for all reference energies.31 After the 

reference energies have been optimized, a design benchmark was used to analyze the 

number and quality of PCIs recovered by Rosetta. Weights were then adjusted by 0.025 until 

the total number of PCIs designed matched the average number in native structures. A final 

round of OptE was used to adjust the reference energies to match the average amino acid 

composition seen in native proteins.

2.5. Benchmarks Used To Analyze Rotamer and Sequence Recovery.

The protein design data set benchmark was created through the protein sequence culling 

server PISCES.39 X-ray structures with a sequence identity limit of 25%, resolutions better 

than 1.5 Å, and sequence lengths between 175 and 250 residues were identified. A total of 

415 of crystal structures were obtained given these criteria. For the rotamer recovery 

benchmark all side-chain atoms must be present in the protein. This resulted in a set of 29 

proteins with all side-chain atoms present and a resolution of 1.8 Å or better.40 The data set 

is diverse, containing structures that are all α-helices, all β-sheets, and an α /β mix.

2.5.1. Rotamer Recovery.—Side-chain rotamer recovery was measured by 

systematically swapping out each amino acid side chain with rotamers from the Dunbrack 

rotamer library41 while keeping the conformations of all other side chains fixed. After the 

lowest energy rotamer is picked, the side chain is allowed to minimize. The χ angles of the 

lowest energy conformation are compared to original side-chain conformation. If all χ 
angles are equal with ±20°, then the residue is considered recovered. For the purposes of 

analysis, rotamer recovery was divided into two bins, surface residues and core residues. 

Residues with a neighbor count of 16 or less were considered surface residues, while 

residues with more than 16 neighbors were considered to be in the core of the protein. 

Neighbor counts are measured by the number of residues with a Cß (Cα for GLY) distance 

within 10 Å of the residue being repacked.

2.5.2. Sequence Recovery.—Protein design minimizes the total free energy of a 

tertiary structure through simultaneous optimization of the primary sequence and side-chain 

conformation. On a fixed backbone, amino acid side-chain identities and conformations are 

stochastically swapped and scored with the Rosetta all-atom score function. The sequence 

with the lowest total energy score is chosen as the optimal sequence for the given backbone. 

Sequence recovery is performed on the backbone coordinates after Rosetta energy 

minimization. If design is performed on a rigid backbone, small local clashes may exist in 

experimentally determined structures. During design these clashes may be relieved through 
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replacing a large amino acid with a smaller one thereby producing an artificially low energy. 

Therefore, in order to relieve these small clashes, an all-atom refinement of experimental 

structures is done prior to design. The argument against design on an energy-minimized 

structure is that while local frustrations are removed, native interactions are optimized in the 

Rosetta energy function and thereby favor the native amino acid resulting in artificially high 

recovery rates. However, as comparisons are only being made between Rosetta score 

functions, and not to external methods, no single method will be biased over another.

3. RESULTS

3.1. Analysis of Orbitals in Experimentally Determined Crystal Structures.

Knowledge-based potentials (KBPs) were derived for each orbital class and driving 

interaction (see Methods) (Figure 3). For all PCIs, the most energetically favorable angle bin 

occurred at 180° forming a straight line between the Ψ angle (Acceptor – Orbital – 

Hydrogen or Orbital) and the Θ angle (Donor – Hydrogen or Orbital – Orbital), see Figure 3, 

cos(Ψ) and cos(Θ). However, the distance components, δHOrb and δOrbOrb, vary widely 

between the orbital classes. The rightmost panel of Figure 3A–E shows an experimentally 

determined example structure from the most energetically favorable angle/distance bin, the 

orbitals are displayed as a gray sphere, while hydrogen atoms are depicted as a white sphere.

The PCI score function does not have distinct side-chain and backbone score functions 

based on atom hybridization; instead this effect is captured in the Gasteiger atom typing. For 

instance, the acceptor oxygen hybridization is different in a serine to serine hydrogen bond 

than in a serine to glutamate hydrogen bond. While they are both pci_lone_pair_h (n → σ*) 

interactions, the serine γ oxygen is typed as a O_Tr2Tr2TrPi (sp3), while the backbone 

carbonyl oxygen is typed as a O_Te2Te2TeTe (sp2). Thereby any difference in energy is 

captured by their frequency distributions and subsequent conversion into an energy score via 

the Boltzman distribution.

