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Abstract

Soft-tissue sarcomas are increasingly characterized and subclassified by genetic abnormalities that 

represent underlying drivers of their pathology. Hallmark tumor suppressor gene mutations and 

pathognomonic gene fusions collectively account for approximately one-third of all sarcomas. 

These genetic abnormalities most often result in global transcriptional misregulation via disruption 

of protein regulatory complexes which govern chromatin architecture. Specifically, alterations to 

mammalian SWI/SNF (mSWI/SNF or BAF) ATP-dependent chromatin remodeling complexes and 

polycomb repressive complexes cause disease-specific changes in chromatin architecture and gene 

expression across a number of sarcoma subtypes. Understanding the functions of chromatin 

regulatory complexes and the mechanisms underpinning their roles in oncogenesis will be required 

for the design and development of new therapeutic strategies in sarcomas.
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Introduction

Sarcomas are rare, highly aggressive malignancies marked by the formation of solid tumors 

in soft tissues or bone that are derived from cells of mesenchymal origin. Sarcoma subtypes 

possess diverse genetic profiles ranging from a single pathognomonic genetic event, such as 

chromosomal translocations in synovial sarcoma and Ewing sarcoma, to extensive 

mutational burden and complex genomes [1–7]. Sarcomas arise in all age groups, but are 

disproportionally present in children, accounting for a significant number of cancer-related 

mortalities in both pediatric and young adult patients [8]. In the absence of molecularly 
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targeted therapies, treatment of sarcomas most often relies on cytotoxic chemotherapy in 

combination with radiation and surgery [9–11]. Upon treatment with these traditional 

approaches, patients with cases of localized sarcomas achieve 5-year event-free survival 

rates of 60–70% [12,13]. However, these aggressive malignancies are prone to metastasize, 

particularly to the lungs, and survival rates for patients with metastatic disease are 20–25% 

at 2 years [14,15]. Improved patient outcomes rely on the development of targeted therapies 

tailored to counter the transformative oncogenic activity of the underlying genetic alterations 

driving each sarcoma subtype. The development of such therapies requires a detailed 

molecular understanding of the mechanism by which certain genetic perturbations are 

capable of co-opting specific tissue environments to activate cellular proliferation programs 

that facilitate solid tumor growth. This review explores the current understanding of 

recurrent genetic alterations to epigenetic transcriptional regulators across a set of 

molecularly well-characterized sarcoma subtypes and proposes clinical strategies for 

reversing their oncogenic capabilities (Table 1).

Epigenetic gene regulation

Genetic events that perturb the protein machinery responsible for epigenetic regulation can 

drive widespread changes in transcriptional programs. The human genome consists of 

approximately 3 billion base pairs of DNA compacted in the nucleus of each cell through the 

organized wrapping of 146 DNA base pairs around histone protein octamers which form 

nucleosomes [16–18]. Nucleosomes pack tightly against one another to facilitate the storage 

of genetic information and in doing so form compacted chromatin. This compaction 

provides structural integrity and serves as a physical barrier to safeguard the DNA content 

from genetic alterations (i.e. mutations). This mechanism of DNA compaction sterically 

inhibits protein machineries involved in transcription, replication, recombination, and DNA 

repair from accessing and binding to DNA. Consequently, the tight compaction of DNA 

must be relaxed in a highly controlled manner to facilitate access to specific gene elements, 

such as gene promoters by transcription factors and RNA Pol II, to permit appropriate gene 

transcription and other essential cellular processes to occur.

The regulation of chromatin architecture, required for proper lineage-specific gene 

expression, occurs by controlling the DNA–histone interactions through a number of 

mechanisms that include DNA methylation, covalent modification of histones, and ATP-

dependent chromatin remodeling. Control of DNA accessibility to maintain the precise 

balance between transcriptional activation and repression is achieved through the enzymatic 

activities of large multi-subunit protein complexes. Two such classes of complexes form the 

basis of this review, and include the mammalian switch/sucrose non-fermentable (SWI/SNF) 

complexes and the polycomb group (PcG) protein complexes. SWI/SNF complexes are 

trithorax group (TrxG) protein members that utilize the power of ATP hydrolysis to carry out 

the energetically unfavorable process of remodeling nucleosome–DNA interactions to 

