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Abstract

Soft-tissue deformation presents a confounding factor to rigid image registration by introducing 

image content inconsistent with the underlying motion model, presenting non-correspondent 

structure with potentially high power, and creating local minima that challenge iterative 

optimization. In this work, we introduce a model for registration performance that includes 

deformable soft tissue as a power-law noise distribution within a statistical framework describing 

the Cramer-Rao lower bound (CRLB) and root-mean-squared error (RMSE) in registration 

performance. The model incorporates both cross-correlation and gradient-based similarity metrics 

and was tested in application to 3D-2D (CT-to-radiograph) and 3D-3D (CT-to-CT) image 

registration. Predictions accurately reflect the trends in registration error as a function of dose 

(quantum noise) and choice of similarity metric for both registration scenarios. Incorporating soft-

tissue deformation as a noise source yields important insight on the limits of registration 

performance with respect to algorithm design and the clinical application or anatomical context. 

For example, the model quantifies the advantage of gradient-based similarity metrics in 3D-2D 

registration, identifies the low-dose limits of registration performance, and reveals the conditions 

for which registration performance is fundamentally limited by soft-tissue deformation.
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I. INTRODUCTION

UNDERSTANDING and modeling the factors that affect image registration performance is 

of fundamental interest to the medical imaging community as the error in registration 

directly affects the utility of an image guidance system. Rigid registration performance is 

typically characterized by studying the accuracy of the geometric transformation (translation 

and rotation) parameters that relate the two images. While experimentation and analysis 

involving imaging phantoms or clinical image data provide important characterization of 

registration performance, a theoretical / statistical model of image registration that includes 

factors relating to image quality, algorithm parameters, and anatomical context provides 

valuable insight on the development and application of new registration methods and sheds 

light on the fundamental limits of registration performance.

Recent work [1] sought to address this gap in theoretical insight by deriving a statistical 

model for registration error that describes the relationship between (rigid) registration error 

and image quality characteristics such as spatial resolution (modulation transfer function, 

MTF), image noise (noise-power spectrum, NPS), and spatial-frequency-dependent signal-

to-noise ratio (noise-equivalent quanta, NEQ). The model considered rigid translation 

between two images (I1, I2):

I1 x, y = g x, y + n1 x, y (1)

I2 x, y = g x − u, y − v + n2 x, y (2)

where the discretely sampled images (denoted [·]) contain the same true underlying 

continuous image function (g); however, both are contaminated with independent additive 

noise (ni ), and I2 contains an unknown translation, τ = u, v , which the registration process 

attempts to estimate.

While the framework in [1] provides insight on the effects of image quality (viz., dose, 

quantum noise, and spatial resolution), the underlying assumptions are in part broken when 

structures in g are subject to deformation between I1 and I2, suggesting a disparity in the true 

underlying signal (g). For example, anatomy presenting in medical images often consists of 

rigid (bone) and deformable (soft tissue) components. In such a scenario, despite soft-tissue 

deformation, bone anatomy still provides salient structure suitable to rigid registration. By 

considering rigid anatomy to be the “true” underlying signal (g), a model can be constructed 

in which non-rigid structures (soft tissue) are considered as a confounding noise source with 

respect to the task of rigid registration.
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This approach is analogous to approaches drawn from signal detection theory (SDT) in 

which background anatomical “clutter” is considered as a confounding noise source with 

respect to the task of detection [2]–[4]. Such SDT frameworks have provided an important 

basis for imaging system optimization – e.g., in flat-panel detectors [5] and cone-beam CT 

[6], [7] – and an important aspect of such models is a generalization in which not only 

quantum noise is considered as a confounding influence on detection, but also any 
fluctuation in the image that is not associated with the stimulus [8], [9], an insight which 

provided further guidance for system design. – e.g., background parenchyma of breast or 

lung tissue. Such generalization of the visual detection process is clearly an abstraction, 

since background anatomy is not a random process, but it provided guidance on important 

aspects of imaging system design – e.g., a quantitative basis for detectability in projection, 

tomosynthesis, and fully 3D tomographic imaging and the point beyond which detection is 

not improved by increasing dose. In a similar manner, rigid registration of a rigid (bone) 

structure can be confounded by nearby soft-tissue deformation acting as “noise” in the 

registration. We therefore present a statistical model that incorporates this deformation as a 

source of noise in image registration, while also including factors of spatial resolution and 

quantum noise as in [1].