3.2. Testing the PCI Scoring Function.

An established test of the Rosetta score function involves the recapitulation of features 

observed in high-quality experimental crystal structures. We utilized a series of benchmarks 

that have been designed to test the new PCI score function against original crystal structure 

features, as well as the standard Rosetta score function, Talaris2014,31 and the previous 

standard, score!2’.28

The first two tests examine recapitulation of crystal structure geometric parameters for 

hydrogen bonds, salt bridges, cation–π, and π–π interactions that were used to derive the 

KBP after perturbation of side chains and backbone atoms. The third test is based on the 

assumption that native protein sequences are close to optimal for their fold27 and measure 

the ability of the score function to recover the amino acid identity of the native protein. The 

fourth test evaluates the packing density of designed structures versus the native structures, 

as native structures are often more densely packed than designed structures.42
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3.3. Relaxed Experimental Structures Recapitulate Nativelike Geometries.

The PCI score function was first tested to see if whether its use in the Rosetta relax protocol 

was able to recapitulate native geometries. To assess this ability, Lambert-azimuthal equal 

area projection plots were used,32 which show the distribution of hydrogen atoms around an 

acceptor orbital or atom. Plots were created for the native structures, the PCI score function, 

and the Talaris2014 score function, as well as each PCI: hydrogen bonds, salt bridges, 

cation–π, and π–π interactions. Distribution of atoms and orbitals should remain consistent 

between the relaxed models and the original crystal structures.

3.3.1. Hydrogen Bond Relax Comparison.—Figure 4 shows the comparison 

between the native distribution and Rosetta relaxed distribution of the hydrogen bond, 

specifically, a hydrogen bond between a hydroxyl donor (O_Tr2Tr2TrPi) with an sp2 

acceptor (O_Te2Te2TeTe). Two parameters compose the distribution: the BBase (BB) – 

Base (B) – Acceptor (A) – Hydrogen (H) torsional angle (Figure 4A, BAχ) and the Base – 

Acceptor – Hydrogen angle (Figure 4A, ∠BAH). Figure 4B displays the torsional angle 

BAχ as a Newman projection.

The native hydrogen atom distribution with an sp2 acceptor is a bimodal distribution around 

0° and 180° for the BAχ torsional angle and 120° for the ∠BAH angle; this results in high 

density at (–1,0) and (1,0) in the Lambert-azimuthal plots (Figure 4C). As expected, these 

high-density regions correspond to the placement of the lone pairs on an sp2 hybridized 

oxygen. The previous standard, score12’, showed a dispersed ring of density at a ∠BAH 

angle of 120° (Figure 4D), ignoring the sp2 hybridized oxygen placement. Structures relaxed 

using the Talaris2014 score function have an equivalent distribution to native (Figure 4E), 

albeit with greater density. Structures relaxed using the PCI score function (Figure 4F) 

recapitulate the native distribution with the BAχ torsional angle having two high density 

regions at 0° and 180° and the ∠BAH angle centered at ~120°. The density of the PCI 

distribution is higher than native, but the geometry remains consistent. The plots are 

indicative that the geometric parameters used in the PCI score terms are correctly defined, 

resulting in nativelike conformations.

3.3.2. Salt Bridge Relax Comparison.—Figure 5 shows the comparison between the 

native distribution and Rosetta relaxed distribution of the salt bridge, specifically, a polar 

hydrogen donor to an sp2 acceptor (O_Te2Te2TeTe). Salt bridge geometries specific to the 

PCI function were measured through definition of the Base (B) – Acceptor (A) – Orbital 

(Orb) – Hydrogen (H) torsional angle (Figure 5A, AOrbχ) and the Acceptor (A) – Orbital 

(Orb) – Hydrogen (H) angle (Figure 5A, ∠AOrbH).

