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Abstract

Research over the past several decades has unmasked a major contribution of disrupted chromatin 

regulatory processes to human disease, particularly cancer. Advances in genome-wide 

technologies have highlighted frequent mutations in genes encoding chromatin-associated 

proteins, identified unexpected synthetic lethal opportunities and enabled increasingly 

comprehensive structural and functional dissection. Here, we review recent progress in our 

understanding of oncogenic mechanisms at each level of chromatin organization and regulation, 

and discuss new strategies towards therapeutic intervention.

The dynamic control of genomic architecture is required for virtually every cellular function. 

Nearly 2 m of DNA is organized in each cell nucleus by interacting with histones to form 

chromatin, a structure that enables its packaging into a less- than 10-μm diameter space1. 

Chromatin can be regulated by several processes, including modifications of DNA2, 

modifications of histones3 and protein complexes that remodel its architecture4. These 

mechanisms function individually and in concert to modulate genome-wide topology and 

gene expression, thereby regulating cell differentiation, cell division and tissue and 

organismic development.

Disruptions in chromatin regulation can have profoundly detrimental effects. The role for 

chromatin regulatory processes in development and disease has been studied in depth and 

has recently been brought to the forefront of attention by exome-wide and genome-wide 

studies, which have identified mutations in genes involved in chromatin organization and 

regulation in over 50% of cancers5–7. In a subset of cancers, such mutations represent the 
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sole genetic abnormalities, providing strong support for their initiating, causative functions, 

rather than roles as permissive passenger mutations.

The impetus to mechanistically understand chromatin regulatory machinery in diseases such 

as cancer stems from several important features, perhaps the most compelling of which is 

the fact that epigenetic changes are, in principle, reversible. However, considering the 

diverse functions of each class of chromatin regulators in normal tissues and disease 

contexts, safe and efficacious therapeutic targeting remains a major yet promising challenge. 

In this Review, we discuss the state of the field investigating epigenetic dysregulation in 

cancer and highlight the range of current and emerging opportunities for clinical 

development.

Mechanisms governing chromatin structure

The primary functional unit of chromatin is the nucleosome core particle, which consists of 

~146 base pairs of DNA wrapped around a histone octamer assembled by two molecules of 

histones H2A, H2B, H3 and H4 (ref. 8) (Fig. 1a). Linker DNA connects nucleosome core 

particles to create the classical ‘beads on string’ analogy that is commonly used to describe 

primary chromatin structure. The linker histone protein H1 binds to the nucleosome core 

particle at the DNA entry and exit sites to impart nucleosome stability and facilitate higher-

order chromatin structure9,10 (Fig. 1a). Chromatin can be either densely packed, in the form 

of heterochromatin, which is largely inaccessible to transcriptional machinery and hence 

encompasses inactive genes, or as open and accessible euchromatin, which contains greater 

numbers of active genes. The dynamic, tightly controlled regulation of these chromatin 

configurations is essential for timely, coordinated and appropriately scaled gene expression.

DNA- and histone-modifying proteins, and ATP-dependent chromatin remodelling 

complexes (CRCs) are the three groups of proteins that facilitate changes in chromatin 

topology and regulation. DNA-modifying proteins place covalent modifications, such as 

cytosine methylation (5-methylcytosine (5mC) or 5-hydroxymethylcytosine (5hmC)), on 

DNA itself2,11 (Fig. 1b), rendering genes controlled by such sequences as inactive or active, 

respectively. Histone-modifying proteins mediate >200 distinct covalent post-translational 

modifications on histone globular domains or on histone tails to alter local chromatin 

compaction, nucleosome dynamics, recruitment of other chromatin-bound proteins, and 

hence, transcription3,12 (Fig. 1c). Finally, a diverse group of CRCs comprising > 100 

different protein subunits utilize ATP hydrolysis to mobilize nucleosomes, thereby 

modulating chromatin structure and regulation4 (Fig. 1d). CRC activity is believed to locally 

increase DNA accessibility through nucleosome sliding or ejection. However, recent studies 

also suggest ATPase-dependent functions that affect the targeting and activity of other 

chromatin regulatory proteins13,14. Taken together, genomic architecture and gene 

expression are governed by a diverse collection of proteins and modifications, acting both 

globally and focally at specific sites to orchestrate dynamic processes, such as cell division, 

differentiation and development, as well as basal maintenance of cell homeostasis.