facilitate DNA accessibility [19,20]. This activity is antagonistic to forms of PcG protein 

complexes that covalently modify the N-terminal tails of histone proteins post-translation to 

increase chromatin compaction associated with transcriptional repression [20–24]. The 

precise balance between SWI/SNF and PcG function is tailored to the specific 

transcriptional needs of different cells through differentiation and development. In 
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embryonic stem (ES) cells, PcG proteins bind cell lineage-specific genes to repress 

transcription and prevent untimely activation of differentiation pathways [25,26]. SWI/SNF 

complex activity is critically important for activating transcription of lineage-specific genes 

to promote cell differentiation [27,28]. In terminally differentiated cells, PcG proteins 

continue to repress genes of other tissue lineages to maintain the cellular identity [29]. This 

careful balance between the activity of SWI/SNF and PcG protein complexes facilitates the 

accessibility and expression of genes required for differentiation of a progenitor cell into a 

cell of committed linage, while maintaining repression of genes involved in alternative cell 

fates.

Composition and function of mSWI/SNF (BAF) complexes

The TrxG proteins were first discovered and characterized in Drosophila, in which they are 

required for the activation of Hox genes and others for proper body segmentation [30–35]. In 

mammals, TrxG proteins are a diverse and heterogeneous group involved in the 

transcriptional activation of genes through a number of chromatin modifying activities. TrxG 

protein members include the SWI/SNF family of chromatin remodeling complexes that 

possess an ATPase to harness the power of ATP to modify the nucleosome landscape in a 

variety of manners.

SWI/SNF complexes were initially discovered via the identification of redundant phenotypes 

upon mutation of genes involved in mating type switching (SWI) and nutrient switching 

(SNF) regulation in yeast [36,37]. Mutation of histone coding genes suppressed these 

phenotypes, indicating that these SWI/SNF proteins were involved in altering chromatin 

structure to regulate transcription [38]. Subsequently, purification in yeast produced an 

~1MDa complex consisting of 9–12 subunits that was capable of disrupting mono-

nucleosomes in vitro [39–41]. The SWI/SNF family of proteins is evolutionarily conserved 

with homologous members in flies, plants, and mammals [19]. The mammalian SWI/SNF 

(mSWI/SNF) complexes have a greater number of subunits, up to 15 subunits in a given 

complex assembly, to scale with the greater demand for transcriptional regulation and enable 

specialized cellular functions in multicellular organisms. Furthermore, there are at least two 

distinct populations of mSWI/SNF complexes, named BAF (BRG1 or BRM-associated 

factors) and PBAF (polybromo-associated BAF), characterized by differential subunit 

compositions (Figure 1A) [42]. Both complexes possess a catalytic ATPase subunit of either 

BRG1 or BRM, along with other core subunits (BAF155, BAF170, BAF47, BAF57), but 

differ in their ARID domain-containing subunit (BAF250A/B in BAF and BAF200 in 

PBAF) and the incorporation of the BAF180, BRD7, and BAF45A subunits specifically in 

PBAF complexes. To allow for further specialization of transcriptional regulatory capacity of 

mSWI/SNF complexes, a number of subunit members possess multiple paralogs with tissue-

specific expression that play a role in directing ES cells toward terminal differentiation, such 

as in neuronal and cardiac differentiation [43–46]. The diversity of subunit members 

provides mSWI/SNF complexes with various capabilities including ATP hydrolysis, 

maintenance of structural integrity, and binding of DNA and histones. Mutations in 

SMARCB1 (BAF47) represented the first link between SWI/SNF complexes and cancer, 

upon the discovery by Delattre and co-workers that 98% of malignant rhabdoid tumors 

exhibit biallelic inactivation of SMARCB1 [47]. Exome sequencing studies have further 
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revealed that members of these complexes are mutated in over 20% of cancers and that 

certain subunits are recurrently mutated in specific cancer types [48,49]. For example, 

ARID1A (BAF250A) is mutated in 46% of ovarian clear cell carcinoma cases; SMARCA4 
(BRG1) is mutated in 10–35% of non-small cell lung cancer cases; and PBRM1 (BAF180) 

is mutated in 41% of clear cell renal cell carcinoma cases [50–53]. These findings 

underscore that each subunit has a specific role as a member of these complexes and that 

loss of specific subunit functions results in oncogenic transformation only in the context of 

certain cellular lineages.