In native crystal structures (Figure 5C), ideal salt bridges occur with an undefined AOrbχ 
torsional angle, as the Acceptor, Orbital, and Hydrogen points lie in a straight line. The 

∠AOrbH angle has a maximum density at 180° (0,0 on the Lambert-azimuthal plots). The 

hydrogen atom density falls off as the ∠AOrbH angle decreases. Density also decreases 

rapidly as the AOrbχ torsional angle moves away from the line segment defined by (0, –1) 

to (0,1). Using relax with the old standard, score12’, results in a larger spread of the density 

along with a more pronounced curvature of the density around (0, –1) and (0,1) (Figure 5D). 
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The relax protocol using Talaris2014 (Figure 5E) shows an almost equivalent geometry and 

density to the native distribution. The relax protocol using the PCI score function (Figure 

5F) shows a clear preference for optimal salt bridge geometries with an undefined AOrbχ 
angle and an 180° ∠AOrbH angle (at 0,0 in Figure 5F). The distribution of hydrogen atoms 

around the orbitals is more focused when compared to the experimentally determined 

structures, indicating convergence in the relax protocol.

3.3.3. Cation–π Relax Comparison.—Figure 6 shows the comparison between the 

native distribution and the two Rosetta relaxed distributions of the cation–π interaction. 

Both T-stacked and offset parallel cation–π interactions are defined in equal area plots with 

a AOrbχ torsional angle as the Center of Mass (C) – Acceptor (A) – Orbital (Orb) – 

Hydrogen (H) and the ∠AOrbH angle as Acceptor (A) – Orbital (Orb) – Hydrogen (H) 

(Figure 6A). The orbital is the π-orbital belonging to the acceptor atom (Figure 6A–B).

The native distribution for hydrogen atoms is centered at the π-orbital of the acceptor atom 

of the aromatic ring with an AOrbχ that is undefined (as was the case for the salt bridge) 

and an ∠AOrbH angle of 180° (Figure 6C). In a report on energetically favorable cation–π 
interactions, Gallivan et al.3 described the majority of favorable cation–π interactions occur 

with the N atom above the π-orbital. With the orientation of the N atom above the n-orbital, 

the acceptor–orbital–hydrogen angle is 180° as seen in the crystal structure Lambert-

azimuthal plots. Score12’ (Figure 6D) shows a pronounced spread of density as compared to 

the focused, native distribution. The Talaris score function does not account for cation–π 
interactions; however, after relax with the Talaris2014 score function the hydrogen atom 

distributions are dispersed in a similar geometry to the crystal structure (Figure 6E). The PCI 

relax distribution shows a geometric distribution concurrent with Talaris2014 and native 

(Figure 6F). The regions of high density vary slightly between the Talaris and PCI 

distributions.

3.3.4. π–π Relax Comparison.—Figure 7 shows the comparison between the native 

distribution and Rosetta relaxed distribution of π–π interactions between Phe, Tyr, and Trp 

residues. There are two different types of π–π interactions modeled, parallel (Figure 7A) 

and T-stacked (Figure 7B). Parallel interactions are where two aromatic residues align where 

the plane of the rings lies parallel to one another. For scoring in PCI it is where an orbital of 

one sp2 carbon of an aromatic ring interacts with the orbital of an sp2 carbon on an adjacent 

aromatic ring. T-stacked interactions are where the plane of one ring lies perpendicular to the 

plane of the other interacting ring. For PCI scoring it is where the hydrogen atom of an sp2 

carbon interacts with the orbital of an sp2 carbon on an adjacent aromatic ring–the 

hydrogen-to-orbital distance being closer than the orbital-to-orbital distance.

The parallel π–π geometries were measured through definition of the Center of Mass (C) – 

Acceptor (A) – Orbital (Orb) – Hydrogen (H) torsional angle (AOrbχ) and the Acceptor (A) 

— Orbital (Orb) – Hydrogen (H) angle (∠AOrbH) (Figure 7A), whereas the T-stacked π–π 
geometries were measured through definition of the Center of Mass (C) – Acceptor (A) – 

Orbital (Orb) – Orbital (Orb) torsional angle (AOrbχ) and the Acceptor (A) – Orbital (Orb) 