Valencia and Kadoch Page 2

Nat Cell Biol. Author manuscript; available in PMC 2020 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



History and mechanisms of covalent DNA modifications

DNA methylation regulates gene silencing including X-chromosome inactivation, genomic 

imprinting and tissue-specific transcriptional repression15,16. In vertebrates, 5mC is 

predominantly found in CpG dinucleotides and localizes to transcriptionally silenced 

centromeres, telomeres and repetitive transposable elements (short interspersed nuclear 

elements and long interspersed nuclear elements). Additionally, regions with highly 

methylated CpG density have been shown to be associated with high nucleosome occupancy 

in facultative and constitutive heterochromatin17. 5mC is present throughout the vertebrate 

genome with distinct localizations required for cell differentiation during development and 

in somatic cells2. Although most CpG dinucleotides are methylated, dense regions called 

CpG islands, which overlap with over half of mammalian promoters, are largely 

unmethylated and therefore active. Early studies have established global levels of 

hypomethylation with focal hypermethylation of promoters and enhancers as a common 

feature among several cancers18 (Fig. 2a).

DNA methyltransferases

DNA methylation is catalysed by DNA methyltransferases (DNMTs), which deposit methyl 

groups on the carbon-5 position of cytosine via the S-adenosyl-methionine methyl donor19 

(Fig. 2b). Among the five members of the DNMT family, DNMT3A and DNMT3B are 

canonically considered de novo methyltransferases that localize to pericentromeric 

heterochromatin to silence gene expression20,21. DNMT1 serves more general maintenance-

centred roles owing to relaxed substrate specificity and preference for methylation of 

hemimethylated CpG dinucleotides, particularly in proliferating cells22. Collectively, 

DNMTs are involved in appropriate haematopoietic stem cell differentiation, tissue 

development, adult tissue integrity23 and immune function24.

DNA methylation patterns are disrupted in various malignancies25–30, but aberrations in the 

genes encoding DNA methylation and demethylation machinery have only been recently 

identified. DNMT3A mutations, including those found in the hotspot catalytic domain31, are 

present in ~25% of adult acute myeloid leukaemia (AML) cases32–34, pointing to DNMT3A 

as an important tumour suppressor31 (Fig. 2b).

Although genome-wide distributions of DNMTs, particularly those of DNMT3A/B, have 

been extensively studied35,36, the mechanisms responsible for their chromatin deposition 

and activity in steady state or in cancer have not been fully elucidated. The crystal structure 

of the DNMT3A–DNMT3L–DNA complex has revealed the mechanisms governing 

DNMT3 substrate recognition and enzymatic specificity37, by demonstrating that DNMT3A 

monomers attack two CpGs through a target recognition domain. Intriguingly, DNMT3A 

cancer-associated somatic missense mutations of the substrate-binding domain decrease in 

vitro methyltransferase activity, thereby inducing CpG hypomethylation37. Similar studies of 

DNMT1 indicate that histone post-translational modifications recruit and activate DNMT1 

at specific DNA methylation sites38. Cytidine analogues, such as 5-azacytidine and 5-aza-2′ 
-deoxycytidine (also known as decitabine) are potent DNMT inhibitors that have shown 

modest efficacy in the treatment of AML, chronic myelomonocytic leukaemia and 
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myelodysplastic syndromes39, and are potentiated in combination with other epigenetic 

and/or chemotherapeutic agents40.

TET enzymes

The identification and biochemical characterization of ten-eleven translocation (TET) 

enzymes over the past decade has been a particularly important advance in the field of 

epigenetics. The fact that ~7–10% of all patients with AML harbour deletion or truncating 

mutations in TET genes highlights the importance of characterizing bidirectional 

implications of epigenetic modifications in cancer. The TET1–3 enzymes directly oppose the 

activity of DNMTs by erasing DNA methylation through the iterative oxidation of 5mC to 

both relatively stable (5hmC) and transient (5-formyl-methylcytosine (5fC) and 5-carboxyl-

methylcytosine (5caC)) derivatives, in an Fe(II) and α-ketoglutarate-dependent 

mechanism41 (Fig. 2b). The 5fC and 5caC derivatives are then thought to be processed by 

thymine DNA glycolase and DNA base excision repair machinery11,42, resulting in 

unmethylated cytosines. Structural investigations suggest that catalytic domains of TET1–3 

preferentially bind to CpG dinucleotides43. TET1 and TET3 each harbour an additional 

CXXC domain, which favours binding of 5mC-, 5hmC- and 5caC-modified CpGs44,45. 