The work reported below is distinct from preliminary studies reported in [10] as follows. 

Experiments in [10] treated the image backgrounds as two independent realizations of soft-

tissue – an idealization in which soft-tissue clearly acts as a noise source in registration, but 

does not explicitly treat the question of a deformed soft-tissue background. The work 

reported below, however, investigates the framework in more realistic scenarios in which the 

soft-tissue background is deformed (rather than simply re-instantiated). Prior work [10] only 

examined the performance of the cross-correlation similarity metric in the presence of 

background anatomical mismatch. In the current work, we extend the statistical framework 

to model the performance of gradient-based similarity metrics, which are shown to be robust 

to the confounding influence of soft-tissue deformation. Furthermore, whereas prior work 

[10] examined 3D-3D registration alone, in this work we also examine 3D-2D registration 

scenarios, which previous studies [11], [12] showed to have better performance when using 

gradient-based metrics (cf., cross-correlation metrics). Finally, we present an analytical 

derivation of the power spectrum associated with 2D and 3D Voronoi images. The derivation 

may be of general interest beyond this work, and we use the Voronoi power spectrum as a 

model for piece-wise constant soft-tissue backgrounds (§III.B) analogous to the presentation 

of anatomy in tomographic imaging (e.g., abdominal CT, which is the subject of 

experiments below).

The theory and experiments in this paper involve translation-only registration, and the 

understanding gained regarding the effects of soft-tissue deformation as a confounding noise 

source is presumably applicable to rigid registration more generally. Furthermore, the work 

shows how the “noise” imparted by soft-tissue deformation may be minimized by careful 

choice of similarity metric.
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II. STATISTICAL EVALUATION OF IMAGE REGISTRATION

Over the past 15 years, there have been several contributions to understanding the lower 

bounds in image registration accuracy. Robinson and Milanfar performed early work in 

statistical evaluation of registration performance by deriving the Cramer-Rao Lower Bound 

(CRLB) for translation-only image registration in the presence of additive Gaussian white 

noise (AGWN). Yetik and Nehorai [13] extended this derivation to model both translation 

and rotation, and Pham et al. [14] extended the model to more general projective 

transformations. Uss et al. [15], through an alternative approach, derived a translation-only 

CRLB that assumed AGWN and an underlying image distributed according to a fractal 

Brownian motion model, showing good agreement with measurements of registration 

performance in high signal-to-noise (SNR) scenarios. Xu et al. [16] derived Ziv-Zikai 

Bounds (ZZB) for translation-only registration and was able to model the steep drop in 

performance in very low SNR conditions due to registration failure. Aguerrebere et al. [17] 

later explained these works to be associated with the signal-known-exactly scenario (SKE, 

where a noiseless image is available) and derived the CRLB for registering 2 or more 

images, each of which contained stationary Gaussian noise (no longer limited to AGWN). 

Their work also examined various other lower bounds such as the extended ZZB for white 

noise contaminated images and a Bayesian CRLB when a shift prior was known.

Beyond evaluation of the lower bounds, it is also important to examine the registration 

method itself, which includes factors such as image preprocessing, similarity metric, and 

optimization method. Aguerrebere et al. [18] provided a review of general registration 

frameworks (particularly in the presence of white noise) and distinguished methods that do 

not rely on prior information (e.g., Maximum Likelihood Estimator) from those that do by 

incorporating information about the statistical distribution of both the signal and noise (e.g., 

Bayesian Maximum Likelihood Estimator via the Wiener filter). Robinson and Milanfar [19] 

and Pham et al. [14] demonstrated the bias present in several registration estimators, 

fundamentally limiting the registration performance in very high SNR scenarios. The effect 

of image quality on registration accuracy was investigated by Zhao et al. [20] for translation-

only registration under AGWN to understand the influence of spatial resolution (cf., noise) 

on the sum of squared difference (SSD) similarity metric. Their work indicated that when 

registering images at different spatial resolutions using SSD, the higher resolution image 

should be blurred to match the lower resolution. The result is particularly interesting since, 

by the data-processing inequality, such blur does not improve the CRLB and thus depends 

on the similarity metric itself (whereas the CRLB is independent of similarity metric). Such 

work demonstrates the necessity for a statistical registration framework to examine both the 

theoretical limits of registration accuracy and the influence of the similarity metric to more 

fully describe the relationship between image quality and registration performance. Such 

consideration prompted Ketcha et al. [1] to investigate the effects of image quality on both 

the CRLB and the registration error for the cross-correlation similarity metric.