– Orbital (Orb) angle (∠AOrbOrb) (Figure 7B).
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Parallel π–π native density is shown in Figure 7C; the density is focused at the center of the 

plot in a roughly circular distribution with more diffuse density located on the left-hand side 

of the plot. This density is recapitulated in the Talaris (7D) and PCI (7E) relaxed 

distributions, with a slightly stronger central density in the PCI distribution compared to 

Talaris. T-stacked native density is shown in Figure 7F, and the density is tightly focused at 

the point (0.5,0), with a triangle shaped pattern of lesser density distributed to the left of the 

maximum density. The density is once again recapitulated in the Talaris (7G) and PCI (7H) 

relaxed distributions, with the PCI score function capturing the maximum tight density at 

(0.5,0). Figure S1 shows the distribution of both the parallel and T-stacked π–π interactions 

in a single plot, and the distribution shows negligible difference between the Talaris and PCI 

score functions.

3.3.5. Distribution of Partial Covalent Interactions between Score Terms.—
Using the same data set, postrelax in Rosetta, as used in the Lambert-azimuthal plot 

analysis, the data was binned by the distance between orbitals, or hydrogen to orbital, and 

the angle formed by three atoms and/or orbitals (as defined in Figure 2). The data was 

analyzed using the same atom type distributions as in Table 1, although for brevity’s sake 

only five distributions are shown in Figure 8. Both the Talaris2014 and PCI score functions 

show similar distributions to the native data, although the bins are, as expected, smoother in 

comparison to native. Variations between Talaris2014 and PCI are minimal, as was reflected 

in the Lambert-azimuthal plots.

3.4. Rotamer Recovery Demonstrates Energetic Minimum of PCI Score Function Is Close 
to Native Favorable Conformations.

Conformational sampling for proteins side chains is a combinatorial problem that produces a 

large search space. Experimentally determined structures contain side chains in an 

energetically favorable conformation. The “rotamer recovery” metric measures the recovery 

of the experimentally observed conformation of a protein side chain in the context of all 

other side chains in a protein. A stringent test for the score function is to see if the native 

position, or energetic minimum, of a side chain can be recovered through rotameric 

sampling. Rotamer recovery was evaluated on a data set of residues that contained all side-

chain atoms. While partial covalent interactions only involve a subset of the 20 naturally 

occurring amino acids, all residues were considered during repacking (see Methods). Table 2 

details the breakdown of rotamer recovery postrelaxed by amino acid type and location.

Rotamer recovery improved when using the PCI score function (75.0%) as compared to the 

Talaris2014 score function (74.0%) and score12’ (74.0%). The overall improvement gained 

is from better rotamer recovery on the surface of the protein using the PCI score function 

(61% opposed to 58%) and similar performance within the core of the protein (both had 

83% recovery). The two residues involved exclusively in hydrogen bond donation (Ser and 

Thr) showed no to slight improvement (1% and 0%, respectively) over Talaris2014. 

However, the Talaris2014 score function was the result of a concerted effort to reparametrize 

hydrogen bonding in Rosetta,32 although in terms of rotamer recovery there was little 

change in Talaris2014 over score12’. Residues involved in salt bridges (Arg, Lys, Asp, and 

Glu) showed an overall improvement of 1–2% recovery using the PCI score function over 
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Talaris2014. These gains were most noticeable in surface residues with gains between 2 and 

8%. Residues involved in cation–π or π—π interactions (Phe, Trp, Tyr) displayed no gain in 

rotamer recovery between Talaris2014 and PCI, even showing a slight decrease (1%). 

However, these residues are both at a high (~90%) recovery level using either score function, 

and many score terms (especially the terms related to van der Waals contacts) contribute to 

the overall score of these amino acids. Overall, using PCI, 9 residues improved rotamer 

recovery compared to Talaris2014, while only 5 declined in performance (none more than 

2%); the rest were neutral. The largest gain in recovery was glutamine, which improved 3% 

between Talaris2014 and PCI. Rotamer recovery was further tested by analyzing if a native 

residue pair interaction was recovered postrelax. Talaris performs a few percentage points 

better than PCI in most residue pairs, and the complete table of pairs is in Table S1.