Excitingly, recent results using novel TET inhibitors in AML cell lines and mouse models 

suggest potential therapeutic benefits46. As this class of inhibitors advances towards the 

clinic, the development of readily available, paired genomics-based diagnostic approaches to 

determine DNMT versus TET mutational status in patient tumours will be required.

Histone modifiers and their implications in cancer

A large collection of histone tail modifications and the proteins that control them represent 

critical components of the chromatin regulatory system as they contribute to the positioning 

and function of chromatin regulatory proteins and protein complexes genome wide47–49. 

Histone-modifying enzymes are grouped into histone deacetylases (HDACs) and histone 

acetyltransferases, which control lysine acetylation; methyl transferases and demethylases, 

which regulate lysine methylation; arginine methyltransferases, which facilitate arginine 

methylation; and various kinases and phosphatases (Fig. 3a). Additional histone 

modifications include citrullination, SUMOylation, ADP ribosylation, deamination and 

crotonylation (reviewed elsewhere12,49). Over 150 histone-modifying proteins have been 

identified and their dysregulation can result in the inappropriate activation of oncogenes or, 

conversely, the inactivation of tumour suppressors50–52.

Changes to global histone modification signatures are common in cancer (reviewed 

elsewhere12,53,54), therapeutic interventions for which have recently been reviewed55. Here, 

we highlight key examples of perturbed histone modification machinery in cancer, which 

have catalysed the development of several new targeted therapies. In particular, we examine 

HDACs, Polycomb group (PcG) repressive complexes 1 and 2 (PRC1 and PRC2), and 

mixed-lineage leukaemia (MLL; also known as KMT2A).

Valencia and Kadoch Page 4

Nat Cell Biol. Author manuscript; available in PMC 2020 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



HDACs

HDACs and their associated deacetylation functions play important roles in cell-cycle 

regulation, apoptosis, DNA-damage repair and other cellular processes56, and their 

dysregulation is commonly observed in cancer. For example, upregulation of classes I, II and 

IV HDACs is observed in breast and colorectal cancers, as well as haematological 

malignancies, whereas their downregulation is observed at lower frequencies57. Oncogenic 

fusions also deregulate HDAC activity, such as the AML–ETO (eight-twenty-one 

oncoprotein) and promyelocytic leukaemia protein–retinoic acid receptor-ɑ fusions, which 

aberrantly retarget HDACs to repress AML and retinoic acid receptor-ɑ target genes, 

respectively, resulting in cellular transformation58–60. Several HDAC inhibitors have been 

US FDA approved for cancer treatment or are currently being evaluated in clinical trials for 

both solid and haematological malignancies61. Given that HDAC inhibitor monotherapy has 

been largely ineffective in solid tumours62, careful evaluation of various combination 

regimens is currently ongoing in clinical trials. As with other chromatin regulators, effective 

therapeutic responses may necessitate the development of potent small molecules that target 

specific rather than global HDAC activities.

PRC2 and EZH2

PcG proteins form multiprotein complexes that bind to chromatin and repress transcription 

through methylation and ubiquitination of histones. PRC2 catalyses the monomethylation, 

dimethylation and trimethylation of histone H3 (that is, H3K27me, H3K27me2 and 

H3K27me3, respectively) and is canonically associated with long-term transcriptional 

silencing through deposition of the H3K27me3 mark63,64. Enhancer of zeste homologues 1 

and 2 (EZH1/2) are the mutually exclusive catalytic subunits of PRC2, which function in a 

multiprotein complex with EED, SUZ12 and additional subunits65. EZH2 has garnered 

substantial attention as both an oncogene and a tumour suppressor, even in the same cancer 

type (reviewed elsewhere66). Given that Polycomb can repress both oncogenes67 and tumour 

suppressors68,69, misregulation of either gene class could promote oncogenesis in a context-

specific manner. Loss-of-function mutations of genes encoding PRC2 subunits have been 

identified in leukaemia, myeloid disorders and malignant peripheral nerve sheath 

tumours70–73. Conversely, EZH2 upregulation has also been implicated in various cancers, 

including melanoma and breast cancers74, and gain-of-function mutations in the SET 

domain of EZH2 have been identified in diffuse large B cell lymphoma75–77.