Composition and function of PcG complexes

Genes that produce the PcG proteins were first discovered in Drosophila as repressors of 

Hox gene expression in development and differentiation [20]. Homozygous loss of PcG gene 

members resulted in dramatic homeotic transformation in the body segmentation of flies 

[54–58]. Protein purifications from Drosophila revealed that individual PcG members 

formed a protein complex, called polycomb repressive complex 1 (PRC1), which was 

capable of compacting nucleosomes [23]. Further purifications revealed a second complex 

with distinct members, called polycomb repressive complex 2 (PRC2), possessing a 

methyltransferase specific for lysine 27 on the H3 tail (H3K27) [59,60]. Homologous PRC1 

and PRC2 complexes exist in mammals and similar to SWI/SNF complexes, subunits of 

each complex have multiple paralogs to facilitate greater compositional and thus functional 

diversity for their wide-ranging repressive roles in both embryonic and tissue development 

[61]. Canonical PRC1 complexes (cPRC1) consist of CBX, PHC, PCGF, RING, and SCMH 

proteins, with non-canonical PRC1 complexes (ncPRC1) replacing CBX with RYBP or 

YAF2 along with a number of additional proteins specific to different ncPRC1 forms (Figure 

1B) [22]. The primary chromatin modifying role of PRC1 comes from the RING subunit, 

which is an E3 ligase which catalyzes the ubiquitination of lysine 119 of histone H2A 

(H2AK119). The core members of PRC2 complexes are SUZ12, EED, RBBP4/7, and either 

EZH1 or EZH2, with a variety of accessory proteins involved in chromatin binding (Figure 

1C). The EZH1/2 proteins are SET methyltransferases that produce mono-, di-, and tri-

methylated H3K27 in a SAM-dependent manner. The core member EED binds H3K27me3 

to further propagate methylation of H3K27me3 by PRC2, and it has been shown that the 

methyltransferase activity of EZH1/2 requires a minimal complex that includes SUZ12 and 

EED [62–64]. While the potential role of cooperation between PRC1 and PRC2 complexes 

in transcriptional repression is still being fully elucidated, these two complexes modify 

chromatin through the placement of the H2AK119 ubiquitin and H3K27me3 marks to 

compact chromatin and inhibit transcription.

Gain-of-function oncogenic mechanisms of mSWI/SNF complexes within 

sarcomas

Synovial sarcoma: the gained SS18–SSX subunit of mSWI/SNF complexes results in loss 
of PRC2-induced repression

Synovial sarcoma comprises 8–10% of soft-tissue malignancies and forms solid tumors that 

in over 80% of cases arise in the extremities [65,66]. Synovial sarcoma occurs in both adult 
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and pediatric patients, with a median age of onset within the third decade of life [67]. 

Tumors are high-grade and prone to metastasize to the lungs, with a higher frequency of 

metastasis observed in adult patients [68]. Synovial sarcomas are divided into three 

histological subtypes consisting of monophasic (spindle cells only), biphasic (both spindle 

and epithelial cells that form glandular patterns), and a third class termed poorly 

differentiated synovial sarcoma (PDSS) characterized by an undifferentiated/round cell 

appearance [69]. The hallmark genetic event, initially identified in 1994 and present in 

nearly 100% of cases, is a recurrent chromosomal translocation, t(X;18)(p11.2;q11.2), that 

fuses an SSX gene family member (SSX1, SSX2, and rarely SSX4) to the SS18 gene 

[1,70,71]. The resulting product is the SS18–SSX fusion protein, in which the last eight C-

terminal amino acids of SS18 are replaced by 78 C-terminal amino acids of SSX. Clinical 

diagnosis for this disease is confirmed through detection of SS18–SSX by next-generation 

sequencing (NGS), RT-PCR or FISH [72–74]. The SSX gene family consists of nine 

members with high (73–92%) homology that are restricted in gene expression to the testes 

[75]. The SSX fusion partner is SSX1 in two-thirds of cases and SSX2 in the remaining third 

of cases, with a few documented cases of SSX4 [70,76,77]. As the SS18 gene is 

ubiquitously expressed, following translocation, the resulting SS18–SSX fusion protein is 

expressed in all tumor cells. The presence of this fusion is the hallmark genetic feature of 

these tumors and as there are no other recurrent cytogenetic abnormalities, it has been 

determined that expression of this fusion is necessary and sufficient for the initiation and 

progression of synovial sarcoma [78,79].