3.5. Side-Chain Design Identity Recovery Result in Nativelike Proteins.

In silico protein design is typically benchmarked on recovering side-chain identity in crystal 

structures, with the assumption that the native sequences of proteins are close to optimal for 

the protein fold.27 Here we measured recovery to the native amino acid sequence using the 

standard and PCI score functions. A large data set of 414 monomeric proteins (see methods) 

was designed using an energy minimized, fixed backbone.

3.5.1. Sequence Recovery.—After a complete design of the protein, the recovery of 

the naturally occurring amino acid was measured (Table 3). Broadly speaking, for both PCI 

and Talaris2014, the core of the protein had significant sequence recovery over the surface 

residues. This is in part due to the restriction in the degrees of freedom in the core compared 

to the surface of the protein. The core of the protein has an increased chance for clashes 

between residues, whereas surface conformational sampling can result in little to no clashes 

between residues.

Design performance of PCI to Talaris2014 varied widely between residues, with an overall 

sequence recovery of 1% greater using Talaris2014 than PCI (Table 3 – “Total Average”). 

However, both Talaris2014 and PCI outperformed score12’ by 6 and 5 percentage points, 

respectively. Talaris2014 outperformed the PCI score function primarily in the design of 

hydrophobic residues (F, W, Y, M, A, I, L, V), where all but tyrosine was better recovered. 

The primarily hydrogen bond forming residues, serine and threonine, were better designed 

in the core by Talaris2014, and on the surface by PCI, for an overall gain of 6 and 7% 

recovery by PCI. Residues that can form salt bridges (Arg, Lys, Asp, and Glu) were all 

better recovered in the protein core by PCI versus Talaris2014 (2–8% improvement), while 

Talaris2014 outperformed 3 of the 4 residues on the surface. Residues involved in cation–π 
or π—π interactions (Phe, Trp, Tyr) displayed much better recovery in the core than on the 

surface, with an improvement of 12% greater in Trp recovery in the core. However, overall 

Phe, Trp, and Tyr recovery decreased slightly from Talaris2014 to PCI.

3.5.2. PSSM Recovery.—Sequence recovery, while an important metric for evaluating 

scoring functions, is limited by the assumption that the lowest free energy amino acid is the 

native residue. This is not necessarily true as multiple residues may have evolved for 

functionality and may be equally suitable for a given position. This limitation can be 
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overcome by using a position specific scoring matrix (PSSM). PSSM recovery measures the 

fraction of amino acids that are converted to an identity that has been seen in evolution at a 

given position and accepts all amino acids sampled by evolution as acceptable. Both the 

Talaris2014 score function and the PCI score function were evaluated via PSSM recovery, 

using the same data set as the standard sequence recovery. Both the score12’ score function 

and the PCI score function performed similarly (Table 3 – “PSSM recovery”), with 

Talaris2014 outperforming both in the core and surface residues. The overall PSSM recovery 

for the structures was 72% and 77% for the PCI and Talaris2014 score function, respectively.

3.5.3. Partial Covalent Interaction Type Recovery.—One limitation of substitution 

analysis is the inability to identify the type of interactions created, and if, as is the focus of 

this work, the native partial covalent interactions are recovered. To this end, PCIs were 

measured between the native crystal structure data set and the designed models (Table 4).

For the PCI score function, the number of salt bridges stays consistent with Talaris, with 

both over-representing the average number due to Rosetta trying to satisfy charged residues 

on the surface of the protein. The number of cation–π bonds increases over Talaris bringing 

the average count closer to native. Talaris over-represents π–π bonds, whereas the PCI score 

function reduces the average closer to native.

3.6. Packing Metrics Calculations Show Better Packing with the Partial Covalent 
Interactions Score Function.

An aspect of highly stable proteins, proteins resistant to heat denaturation and enzymatic 

degradation, is how well the protein core excludes water. An indirect measurement of this 

feature is packing density, a measure of how well a protein is packed. Sheffler et al. 

demonstrated that packing metrics could be used to identify Rosetta designed models and 

native structures.42 Native structures are seen to be packed more densely when compared to 

the designed models. To this end, packing metrics were measured for the designed data set, 

both using Talaris2014 and the PCI score functions.