For the scenario of (1–2), the CRLB for translation-only image registration sets a lower-

bound on the root-mean-square error (RMSE) of the translation estimate τ . For an unbiased 
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estimator it was shown that RMSE ≥ trace FIM−1  where the Fisher information matrix 

(FIM) is defined as:

FIM = 2π 2A
γxx γxy

γxy γyy

γ jk =
− f Nyq

f Nyq
f j f k

G2

GN1 + GN2 + N1N2
d f x d f y

(3)

where G (fx, fy) is the power spectrum of g (x, y), Ni (fx, fy) is the NPS of image Ii (x, y), A 
is the image area, and fNyq is the Nyquist frequency. The f j, fk terms are the frequency 

components of the power spectra, with j, k substituted for x, y depending on which γjk term 

in the FIM is being computed.

As shown in [1], a Taylor series expansion shows the RMSE for the cross-correlation (CC) 

estimator in translation-only registration to be:

RMSE ≈ 1/ρx +1/ρy

ρ j =
2π 2A − f Nyq

f Nyq f j
2HGd f xd f y

2

− f Nyq

f Nyq f j
2H2 GN1 + GN2 + N1N2 d f xd f y

(4)

where H (fx, fy) is the frequency weighting provided by any post-processing blur or filtering 

and should therefore be constructed to minimize RMSE in (4). For example, in the case 

where both images contain equal-magnitude white noise, (4) is minimized via the Weiner 

filter (described in [18]). However, when considering the common method of CC with 

Gaussian blurred images (of characteristic width σb) H is expressed as:

HCC f x, f y; σb = e
−4π2 f x

2 + f y
2 σb

2
(5)

Combining HCC with (4) then allows optimal selection of σb. In this work, we extend (4) to 

other similarity metrics such as gradient correlation (GC), defined as:

GC u, v =
∂I1
∂x ⊗

∂I2
∂x u, v +

∂I1
∂y ⊗

∂I2
∂y u, v (6)
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where ⊗ is the cross correlation function defined by:

I1 ⊗ I2 u, v =
x, y

I1 x, y I2 x + u, y + v (7)

Equation (6) shows that GC is the sum of the cross-correlation of the partial derivative 

images ∂Ii/ ∂x, ∂Ii/ ∂y . These partial derivative images are typically computed by 

convolving the images with spatial derivative filters hx (x, y), hy (x, y) (e.g., Sobel, 

derivative of a Gaussian, etc.), thus we rewrite (6) as:

GC u, v = hx * I1 ⊗ hx * I2 + hy * I1 ⊗ hy * I2

= hx ⊗ hx * I1 ⊗ I2 + hy ⊗ hy * I1 ⊗ I2

= hx ⊗ hx + hy ⊗ hy * I1 ⊗ I2
ℱ

HGC ⋅ ℱ I1 ⊗ I2 = HGC ⋅ ℱ I1 ⋅ ℱ I2

(8)

where the Fourier transform (ℱ ⋅ , with the bar in ℱ ⋅  indicating complex conjugation) 

in the last line shows that GC can be computed by filtering the CC function (I1 ⊗ I2) with 

the function HGC (fx, fy). When hx (x, y), hy (x, y) are the derivative of Gaussian spatial 

derivative filters, we have:

HGC f x, f y; σb = f x
2 + f y

2 e
−4π2 f x

2 + f y
2 σb

2
(9)

which can be used with (4) to model registration performance for the GC similarity metric. 

A more general form for the n-th derivative of a Gaussian spatial filter is:

HGn f x, f y; n, σb = f x
2 + f y

2 ne
−4π2 f x

2 + f y
2 σb

2
(10)

allowing one to model the performance of higher-order gradient similarity metrics (referred 

to as Gn, e.g., G2, G4, etc.). As shown below, the generalized form is useful in selecting 

specific spatial-frequency bands to weight in the registration process, with peak weighting 

about:

f peak = n/2πσb (11)

and with frequency band width proportional to 1/σb.
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III. MODEL FOR SOFT-TISSUE DEFORMATION

A. Soft-Tissue Deformation as a Noise Source

We consider two cases of soft-tissue deformation, the first being 3D-2D registration [11], 

[21] in which a 2D digitally reconstructed radiograph (DRR) is computed from a 3D CT 

volume and aligned to a radiograph as illustrated in Fig. 1. (Note that this process 

corresponds to projection-based 3D-2D registration, not slice-to-volume registration). 