Historically, genes encoding mSWI/SNF complex members have been considered as tumor 

suppressors, in that protein-level loss of a subunit member results in oncogenesis in a 

particular cellular context [80]. Synovial sarcoma presents an example in which mSWI/SNF 

complexes gain oncogenic activity through aberrant fusion of the SS18 subunit gene to SSX 
to form the SS18–SSX oncogene. The SS18–SSX fusion protein is stably and dominantly 

incorporated into BAF complexes, replacing wild-type SS18, and furthermore, results in 

eviction of the BAF47 (SMARCB1/SNF5/INI1) subunit, a known tumor suppressor [81] 

(Figure 2A). Consequently, upon expression of SS18–SSX, the majority (>90%) of BAF 

complexes become altered to form a population of oncogenic SS18–SSX-containing 

complexes. The eviction of BAF47 from these complexes results in its proteasome-mediated 

degradation resulting in decreased BAF47 protein levels in these tumors, as determined by 

immunohistochemical staining of paraffin-embedded primary tumor samples [81–84]. This 

gain of SS18–SSX and loss of BAF47 represent co-occurring alterations to BAF complexes; 

their respective contributions to the oncogenic mechanism in this malignancy have not, to 

date, been elucidated. SS18–SSX has been demonstrated to provide BAF complexes with 

novel targeting capabilities on chromatin to activate aberrant transcription. For example, 

SS18–SSX-containing BAF complexes localize to the SOX2 locus, at which levels of the 

PRC2-placed H3K27me3 repressive mark are then reduced, resulting in expression of the 

SOX2 mRNA transcript [81]. This exemplifies aberrantly gained genomic targeting of BAF 

complexes to a site of PRC2 repression. While the cell of origin of synovial sarcoma is 

unknown, there likely exists a highly specific cellular context that is permissive of SS18–

SSX-mediated BAF complex recruitment and gene activation that leads to oncogenic 

transformation, as expression of SS18–SSX in most primary fibroblast cultures (as well as 
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other cell lines) does not yield transformation. Some studies have suggested that the cell of 

origin of these tumors may be of a myogenic lineage; however, the specific features and/or 

stage of myogenic differentiation remain incompletely defined [85].

Ewing sarcoma: gained functionality of mSWI/SNF complexes through interaction with the 
FET family protein EWSR1

Ewing sarcoma represents the second most common pediatric bone cancer, with tumors that 

arise in bones or surrounding soft tissues [86]. Tumors most often present in teenagers and 

young adults, and these cancers, similar to cases of synovial sarcoma, share a 

pathognomonic chromosomal translocation [86]. In 90% of cases, this translocation results 

in the EWSR1 gene becoming fused to the FLI1 gene, which encodes for an E-twenty-six 

(ETS) transcription factor [3]. Less common but related translocations in the remaining 10% 

of Ewing sarcoma cases form EWSR1 gene fusions with other members of the ETS family 

of transcription factors, including ERG, ETV1, E1AF, and FEV [87–90]. Recent exome 

sequencing efforts indicate that these resulting oncogenic gene fusions are the only 

reoccurring genetic alterations in this malignancy as few other mutations are detected [91]. 

Studies have demonstrated that expression of the fusion protein is sufficient for 

transformation of mesenchymal stem cells [92–97].

While exome sequencing studies have identified extensive mutations in dedicated subunits 

of mSWI/SNF complexes, the contribution of mSWI/SNF complexes in oncogenesis likely 

extends well beyond perturbation to mSWI/SNF complex members themselves [49]. Indeed, 

mSWI/SNF complex mistargeting due to genetic alterations to transient protein interaction 

partners, such as transcription factors, represents one route to altered, cancer-specific gene 

activation. Ewing sarcoma is an example of such a malignancy where mSWI/SNF 

complexes acquire gained oncogenic function due to genetic perturbation to a protein 

interaction partner. The ETS DNA binding domain of FLI1 enables the EWS–FLI1 fusion to 

aberrantly bind DNA at GGAA repeats [3,98–101]. However, binding of FLI1 alone at 