The overall packing density native structures was 0.70. Talaris2014 had a less-dense packing 

value of 0.62, and with the PCI score function the packing value increased slightly to 0.64 

(Table 4). Although packing within the core of the protein is directly related to hydrophobic 

residues, the PCI score function after design packs the core tighter than the Talaris2014 

score function. A possible explanation is that arrangement of outer core residues, which are 

typically amphipathic residues, is better geometrically arranged into PCI interactions which 

influences core packing.

4. CONCLUSIONS

In this work, we have introduced a new scoring function to Rosetta and illustrated that by the 

explicit modeling of orbitals on atoms better scoring and identification of PCIs occur. The 

standard Rosetta score function has been highly optimized for design and protein folding by 

many laboratories over the course of over a decade; this makes it difficult to improve upon. 

However, a litany of tests, including native geometry recovery, rotamer recovery, sequence 

recovery, and packing density, measured the performance of the new score function against 
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the standard score function Talaris in Rosetta and showed modest improvement in rotamer 

recovery and packing density. While rotamer recovery using PCI improved compared to 

Talaris, sequence recovery or design performed slightly worse. This may be due to the 

reference energy, an estimation of the unfolded-state free energies, for each amino acid 

being less optimal than the reference energies in the Talaris score function. However, for all 

tests the PCI score function meets or exceeds the original benchmark, score12’.

After the manuscript was written, a new score function, REF15, became the new default 

score function in Rosetta.38,43 The authors of the new score function optimized numerous 

parameters against a wide range of proteins, and other molecular systems, to achieve a score 

function that outperforms Talaris in a series of benchmarks. While the authors did introduce 

new score terms, there were no score terms specific to cation–π or π–π interactions. Future 

work will involve the testing of the PCI score function against the new standard.

Although the improvements shown are modest, introduction of orbitals on atoms allows for 

further optimization of the score function by through robust Gasteiger atom typing. 

Gasteiger atom typing, using the VSPER method, can be easily expanded to any atom type, 

especially for atom types that are found outside canonical amino acids. Further, the 

introduction of orbitals allows for the measurement of cation–π and π–π interactions, which 

have implications in correctly identifying nativelike ligand, DNA, and RNA models. This 

work will create a foundation to better handle noncovalent interactions between proteins and 

other noncanonical protein molecules. Future directions will focus on the application of the 

PCI score term to ligand-protein interactions, and the hypothesis that the assignment of 

partial point charges to the orbitals as well as atoms will allow for a more intricate view of 

atom-to-atom interactions.
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Refer to Web version on PubMed Central for supplementary material.
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ABBREVIATIONS

PCI partial covalent interaction

KBP knowledge based potentials

VSEPR valence shell electron pair repulsion
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Figure 1. 
Representations of partial covalent interactions. Parts A–F each show a chemical schematic 

(left) along with a representative interaction from the Protein Data Bank (right). A) 

hydrogen bond, formed between S240 and S243 from 1daa. B) salt bridge, formed between 

R96 and E131 in 1wr8. C) T-stacked cation–π, formed between W361 and R370 in 2oiz. D) 

Offset parallel cation–π, formed between Y178 and R184 in 2bo4. E) Offset parallel π–π, 

formed between F285 and F348 in 1pam. F) T-stacked π–π, formed between F70 and F94 in 

1vph.
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Figure 2. 
Schematic representation of the geometric definitions for the derivation of knowledge based 

potentials (KBP). A) δHOrb the distance between the acceptor lone pair orbital (Orb) and the 

donor hydrogen atom (H), Ψ the angle between the acceptor atom (A), the orbital (Orb), and 

the hydrogen atom (H), and Θ the angle between the orbital (Orb), hydrogen atom (H), and 

the donor atom (D). B) δorborb the distance between the donor orbital (OrbD) and the 

acceptor orbital (OrbA), Θ the angle between the donor atom (D), the donor orbital (Orbd), 

and the acceptor orbital (OrbA), and Ψ the angle between the donor orbital (Orbd), the 

acceptor orbital (OrbA), and the acceptor atom (A).
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Figure 3. 
Energy potential for PCI between select side-chain interactions. Interactions are binned by 

hydrogen to orbital distance (A-D) or orbital to orbital distance (E), and both cos(Ψ) and 

cos(Θ), as defined in Figure 2. Additionally, a representation of the energetic minimum is 

shown for each interaction. A) Energy potential for a cation–π interaction between a 