The EED subunit of PRC2 forms an aromatic cage around the H3K27me3 (or Jumonji/

ARID domain-containing protein 2 (JARID2)-K116me3) mark, which allosterically 

activates EZH2. This is reliant on the ordered activity between the SRM and SET domains 

of EZH2 (refs. 78–80). Mutations in this recognition site are implicated in cancer and 

Weaver’s syndrome81 and have been shown to impart deficient allosteric activation profiles. 

Remarkably, although mutants were deficient in activating genome-wide H2K27me3 

deposition, no significant changes were observed in their genomic localization profiles81, 

and allosteric activation of the hyperactive Y646N mutation present in diffuse large B cell 

lymphoma could be selectively inhibited. Such studies decouple chromatin binding and 

activity and suggest that allosteric inhibition of hyperactive EZH2 is a potential therapeutic 

avenue, consistent with newly developed allosteric inhibitors of PRC2, which target the EED 
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subunit78,82,83. These results indicate that decoupling chromatin binding, enzymatic activity 

and allosteric modulation of other non-enzymatic subunits may afford additional 

opportunities for complex targeting, for PRC2 as well as a concept for other chromatin 

regulatory protein complexes. EZH2 inhibitors show acceptable safety profiles and some 

efficacy in treating various cancers, including multiple myeloma84, B cell non-Hodgkin’s 

lymphoma and epithelioid sarcoma85.

PRC1 and BMI1

PRC1 complexes contain a RING1 E3 ubiquitin ligase (RING1A/B), which catalyses the 

monoubiquitylation of histone H2A (that is, H2AK119Ub) and PcG RING finger proteins 

(PCGF1–6), which dictates downstream PRC1 subunit associations and thereby differential 

genome-wide localization of complexes86. Additional subcomplex-specific subunits include 

chromobox proteins, which bind to methylated histones, including PRC2-deposited H3K27 

methylation, to promote gene silencing87,88. BMI1 (also known as PCGF4) is a PRC1 

complex member that can form homodimers and heterodimers with RING1 (ref. 89) or PHC 

subunits90 that are important for chromatin compaction91. BMI1 is frequently upregulated in 

in AML33,34,92 and it is necessary for selfrenewal and maintenance of healthy and leukaemic 

stem cells93–96. Depletion of BMI1 reduces proliferation and results in apoptosis of 

epithelial97 and leukaemic cell lines, and in murine colorectal cancer xenograft models98.

Therapeutic PRC1 targeting has only recently transitioned into preclinical and clinical 

settings. The first BMI1 inhibitor, PTC209 (ref. 98), results in dose-dependent decreases of 

BMI1 protein levels, associated with global decreases of H2AK119Ub levels. Despite 

consistent anticancer activities in cell99,100, murine xenograft98,101 and preclinical102 

studies, the poor pharmacokinetic properties of PTC209 have stifled progress towards 

clinical trials92. The development of a more potent, orally available BMI1 inhibitor, PTC596 

(ref. 103), which also downregulates the anti-apoptotic factor MCL1, has progressed through 

phase I clinical trials for patients with advanced solid tumours104 (ClinicalTrials.gov 

identifier: ), and an additional trial for patients with ovarian cancer is ongoing 

(ClinicalTrials.gov identifier: ).

MLL

The MLL gene encodes a histone methyltransferase, translocations of which are implicated 

in AML and acute lymphoid leukaemia with poor prognosis. MLL maintains the expression 

of HOX genes during development105, and thus, its rearrangement often upregulates this 

gene cluster106,107, including HOXA9, which is necessary for leukaemic cell 

proliferation108. Over 100 translocations and 60 fusion partners have been documented, with 

over two-thirds of these fusions involving members of the AEP (AF4–ENL (eleven nineteen 

leukaemia)–P-TEFb (positive transcription elongation factor b)) family109–113. Typically the 

amino-terminal MLL fusion breakpoint maintains CXXC, AT hooks and menininteracting 

regions, with loss of the carboxy-terminal SET, PHD and other domains114. The retained 

CXXC domain involved in CpG recognition is essential for transactivation and myeloid 

differentiation of MLL fusions115. Furthermore, the AEP subunit fusion partner recruits the 

DOT1-like protein (DOT1L) histone methyltransferase (Fig. 3b), resulting in aberrant 

H3K79 methylation at MLL target genes, such as HOXA9 and MEIS1. A clustered regularly 
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interspaced short palindromic repeats (CRISPR)–CRISPR-associated protein 9 (Cas9)-based 

screen in MLL–AF4 AML cells identified the ENL gene as a target of AML proliferation116. 