GGAA repeats is not sufficient for inducing oncogenic gene activation and thus this 

oncogenic fusion possesses a gained function [102]. Mass spectrometry-based proteomics 

coupled with biochemical validation experiments demonstrate that the EWSR1 protein binds 

BAF complexes and that the EWS–FLI1 fusion retains this binding capability [102]. This 

interaction between EWS–FLI1 fusion and BAF complexes represents a weak, transient 

interaction, in comparison to the highly stable interactions of integrated BAF complex 

subunits. Importantly, the prion-like domain of the EWSR1 N-terminus confers unique 

phase transition properties, providing BAF complexes with gain-of-function capability to be 

recruited to GGAA repeats and to remodel closed chromatin for enhancer activation (gained 

H3K27ac levels) that leads to oncogenic transcription [102] (Figure 2B). This is a novel 

example of a perturbation to mSWI/SNF complexes that drives cancer resulting from a 

gained interaction with an oncogenic fusion protein in the absence of any genetic 

perturbations to individual subunit members. It highlights that identifying malignancies 

driven fully or in part by mSWI/SNF complexes will not be comprehensively flagged 

through exome sequencing studies, but instead requires rigorous biochemical interrogation 

into both alterations in complex composition and transient interactions with transcription 

factors or other protein partners.
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Oncogenic loss-of-function mechanisms of mSWI/SNF and PcG complexes 

in sarcomas

SMARCB1-deficient sarcomas: loss of mSWI/SNF complex function results in gain of 
PRC2-induced repression

Biallelic inactivation of SMARCB1 (BAF47/hSNF5/ INI1) is the defining genetic alteration 

in a specific set of malignancies. Protein loss of BAF47 occurs in ~98% of malignant 

rhabdoid tumor (MRT) and atypical teratoid/rhabdoid tumor (AT/RT) cases, and over 90% 

of epithelioid sarcoma (EpS) cases [47,103–105]. These sarcomas are all aggressive tumors 

arising in the kidney and soft tissues (MRT) and central nervous system (AT/RT) of pediatric 

patients in the infant and toddler age groups, and distal and proximal sites of extremities 

(EpS) in young adults. The genetic perturbation of BAF47 has also been documented and 

implicated in a number of other neoplasms including poorly differentiated chordoma, renal 

medullary carcinoma, and meningiomas and schwannomas in patients with 

schwannomatosis [106–109]. Germline mutation resulting in loss of a single allele of 

SMARCB1 predisposes the development of MRT or another BAF47-deficient cancer owing 

to loss of SMARCB1 via a second genetic event within certain cell types. These sarcomas 

possess stable genomes with low mutational burdens, suggesting that BAF47 loss is 

responsible for tumor initiation and progression [91,110]. BAF47 has been well established 

as a tumor suppressor as conditional biallelic inactivation of Smarcb1 (Baf47) in a mouse 

model resulted in tumor formation in 100% of cases with a median onset of 11 weeks, 

representing the most rapid inception of tumorigenesis by deletion of a single gene currently 

documented [111].

BAF47 is a stable subunit in both BAF and PBAF assembly forms of mSWI/SNF 

complexes, and the discovery of BAF47 loss in MRT was the first evidence that alterations 

to the composition of mSWI/SNF complexes perturbed their tumor suppressive functions 

[47]. This is an example of a genetic event which results in loss of protein expression of a 

single subunit member, causing altered stability, targeting capability, or enzymatic activity of 

mSWI/SNF complexes. Studies examining the role of BAF47 in complex stability have been 

somewhat contradicting, with some studies suggesting that complexes lose the ability to 

assemble in the absence of BAF47, while others demonstrate that complexes lacking BAF47 

form stable complexes that have diminished chromatin-binding capabilities [24,112–116]. 