C_TrTrTrPi atom interacting with a polar hydrogen on atom type N_TrTrTrPi2. B) Energy 

potential for a hydrogen bond between class N_Tr2TrTrPi interacting with a polar hydrogen 

on O_Tr2Tr2TrPi. C) Energy potential for a salt bridge between atom class O_Te2Te2TeTe 

interacting with a polar hydrogen on N_TrTrTrPi2. D) Energy potential for a hydrogen bond 

interaction between atom class O_Tr2Tr2TrPi interacting with a polar hydrogen on 

O_Tr2Tr2TrPi. E) Energy potential for a π–π interaction between the atom type C_TrTrTrPi 

interacting with another aromatic hydrogen (C_TrTrTrPi).
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Figure 4. 
Lambert-azimuthal equal area plots for hydrogen bonds between an sp2 acceptor 

(O_Te2Te2TeTe) and a hydroxyl donor (O_Tr2Tr2TrPi). A) Schematic representation of 

parameters used to create the equal area plots: ∠BAH the angle between the acceptor base 

(B), the acceptor (A), and donor hydrogen atom (H); BAχ the torsional angle between the 

acceptor Bbase (BB), acceptor base (B), acceptor (A), and the donor hydrogen atom (H). 

Orbitals are shown but are not included in the geometric calculations. B) Newman projection 

of the hydrogen bond, looking down the axis of the BAχ torsional angle. The acceptor 
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fragment is in black, and the donor fragment is in blue. C) Lambert-azimuthal plot of the 

native crystal structure distribution, high density is located directly where the orbital of an 

sp2 acceptor would be present. The y-axis plots 2*sin(∠BAH/2)*sin(BAχ), and the x-axis 

plots 2*sin(∠BAH/2)*cos(BAχ); the axes are the same for all graphs. D) Lambert-

azimuthal plot of distribution post-Rosetta relax using score12’. E) Lambert-azimuthal plot 

of distribution post-Rosetta relax using Talaris2014. F) Lambert-azimuthal plot of 

distribution post-Rosetta relax using PCI.
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Figure 5. 
Lambert-azimuthal equal area plots for salt bridges between charged basic lysine and 

arginine (N_TrTrTrPi2) and aspartate and glutamate (O_Te2Te2TeTe). A) Schematic 

representation of parameters used to create the equal area plots: ∠AOrbH the angle between 

the acceptor (A), the orbital (Orb), and donor hydrogen atom (H); AOrbχ the torsional angle 

between the acceptor base (B), acceptor (A), the acceptor orbital (Orb), and the donor 

hydrogen atom (H). B) Newman projection of the salt bridge, looking down the axis of the 

AOrbχ torsional angle. The acceptor fragment is in black, and the donor fragment is in blue. 
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In an ideal salt bridge the donor hydrogen atom will lie directly in line with the acceptor and 

orbital. C) Lambert-azimuthal plot of the native crystal structure distribution, the x-axis is 

computed as 2*sin(∠AOrbH/2) * cos(AOrbχ), and the y-axis is computed as 

2*sin(∠AOrbH/2) * sin(AOrbχ); all four graphs have the same axes. D) Lambert-azimuthal 

plot of distribution post-Rosetta relax using score12’. E) Lambert-azimuthal plot of 

distribution post-Rosetta relax using Talaris2014. F) Lambert-azimuthal plot of distribution 

post-Rosetta relax using PCI.
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Figure 6. 
Lambert-azimuthal equal area plots for cation–π interaction between tryptophan, tyrosine, 

and phenylalanine (C_TrTrTrPi) and lysine and arginine (N_TrTrTrPi2). A) Schematic 

representation of parameters used to create the equal area plots: ∠AOrbH the angle between 

the acceptor (A), the orbital (Orb), and donor hydrogen atom (H); ∠Orbx the torsional angle 

between the ring center (C), acceptor (A), the acceptor orbital (Orb), and the donor hydrogen 

atom (H). B) Newman projection of the cation–π interaction, looking down the axis of the 