Targeted degradation further demonstrated that ENL regulates global transcription, with 

HOXA10 and MEIS1 exhibiting significant downregulation in expression.

Mutations targeting other histone-modifying methyltransferases also suggest new 

therapeutic potential. For instance, the DOT1L inhibitor pinometostat (also known as 

EPZ-5676) exhibited a favourable safety profile during phase I clinical trials, but requires 

further investigation, probably in combination with other therapies or in different cancer 

contexts, to maximally exploit its potential for efficacy117 (ClinicalTrials.gov identifier: ).

Oncohistones in cancer

Mutations in histone genes represent some of the most recently identified gene classes and 

have emerged through exome-wide sequencing of highly rare tumour types. Exome 

sequencing uncovered mutations in the genes encoding histone H3 variants (H3.1–H3.3) that 

convert lysine 27 to methionine (H3K27M) or glycine 34 to arginine or valine (H3G34R/V) 

in aggressive paediatric brain tumours (such as diffuse intrapontine glioma)118,119 (Fig. 3c). 

These mutations specifically occur in the H3 tail, which prevents post-translational 

modification of H3 residues, and exhibit dominant functional changes. Moreover, specific 

mutations are found in tumours that arise in distinct brain regions, correlating with their 

distinct molecular characteristics120. Tumours harbouring the H3K27M mutation show 

dramatic reduction of H3K27me3 levels121, suggesting that such mutants may dominantly 

inhibit normal lysine methylation pathways, such as those catalysed by PRC2 complexes122. 

Additional studies in Drosophila demonstrated that H3K27M mutant expression 

phenotypically mimics PRC2 loss123,124 and mirrors the replacement of all histone H3s with 

a H3K27R mutant125. H3G34R/V mutations were also shown to block methylation of 

H3K36 in cis rather than inhibit bulk H3K27me3 or H3K36me3 in trans113 (Fig. 3d). The 

precise, dominant mechanism(s) by which H3K27M affects the chromatin landscape and the 

activities of chromatin regulatory machineries remains to be identified. Some studies have 

suggested that H3K27M interacts with EZH2 (ref. 122); however, others have found 

interaction with bromodomain-containing protein 4 (BRD4), consistent with increased 

histone acetylation levels observed in H3K27M mutant cells126 (Fig. 3e).

Sequencing of chondroblastoma and giant cell tumours of the bone have identified 

additional oncohistone mutations127. Over 95% of chondroblastomas possess the histone 

H3.3 lysine 36 to methionine (H3.3K36M) mutation in the H3F3B gene, and about 92% of 

giant cell tumours of the bone harbour mutations of histone H3.3 glycine 34 to tryptophan or 

leucine (H3.3G34W/L)127 (Fig. 3c). Similar to H3K27M, H3K36M reduces methylation of 

H3K36 by inhibiting the SETD2 and NSD2 methyltransferases128,129 (Fig. 3e). These 

findings extend to mutations in genes encoding histone H1 in follicular lymphoma130–132, 

which are predominantly single amino acid missense mutations scattered throughout the 

globular H1 domain involved in chromatin compaction, and have been shown to result in 

reduced association of histone H1 with chromatin131 and DNMT3B133.
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Taken together, recurrent driver mutations in histone-encoding genes have added a new layer 

to the mechanisms of chromatin disruption in human cancer. Moreover, results such as those 

in paediatric brain tumours have underscored the specific cellular, developmental, 

anatomical and chromatin architecture contexts required for the high penetrance of such 

mutations.