Providing further support that BAF47 is not required for the structural integrity and 

assembly of mSWI/SNF complexes, a study in yeast examining SWI/SNF complexes 

lacking the Snf5 subunit determined that aberrant complexes were formed that exhibited 

dramatically attenuated ATPase function [117]. In the context of MRT, mSWI/SNF 

complexes lacking BAF47 demonstrated decreased affinity for binding chromatin, which 

resulted in significantly decreased genome-wide targeting [118]. Reintroduction of BAF47 

expression and subsequent incorporation into BAF and PBAF complexes resulted in gained 

occupancy of BAF complexes on enhancers and PBAF complexes on gene promoters, 

leading to enhancer (increased H3K27ac levels) and gene activation [118] (Figure 3A). In 

the absence of recruitment by BAF complexes due to loss of BAF47 assembly, a number of 

bivalent promoters of neural and kidney development-associated genes are silenced owing to 

the co-presence of the activating H3K4me3 and repressive H3K27me3 marks, and thus are 
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transcriptionally repressed [118]. Reincorporation of BAF47 into mSWI/SNF complexes 

displaces PRC2 complexes at these bivalent genes, resulting in reduction of the H3K27me3 

mark and resolution of these bivalent genes toward activation to permit cell development 

toward terminal differentiation [118]. The ability of mSWI/SNF complexes to oppose PcG 

occupancy and induce repression is reliant on the BAF47 subunit. This is supported by 

previous evidence that mSWI/SNF complexes lose the ability to oppose PcG complexes in 

the absence of BAF47 at the p16INK4A locus and now it is clear that this opposition is lost at 

a number of bivalent genes genome-wide [119,120].

Malignant peripheral nerve sheath tumors (MPNSTs): loss of PRC2 complex function 
results in transcriptional activation

MPNSTs are highly aggressive, soft-tissue tumors that arise in the cellular components 

associated with peripheral nerves [121]. These tumors can arise in pediatric patients, but are 

more prominent in adult patients [121]. They have a high propensity to metastasize and are 

often resistant to the standard treatment of radiation and chemotherapy, and patients with 

this disease have a 5-year survival rate of 20% [122]. Cases of MPNSTs account for 5–10% 

of all soft-tissue sarcoma cases and are composed of three types: sporadic (45% of cases), 

associated with neurofibromatosis type 1 or NF1-associated (45% of cases), and associated 

with previous radiotherapy (10% of cases) [123–125]. NF1 is an autosomal-dominant 

hereditary cancer syndrome that affects 1 in 3000 individuals due to a germline mutation 

that inactivates one allele of the NF1 gene [126]. Acquisition of a second somatic mutation 

that silences the NF1 gene of the allele inherited from the unaffected parent is the key driver 

in developing neurofibroma, which forms benign tumors and increases the risk of developing 

the more aggressive MPNSTs [127]. Whole-exome sequencing studies and transcriptional 

analysis of MPNST cases of all three types have uncovered recurrent inactivating genetic 

alterations to NF1 (72% of non-NF1-associated cases), CDKN2A (81% of all cases), and 

multiple subunit members of the PRC2 complex (70–92% of all cases) [128–130].

While MRT and synovial sarcomas discussed above contain genetic alterations to 

mSWI/SNF members that result in gained and lost H3K27me3-mediated repression, 

respectively, MPNST-associated mutations in PRC2 complex components directly cause loss 

of the H3K27me3 mark. The genetic alterations to PRC2 complex members consist of loss-

of-function mutations to EED or SUZ12 that result in decreased levels of the H3K27me3 

mark detected by immunohistochemical staining of paraffin-embedded tumor samples from 

patients (Figure 3B) [128]. Decreased H3K27me3 levels in MPNSTs due to loss of function 

of PRC2 complexes are associated with poor survival [131]. PRC2 loss has not been 

observed in cases of neurofibroma alone, the precursor to a subset of MPNST cases. Recent 

transcriptional analyses in MPNSTs have revealed that this loss of PRC2 function results in 

increased expression of master regulator genes, known to be repressed by PRC2, as would 

be expected given the well-documented opposition between PRC2 and TrxG complexes 

[128]. However, to date, specific changes to the activity or localization of mSWI/SNF 

complexes have not been reported in this disease setting. As evidence that this loss of PRC2-

mediated transcriptional repression contributes to tumorigenesis, reintroduction of SUZ12 

expression in a cell line established from MPNSTs with a SUZ12 silencing mutation results 

in substantially decreased cell growth accompanied by decreased expression of 
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developmental genes, increased recruitment of PRC2 complexes to gene promoters, 

increased levels of H3K27me3, and subsequent loss of the H3K4me3 and H3K27ac 

activation marks [128,130]. Cases of MPNSTs display clinical and histological diversity due 

to divergent differentiations, yet possess and share a convergent set of genetically perturbed 

molecular pathways (stemming from NF1, CDKN2A, and PRC2 complex gene mutations). 