AOrbχ torsional angle. The acceptor fragment is in black, and the donor fragment is in blue. 
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In an ideal cation–π interaction the donor hydrogen atom will lie directly in line with the 

acceptor and orbital. C) Lambert-azimuthal plot of the native crystal structure distribution, 

the x-axis is computed as 2*sin(∠AOrbH/2) * cos(AOrbχ), and the y-axis is computed as 

2*sin(∠AOrbH/2) * sin(AOrbχ); all four graphs have the same axes. D) Lamber-azimuthal 

plot of distribution post-Rosetta relax using score12’. E) Lambert-azimuthal plot of 

distribution post-Rosetta relax using Talaris2014. F) Lambert-azimuthal plot of distribution 

post-Rosetta relax using PCI.
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Figure 7. 
Lambert-azimuthal equal area plots for π–π interaction between two aromatic rings: 

tryptophan, tyrosine, and phenylalanine (C_TrTrTrPi). A) Schematic representation of 

parameters used to create the equal area plots for parallel stacked π–π interactions: 

∠AOrbOrb the angle between the acceptor (A), the orbital (Orb), and the donor orbital 

(Orb); AOrbχ the torsional angle between the ring center (C), acceptor (A), the acceptor 

orbital (Orb), and the donor orbital (Orb). B) Parameters used to create equal area plots for 

T-stacked π–π interactions: ∠AOrbH the angle between the acceptor (A), the orbital (Orb), 
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and donor hydrogen atom (H); AOrbχ the torsional angle between the ring center (C), 

acceptor (A), the acceptor orbital (Orb), and the donor hydrogen atom (H). C) Lambert-

azimuthal plot of the parallel π–π interaction distribution in native crystal structures, the x-

axis is computed as 2*sin(∠AOrbOrb/2) * cos(AOrbχ), and the y-axis is computed as 

2*sin(∠AOrbOrb/2) * sin(AOrbχ); all three parallel interaction graphs (C–E) have the same 

axes. D) Lambert-azimuthal plot of parallel π–π distribution post-Rosetta relax using 

Talaris2014. E) Lambert-azimuthal plot of parallel π–π distribution post-Rosetta relax using 

PCI. F) Lambert-azimuthal plot of the T-stacked π–π interaction distribution in native 

crystal structures, the x-axis is computed as 2*sin(∠AOrbH/2) * cos(AOrbχ), and the jy-

axis is computed as 2*sin(∠AOrbH/2) * sin(AOrbχ); all three T-stacked interaction graphs 

(F–H) have the same axes. G) Lambert-azimuthal plot of T-stacked π–π distribution post-

Rosetta relax using Talaris2014. H) Lambert-azimuthal plot of T-stacked π–π distribution 

post-Rosetta relax using PCI.
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Figure 8. 
Distribution of partial covalent interaction frequency by hydrogen to orbital (δHOrb) or 

orbital to orbital (δOrbOrb) to the cos(Ψ) or cos(Θ) as defined in Figure 2. A) Frequency 

distribution for a cation–π interaction between a C_TrTrTrPi atom interacting with a polar 

hydrogen on atom type N_TrTrTrPi2. B) Frequency distribution for a hydrogen bond 

between class N_Tr2TrTrPi interacting with polar hydrogen on O_Tr2Tr2TrPi. C) Frequency 

distribution for a salt bridge between atom class O_Te2Te2TeTe interacting with a polar 

hydrogen on N_TrTrTrPi2. D) Frequency distribution for a hydrogen bond interaction 

between atom class O_Tr2Tr2TrPi interacting with polar hydrogen on O_Tr2Tr2TrPi. E) 

Frequency distribution for a π–π interaction between the atom type C_TrTrTrPi interacting 

with another aromatic hydrogen (C_TrTrTrPi).
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Table 4.

Average Number of PCI Interactions by Score Type
a

salt bridges cation–π π–π

native 12.6 4.5 7.8

score12’ 21.6 3.6 7.6

Talaris2014 21.3 3.3 10.2

PCI 22.3 5.1 8.9

a
Average number of interactions per protein in the data set; results are shown for native, score12’, Talaris2014, and the PCI score function.
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