Throughout this work, projection images – radiographs or DRRs – are referred to as 2D, and 

volumetric images – namely CT – are termed 3D, even with respect to a single slice of a CT 

volume. In 3D-2D registration scenarios, the impact of soft-tissue deformation on 

registration of bone anatomy can be large, since thick regions of soft tissue carry a high 

degree of power in the image (obscuring even bone), and deformations can be large (since 

the patient moves between 2D and 3D imaging systems). To compensate for this, soft tissue 

is often thresholded out of the CT image (by intensity threshold) before generating the DRR, 

presenting an “absence” of soft-tissue compared to the radiograph. Since the soft-tissue is 

present in only one image, it acts as an independent additive noise source described by (1–2) 

and can be easily incorporated in the model by modifying the noise-term (n2, taking the 

radiograph to be I2) to contain both quantum noise (q2) and soft-tissue anatomical noise (s2), 

giving n2 x, y = q2 x, y + s2 x, y . A statistical model for s2 is described in §II.B. With n2(x, 

y) defined in this manner, g(x, y) represents just the bone anatomy, and n1(x, y) represents 

the quantum noise projected in the DRR.

The second case considers soft-tissue deformation in 3D-3D image registration, starting with 

the example of registering two axial CT slices, as illustrated in Fig. 2. Rigid registration in 

the presence of soft-tissue deformation still can accurately align bone anatomy (g(x, y)), 

leaving residual misalignment of the deformed soft-tissue. From an optimization standpoint, 

this misalignment of soft-tissue structures (depicted in the colorwash of Fig. 2B,D) 

diminishes the similarity metric and reduces the quality of the search space, including 

introduction of false local minima. A problem introduced in modeling deformed soft-tissue 

as noise is that the noise terms in (1–2) are assumed independent, which is not the case in 

this scenario, since soft-tissue presenting in one image is just a deformed version of its 

manifestation in the other. However, if the deformation is large compared to the correlation 

length of the gradient image (i.e., high-gradient regions are no longer overlapping), then s1 

(x, y) and s2 (x, y) can be treated as independent. Therefore, both images carry a noise term: 

ni x, y = qi x, y + si x, y . Note that in the case of no deformation, the soft-tissue function is 

rightly incorporated in the true signal g x, y g x, y + s x, y  as it contributes positively to 

the similarity metric.

B. The Soft-Tissue Power Spectrum

To incorporate the soft-tissue noise into the error models of (3–4), we need a model for the 

power spectrum of ni (x, y). We first note that under the assumption that the quantum noise 

and soft-tissue signals are independent, then the power spectrum of ni x, y = qi x, y + si x, y

is the sum of the two power spectra, giving Ni f x, f y = Qi f x, f y + Si f x, f y , where Qi is the 

quantum NPS and Si is the soft-tissue power spectrum. Quantum noise in radiographs and 
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CT images have been well described by models of the quantum NPS, including factors 

determined by the acquisition technique (e.g., energy and exposure) and imaging system 

characteristics (e.g., blur, pixel size, and electronic noise) [22]–[24]. Furthermore, the power 

spectrum associated with cluttered scenes (e.g., soft-tissue anatomy overlying structures of 

interest) has been described from the standpoint of statistical decision theory in terms of a 

power-law distribution:

Sob j f x, f y =
αS

f 0
βS + f

βS
(12)

where f = f x
2 + f y

2 and Sobj refers to the power spectrum of the object (cf., the image of the 

object, which is further attenuated by the MTF squared). The parameter αS is a scaling term 

proportional to the tissue contrast, βS governs the low-frequency extent, and f0 removes the 

discontinuity at f = 0 as discussed in [4], nominally set to be the inverse of the image width.

Depending on the type of anatomy and imaging modality, βS has been shown to be typically 

in the range of 2–4 [25]–[28], where larger values describe increasingly clumpier 

background texture. For example, the power-law distribution with βS = 3.6 yields the 

clumpy texture shown in Fig. 1B, which is similar in structure to anatomy presenting in a 

thoracic radiograph [26]. Further, studies comparing breast tissue background in projection 

and 3D imaging (typically shown to have βs = 3 in mammograms [25], [29]) revealed 

important general properties: 1) that a slice of a βs power-law image follows a power law of 

βs − 1; and 2) a projection of the image follows a power law of βs (note that both have 

dimensionality that is one less than the original image) [29], [30].