The wide range of genes silenced by PRC2 complexes to prevent aberrant differentiation 

toward an alternative cell lineage suggests a mechanism by which perturbation of PRC2 

complexes can result in disruption of gene repression, allowing for the formation of tumors 

through activation of one of a number of differentiation pathways. Due to the contribution of 

loss-of-function genetic alterations to PRC2 complexes in driving tumorigenesis, MPNST is 

a unique setting where genes encoding PRC2 complex members act as tumor suppressors 

rather than oncogenes [132–134].

Therapeutic strategies and conclusions

The discovery of actionable synthetic lethal dependencies resulting from an imbalance of 

mSWI/SNF and PcG complex activities in sarcomas presents an important foundation for 

the identification of targeted therapies. Large, genome-scale fitness dropout screens using 

shRNA-mediated gene knockdown and CRISPR-Cas9-mediated gene knockout have been 

carried out across hundreds of cancer cell lines, including some derived from sarcomas 

[135–137]. These screens are designed to identify genes and gene pathways that are 

essential for proliferation selectively within the context of specific sarcoma subtypes and 

their underlying genetic abnormalities. Due to the diverse nature of mSWI/SNF–PcG 

opposition genome-wide in sarcomas and the resulting heterogeneity in oncogenic 

transcription, it remains to be determined whether there are unique downstream 

dependencies that are shared across any individual sarcoma subtype. Consequently, as the 

mechanistic underpinnings of epigenetic dysregulation are further uncovered, altered 

mSWI/SNF or PcG activity driving oncogenic transformation may be targeted directly.

A range of small molecules that inhibit PRC2-mediated deposition of H3K27me3 by 

targeting the EZH2 and EED subunits have been reported, and are actively being evaluated 

across a range of malignant contexts [138–140]. Depletion of EZH2 protein levels has been 

shown to induce apoptosis in some MRT cell lines, which is consistent with the observed 

gain of PRC2-induced repression in BAF47-deficient sarcomas [119]. Potent and specific 

EZH2 inhibition has been shown to attenuate BAF47-deficient solid tumor growth in 

preclinical models [141,142]. A phase 2 clinical trial () investigated the anti-tumor activity 

of EZH2 inhibition in BAF47-deficient tumors and reported potentially promising anti-

tumor response within the patient cohort [143]. This trial included synovial sarcoma patients 

due to the low, residual levels of BAF47 protein expression present in these tumors, yet 

results to date indicate a lack of objective response in synovial sarcoma patients following 

treatment with EZH2 inhibitor [144]. This is likely due to the fact that BAF47 loss in this 

disease is a concurrent event along with gain of the SS18–SSX fusion. Rather than loss of 

BAF47 resulting in gain of PRC2-mediated repression, as is the case in other BAF47-

deficient sarcomas, the SS18–SSX-containing BAF complexes appear to lead to gene 

activation at loci such as the SOX2 locus. While further studies are ongoing, this provides 

preliminary evidence that oncogenesis is dependent on gained mSWI/SNF complex-
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mediated transcription rather than overactivity of PRC2-induced gene repression. 

Consequently, targeted therapies for synovial sarcoma patients will likely need to target 

mSWI/SNF complex activity or other regulators required for their activity, as opposed to 

PRC2 function. Furthermore, while it is clear that loss of PRC2 function in MPNSTs results 

in gene activation, it remains to be determined whether a transcriptional activator, such as a 

SWI/SNF family chromatin remodeler, contributes to this activation. The characterization of 

such an activator and validation of its essentiality in cell proliferation of MPNSTs would 

suggest a promising therapeutic route in this disease.