Emerging mechanisms of ATP-dependent CRCs

Chromatin remodellers are multi-subunit complexes that use the energy of ATP hydrolysis to 

reposition, eject, slide or alter the composition of nucleosomes, enabling access of DNA-

binding proteins and transcriptional machinery to DNA in order to facilitate gene 

expression4 (Fig. 4a). Chromatin remodelling proteins play critical functions in cellular 

differentiation, division and DNA replication4. The four classes of chromatin remodellers 

include the mammalian SWI/SNF (mSWI/SNF (BAF)), imitation SWI, INO80, and 

nucleosome remodelling and deacetylation chromodomain helicase DNA-binding 

complexes4 (Fig. 4b). Chromatin remodeller genes are evolutionarily conserved from yeast 

to humans, although higherorder organisms have evolved paralogous as well as new subunits 

in response to evolutionary pressures. The catalytic activity of each complex relies on the 

activity of a SWI/SNF2-like core ATPase/helicase, with accessory subunits harbouring DNA 

and histone-binding motifs. Across these families, combinatorial subunit assembly provides 

extensive complex diversity. Thus, most mammalian chromatin remodellers are typically 

further subclassified into multiple subcomplexes per family134.

Among the CRC families, the most extensively mutated class is the mSWI/SNF complex 

(Fig. 4c). These complexes were originally characterized in yeast135 in screens for mating-

type switching and sucrose fermentation (hence the name SWI/SNF), and were later 

characterized in Drosophila136 and mammals137. Over the course of evolution, SWI/SNF 

complexes have gained, lost and altered subunits to accommodate increasing genomic 

complexity and size. Recently, the modular organization and order of assembly of mSWI/ 

SNF family complexes, including canonical BRG1/BRM-associated factor (BAF) 

complexes, polybromo-associated BAF (PBAF) complexes and newly discovered non-

canonical BAF (ncBAF) complexes, were extensively characterized138,139. Exome-wide 

sequencing studies have revealed that > 20% of all cancers harbour mutations in mSWI/

SNF-encoding genes140,141, several of which are considered to be the key drivers of 

oncogenesis142 (Fig. 4d). In particular, rare cancers, such as synovial sarcoma, malignant 

rhabdoid tumour (MRT), clear-cell meningioma and others, are known to be uniformly or 

near-uniformly caused by perturbations to mSWI/SNF complex subunit genes. In Drosophila 
and humans13,143, SWI/SNF complexes oppose PRCs to activate gene expression134 (Fig. 

4e), suggesting that they may exert specific, ATP-dependent functions other than direct 

nucleosome remodelling. However, the biochemical and structural basis of such mechanisms 

remains unknown.

mSWI/SNF complexes were first linked to cancer through the identification of biallelic 

inactivation of the SMARCB1 gene, which encodes the BAF47 subunit, in ~98% of 

MRT144,145. SMARCB1 loss has been shown to result in decreased chromatin affinity, 

largely over distal enhancers, and an inability to oppose Polycomb-mediated repression at 
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bivalent promoters146,147. These data provide a mechanistic explanation for early cell-based 

and murine model-based findings, indicating that MRT may be uniquely sensitive to PRC2 

inhibition; however, clinical trials using EZH2 inhibitors in MRT are still ongoing 

(ClinicalTrials.gov identifier: ).

Recent systems biology-centred studies indicate that loss of other mSWI/SNF subunits, such 

as AT-rich interactive domain-containing protein 1A (ARID1A), SMARCE1 or the 

SMARCA4 ATPase, may exhibit mechanistic convergence with SMARCB1 loss148, 

particularly in generating and maintaining accessibility over enhancer regions. Coupled with 

the recent comprehensive architectural characterization of mSWI/SNF complexes138, these 

findings provide additional evidence for the mutational patterns observed in human disease 

and suggest the utility of such studies for other chromatin regulatory complexes. These 

studies also obviate the need for 3D-structure-based interrogation of disease-associated 

mutations in these specific components.

Gain-of-function perturbations of mSWI/SNF subunits have also been recently discovered 

(Fig. 4f). For example, the SS18 (also known as SSXT)–SSX fusion oncoprotein is observed 

in nearly 100% of cases of synovial sarcoma and integrates as a stable mSWI/ SNF complex 

subunit149. Despite the gain-of-function nature of this event, the SMARCB1 core BAF 

complex subunit was found to be concurrently displaced from BAF complexes. Recent 

genome-wide studies defined the targeting profiles of the SS18–SSX-containing complexes, 

and showed that the SSX tail redirects BAF complexes to new genomic loci and, hence, 

target genes, at which antagonism of PRC2 facilitates transcriptional activation150. These 

studies support the opposing functions of BAF and PRC2 complexes151,152 and provide 

mechanistic evidence for the lack of observed efficacy of EZH2 inhibitors in patients with 

synovial sarcoma to date153.