While previous work [10] modeling axial CT registration considered direct sampling from 

the power-law distribution yielding clumpy and cloudy texture appropriate for radiographic 

(Fig. 1B) and breast anatomy, the background texture associated with axial CT, however, 

tends to follow a piece-wise constant background. Therefore, we use simulated axial CT 

soft-tissue images that follow Voronoi distributions, with randomly placed seed points and 

piece-wise constant background defined by intensity values drawn from a uniform 

distribution over the range of soft-tissue Hounsfield unit values (shown in the background of 

Fig. 2A). While the Voronoi diagram is not a perfect model for solid-organ tissues in 

tomography (which do contain some level of heterogenous structure) it does provide a 

reasonable first-order approximation. To gain analytical insight on the power spectrum of the 

piece-wise constant Voronoi image, we begin by considering an analogous 1D case 

constructed by summing randomly scaled and shifted rect functions:

g t =
i = 1

n
Ai rect

t − t0i
T i

(13)
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where T ~ Uniform(Tmin, Tmax ) and E{A2} is finite. By utilizing the Fourier pair relating 

the rect function to the sinc:

A rect
t − t0

T
ℱ

AT sinc π f T exp −i2π f t0 (14)

the expected power spectrum of G f = ℱ g t ℱ g t  is:

E G1D f =
i = 1

n
E Ai

2T i
2sinc2 π f T i

=
i = 1

n
E

Ai
2T i

2sin2 π f T i

π2 f 2T i
2

=
E A2

π2 f 2
i = 1

n
E sin2 π f T i

(15)

The first equality assumes independence of the summed rect functions, leaving only the 

summation of the expectations, and the multiplication of complex conjugates cancels the 

exponential terms. By writing out the sinc, we need only to compute the expectation of the 

sin2(·) term over T, giving:

E G1D f =
nE A2

π2 f 2
1
2 +

sin 2π f Tmin − sin 2π f Tmax
4π f Tmax − Tmin

(16)

which for large (Tmax − Tmin ), yields the result:

E G1D f ≈ 1
2

nE A2

π2 f 2 (17)

In 1D, therefore, this piece-wise constant function follows a power-law distribution with βs 

= 2.

We extend this derivation to 2D by approximating the Voronoi image as a sum of 2D rects 

with random rotation (θ):

g x, y =
i = 1

n
Ai rect

x − x0i
Xi

,
y − y0i

Y i
; θi (18)
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Where X ~ Uniform(Xmin, Xmax ), Y ~ Uniform (Ymin, Ymax ), θ ~ Uniform (0, 2π). As 

shown in Appendix A, supported by numerical simulations, the resulting 2D power spectrum 

can be approximated by:

E G f x, f y ≈
nE A2

π3 f 3 μXY

With

μXY =
Xmax + Xmin + Ymax + Ymin

4 (19)

where the terms in µXY are the uniform distribution parameters on the rect widths. We see 

that (19) again follows a power law distribution, this time with βs = 3. In this way, the 

Voronoi image yields a random image model that is visually similar to the piece-wise 

constant background of soft-tissues presenting in axial CT and has a power spectrum in line 

with the models derived previously for detection of a signal against a lumpy background 

with βs = 3. Note that βs is independent of the number of rect functions (n) and widths, 

implying that a Voronoi image of any density of seed points follows a power law distribution 

with βs = 3. This point is confirmed by the power spectra measured for randomly generated 

Voronoi images described in §V.

Extension of the derivation to 3D Voronoi images is shown in the Appendix, yielding an 

approximate power spectrum:

E G f x, f y, f z ≈ 2
nE A2

π4 f 4 μXYZ
2 (20)

where f = f x
2 + f y

2 + f z
2, and µXYZ is the mean over the 6 uniform distribution width 

parameters [similar to µXY in (19)], yielding βs = 4.

IV. TEST IMAGES

A. 3D-2D: DRR and Radiograph Images

We consider 3D-2D registration (translation-only) of a radiograph to a CT image via DRR. 

The DRR was generated from an abdominal CT volume (Somatom Definition, Siemens) 

with a 250 HU soft-tissue threshold and forward projection by trilinear interpolation as 

illustrated in Fig. 1A. Simulated radiographs (Fig. 1B) were generated by computing 

separate forward projections and adding a power-law-distributed random image sample to 

simulate overlying soft-tissue and injecting quantum noise correlated by the system MTF. 