Reversing the oncogenic activity of fusion proteins could be achieved through chemical 

biology-centered strategies that inhibit a certain function of the protein or promote protein-

specific degradation. The SS18–SSX fusion results in novel mSWI/SNF targeting which 

suggests that this fusion interacts directly and uniquely with chromatin or a chromatin-

associated protein [81]. Identification of a specific interaction partner would provide the 

foundational knowledge required for the design of small molecule screens to discover 

chemical ligands capable of disrupting SS18–SSX chromatin-targeting activity. Similarly, 

the EWS–FLI1 fusion interacts with mSWI/SNF complexes to activate enhancers through 

the EWSR1 member of the fusion protein [102]. Discovery of a chemical ligand that inhibits 

this interaction with mSWI/SNF complexes could be used to prevent the mistargeting of 

complexes driving this disease. Modern chemical biology techniques have laid the 

groundwork for using a small molecule chemical binder of a protein as a targeting module 

for protein-specific proteasome degradation. The selective chemical binder is tethered to a 

module that recruits an E3 ubiquitin ligase, rendering the targeted protein marked for 

degradation [145–148]. Discovery of a high-affinity, specific chemical binder to either the 

SS18–SSX or the EWS–FLI1 fusion could be used to target these fusions for protein 

degradation using this approach. While these binders do not currently exist and would 

require a great deal of biochemical and preclinical validation prior to their use in a clinical 

setting, this is a promising strategy for the protein-level removal of oncogenic fusions in 

sarcomas.

In summary, there remains a major need to mechanistically understand the functional 

ramifications of recurrent genetic abnormalities that drive sarcomagenesis via gene 

regulatory changes, specifically due to alteration to chromatin regulatory complexes. This 

knowledge will be requisite for the design and development of cancer-specific therapies 

tailored to address the underlying molecular events driving tumorigenesis within each 

sarcoma subtype.
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Figure 1. 
Composition of mammalian SWI/SNF and polycomb group complexes PRC1 and PRC2. 

(A) mSWI/SNF chromatin remodeling complexes assemble into two distinct complexes, 

each containing an ATPase subunit (depicted in red), subunits specific to one of the two 

assembly forms (depicted in blue), and core subunits present in both complex forms (gray). 

DNA-binding and histone recognition domains are marked according to the legend. (B) 

Polycomb repressive complex 1 assembles into canonical PRC1 (cPRC1) and non-canonical 

PRC1 (ncPRC1) complexes possessing a ubiquitination subunit (depicted in red), subunits 

unique to one complex form (depicted in blue), and accessory subunits that are incorporated 

into different ncPRC1 forms (depicted by a dashed line). (C) Polycomb repressive complex 

2 (PRC2) assembly includes a methyltransferase subunit (depicted in red) which places the 

H3K27me3 repressive mark, other core subunits (shown in gray), and accessory subunits 

that are incorporated into different PRC2 forms (depicted by a dashed line).
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Figure 2. 
Fusion oncoprotein-bound mSWI/SNF complexes activate oncogenic transcription via 

cancer-specific genomic targeting. (A) In synovial sarcoma, the SS18–SSX fusion is 

incorporated into BAF complexes, resulting in the eviction of wild-type SS18 and BAF47 

subunits. These SS18–SSX-containing complexes are targeted to sites of PRC2-mediated 

repression, such as SOX2, leading to a reduction in H3K27me3 levels and activation of 

transcription. (B) In Ewing sarcoma, the EWS–FLI1 fusion transiently interacts with BAF 

complexes and results in cancer-specific targeting to GGAA microsatellites. This de novo 
targeting of BAF complexes leads to increased H3K27ac levels, enhancer activation, and 

oncogenic transcription.
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Figure 3. 
Genome-wide loss of mSWI/SNF and PRC2 complex activity and targeting results in 

oncogenic transcription. (A) In BAF47-deficient sarcomas, such as malignant rhabdoid 

tumor and epithelioid sarcoma, the loss of BAF47 incorporation into BAF and PBAF 

complexes results in residual complexes with decreased chromatin affinity. BAF complex 

occupancy and H3K27ac levels are reduced genome-wide at enhancers and PBAF 

complexes are attenuated at gene promoters, while PRC2 occupancy increases at active gene 

promoters, leading to deposition of H3K27me3 and the creation of transcriptionally-silent 

bivalent gene promoters. (B) In cases of malignant peripheral nerve sheath tumors with 

SUZ12 or EED subunit loss, PRC2 occupancy and H3K27me3 levels are reduced, 

contributing to increased activation of oncogenic transcription.
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