Nevertheless, the promising results from cell line and mouse models have prompted the 

evaluation of EZH2 inhibitors in clinical trials for mSWI/SNF-perturbed MRT and 

epithelioid sarcoma, with preliminary positive results85,154,155. Inhibitors and ligand-based 

degrader compounds targeting the bromodomains of the BRD9 and BRD7 mSWI/SNF 

subunits have been recently developed156, with BRD9 degradation (and hence ncBAF 

complex inhibition) showing promise in canonical BAF-perturbed cancers such as synovial 

sarcoma and malignant rhabdoid tumours139,157. The potential for therapeutic efficacy of 

subunit protein degradation approaches in mSWI/SNF-perturbed cancers has yet to be tested 

extensively in vivo in disease model systems.

Conclusions and future outlook

Over the past decade, the field of chromatin regulation has made tremendous progress, 

ranging from understanding the basic chromatin-associated hallmarks of cancer to 

identifying the underlying genetic changes driving distinct, oncogenic gene expression 

programmes and promoting tumour development. The challenges and opportunities 

associated with translating these findings into actionable, mechanism-specific therapeutic 

strategies have captured the attention of academic research groups and the pharmaceutical 

industry.
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This surge in impactful discoveries continues to be potentiated by the genomic sequencing 

of human tumours, but also by techniques such as chromatin immunoprecipitation followed 

by sequencing (ChIP-seq), RNA sequencing (RNA-seq), assay for transposase-accessible 

chromatin using sequencing (ATAC-seq), Hi-ChIP, Hi-Seq and others, that permit the 

investigation of chromatin-bound features and topology, modifications, and protein 

interactions at a genome-wide level. These methodologies are increasingly being paired with 

advanced computational and bioinformatic approaches. In parallel, state-of-the-art protein 

identification and mapping approaches based on quantitative mass spectrometry are further 

elucidating the satellite protein interactome of the chromatin regulatory system described 

herein. Genetic manipulation strategies, such as CRISPR–Cas9-mediated gene disruption 

and base editing, as well as major improvements in structural biology approaches, such as 

cryo-electron microscopy, continue to uncover clinically relevant functional and structural 

properties of chromatin regulatory proteins and protein complexes. The identification of 

high-resolution 3D structures of uncharacterized epigenome modifiers and regulators will 

vastly potentiate both rational design and discovery screens of inhibitors, small molecule or 

otherwise. Finally, genome-scale RNA interference-based and CRISPR–Cas9-based 

synthetic lethal studies in hundreds of cancer cell lines and cancer model systems have 

identified dependencies specific to chromatin regulatory system perturbations, continuing to 

prompt the development of a wide range of new therapeutic discovery efforts. The 

systematic, integrative pursuit of such approaches promises a bright future for the further 

study of the chromatin regulatory system and the elucidation of new therapeutic avenues in 

cancer.
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Fig. 1 |. Chromatin regulatory processes in mammalian cells.
a, DNA is wrapped around a histone octamer containing two copies each of histones H2A, 

H2B, H3 and H4, forming the primary functional unit of chromatin: the nucleosome. 

Histone H1 binds to DNA at the entry and exit site of the nucleosome. b, DNA methylation 

is achieved by DNMTs, which are responsible for creating the 5mC mark, associated with 

transcriptional repression, and TET enzymes, which oxidize 5mC to create 5hmC, 5fC and 

5caC. c, Histone modifications, such as acetylation (ac), methylation (me), ubiquitination 

(Ub) and phosphorylation (P), serve as instructive marks for both gene activation and gene 

repression. PRC2 and PRC1 deposit the H3K27me3 and H2AK119Ub marks, respectively, 

both of which correlate with transcriptional repression. d, Four families of ATP-dependent 

CRCs alter chromatin architecture by mobilizing, depositing or evicting nucleosomes. 

AURORA-B, Aurora kinase B; BRCA1, breast cancer type 1 susceptibility protein; CBP, 

CREB-binding protein; DUBs, deubiquitinating enzymes; GNAT, Gcn5-related N-

acetyltransferases; HATs, histone acetyltransferases; ISWI, imitation SWI; KDMs, methyl 

demethylases; KMTs, methyl transferases; MSK1/2, mitogen- and stress-activated protein 

kinase 1/2; MST1, mammalian STE20-like protein kinase 1 (also known as STK4); PBRM1, 

protein polybromo-1; PRMTs, protein arginine N-methyltransferases; RSF1, remodelling 

and spacing factor 1; SIRT, sirtuin; TDG, thymine DNA glycosylase.
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Fig. 2 |. DNMT and TET enzymes and related perturbations in AML.
a, Global hypomethylation and focal promoter/enhancer hypermethylation phenotypes are 

commonly detected in cancer. b, DNMT and TET enzymes are commonly mutated in adult 

AML and counteract one another via deposition or removal of the 5mC mark, respectively. 

DNMTs deposit a methyl group on to the carbon-5 position of cytosine using S-adenosyl-

methionine (SAM) as a substrate, and TET enzymes rely on ɑ-ketoglutarate (ɑ-KG) and 

oxygen to oxidize 5mC and promote cytosine demethylation. c, IDH1/2 (encoding isocitrate 

dehydrogenase 1) mutations, which are common in AML, inhibit TET activity by converting 

the TET substrate ɑ-KG to 2-hydroxyglutarate (2HG), resulting in a hypermethylation 

phenotype. WT, wild type.
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Fig. 3 |. Histone H3 methylation modifications and disruption in cancer.
a, Histone H3 methyltransferases and demethylases. Mutations to genes in bold are 

implicated in cancer. b, Depiction of MLL–ENL-rearranged leukaemia. The MLL CXXC 

domain targets the fusion protein to MLL target sites and the ENL domain recruits DOT1L 

methyltransferase activity, resulting in aberrant methylation. c, Schematic of oncohistone 

mutations in cancer and their antagonism with methyltransferases. d, The H3K36M 

mutation results in the global reduction of H3K36me3 levels, whereas the H3K34 mutation 

diminishes only cis-H3K36me3 levels. e, Schematic of H3K27M and H3K36M oncohistone 

chromatin occupancy compared to wild-type (WT) histone H3. H3K27M inhibits 

H3K27me3, resulting in RNA polymerase II (RNA Pol II) recruitment and activation, as 

assessed by H3K27ac levels. The H3K36M mutation reduces genome-wide H3K36me2/3 

and H3K27me3 levels. DIPG, diffuse intrapontine glioma.
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Fig. 4 |. CRCs in cancer: a focus on mSWI/SNF (BAF) complexes.
a, Cartoon depiction of the chromatin remodelling activities: nucleosome sliding, ejection 

and placement, and histone variant exchange. b, Domain organization within the ATPase 

subunit of each class of CRCs. c, Pan-cancer mutation frequency across chromatin 

remodelling families. Mutation frequencies for all genes encoding members of each family 

were summed and represented as a heatmap. Analysis of public The Cancer Genome Atlas 

(TCGA) data for 33 available cancer types showing mutation frequency rates across 4 CRC 

families and SWI/SNF-like ATRX/DAXX. d, mSWI/SNF subcomplex protein associations 

overlayed with subunit-specific mutations identified across cancer types. The mSWI/SNF 

subcomplex-defining subunits are coloured in red (BAF), purple (PBAF) and green 

(ncBAF). e, mSWI/SNF complexes are typically associated with active chromatin 

landscapes and directly oppose Polycomb-mediated repression. f, Gain-of-function 

perturbations to mSWI/SNF complexes include fusion oncoproteins and transcription factors 

(TFs) that tether to mSWI/SNF complex surfaces. The SS18–SSX fusion oncoprotein 

replaces the SS18 subunit to hijack complexes genome wide, the EWS–FLI1 (friend 

leukaemia integration 1 transcription factor) fusion directs complexes to GGAA repeat sites 

in Ewing sarcoma and the ERG transcription factor targets BAF complexes to ETS DNA 

sequence motifs genome wide, each of which results in aberrant, cancer-specific 
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transcriptional regulation. ACTB, actin, cytoplasmic 1; ACTL6, actin-like protein 6; BCL7, 

B-cell CLL/lymphoma 7 protein family member; CHD, chromodomain helicase DNA-

binding; DPF, zinc-finger protein neuro-d4; GLTSCR1, BRD4-interacting CRC-associated 

protein; HELICc, helicase superfamily C-terminal; HSA, helicase/SANT associated; PCL, 

Polycomb-like protein; PHF10, PHD finger protein 10; SLIDE, SANT-like but with several 

insertions; T-ALL, T cell acute lymphoblastic leukaemia; TMPRSS2, transmembrane 

protease serine 2.
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