Two CT noise realizations were generated (as described in IV.B) to ensure that the CT-

derived quantum noise was independent between DRRs and simulated radiographs. This 
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method allows generation of many images for performing registration (each having different 

realizations of soft-tissue content) while maintaining a known ground-truth transformation.

The soft-tissue background was generated from the power law distribution with βs = 3.6 (as 

in Fig.1B), yielding a distribution that is visually similar and, more importantly, statistically 

matches that observed in tomographic images of real anatomy [26]. This background image 

was scaled and re-centered so that the mean approximated attenuation by 30 cm of water 

with a standard deviation equal to 5% of the mean. The power-law soft-tissue image was 

added to the DRR, and quantum noise was simulated using the SPEKTR toolkit [31] to 

determine the x-ray fluence at the detector for a specified dose, determined by the x-ray tube 

output (current – time product, mAs) and beam energy. The transmitted fluence was sampled 

according to a Poisson distribution to simulate quantum noise, and the image was filtered 

according to a Lorentzian MTF to simulate scintillator blur [32], yielding simulated 

radiographs as shown in Fig. 1B. The resulting images were 768 × 512 pixels with 0.279 

mm pixel size. This process was repeated for 100 instances of power-law soft tissue 

realizations and 11 dose levels (ranging 0.005–500 mAs).

B. 3D-3D: Voronoi CT-CT Slice Images

CT slices featuring rigid bone and deformable soft tissue were simulated as illustrated in 

Fig. 2B. Soft tissue was represented by Voronoi distributions from 50 randomly placed seed 

points in the 512 × 512 image, each assigned HU values in the range −110 HU to +90 HU in 

a uniform random distribution. A rigid bone region was inserted using a segmented CT 

image of a human lumbar vertebra, and the image was cropped to a 32 cm diameter cylinder 

(typical scale for body CT). Prior work [10] examined registration of images containing 

independently generated soft-tissue backgrounds, and the work reported below examines the 

effect of deformation at different degrees of deformation magnitude. To obtain a realization 

of the same image with soft-tissue deformation, the Voronoi image (prior to inserting the 

bone segmentation) was subjected to a smooth, random displacement field (Fig. 3A) also 

defined by a low-frequency power-law distribution (β = 4.5) in displacement vectors in the x 
and y directions, with α scaled to achieve various magnitudes of deformation.

Quantum noise in the CT image was simulated by injection of Poisson noise proportional to 

1/ 1 + SPR × Dose (with nominal scatter-to-primary ratio SPR = 2). The SPEKTR toolkit 

[31] was used as in §IV.A to determine the fluence for a specified dose for mAs levels 

ranging 5–1500 mAs (for a 120 kV beam). Projection images (720 images over 360°) were 

generated from the attenuation values in the CT image and used to compute the expected 

number of detected photons for each pixel, which was taken as the mean (i.e., lambda) 

parameter for Poisson sampling at each pixel. Noisy projection images were then 

reconstructed by filtered backprojection using a Hann apodization filter with a cutoff 

frequency of 0.8 × fnyq. An example image is shown in Fig. 3B.

C. 3D-3D: Anatomy CT-CT Slice Images

Realistic anatomy depicted in abdominal CT (Fig. 2C, a patient image from an IRB-

approved study) was regenerated at various dose and deformation levels to test the statistical 

model on real soft-tissue anatomy. The deformation and noise injection process described in 
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§IV.B was repeated for this CT image, and the region corresponding to the vertebra was 

masked to ensure zero motion within the bone and smooth reduction of the motion vector 

field magnitude near the bone boundary (Fig. 3C).

V. POWER SPECTRAL ESTIMATES

The power spectrum estimates for signal (G) and noise (Si, and Qi ) entering the model of 

(3–4) are described below for both 3D-2D and 3D-3D registration scenarios. For a given 

signal- and noise-only image [g(x, y) and s (x, y) + q (x, y), respectively], the power 

spectrum was estimated by 2D Welch periodogram estimation (3 windows in each direction 

with 50% overlap) [33] with Hann tapering windows. Models for the power spectra of 

anatomy [both G (fx, fy) and S (fx, fy)] were based on the estimated periodograms and the 

well-studied power-law properties of soft-tissue described in §III.B. Models for quantum 

NPS were based on physical models that describe quantum noise propagation in 

radiographic [32] and CT [22], [24] imaging systems. In radiographic systems, dominant 

contributors to the NPS are scintillator blur and the detector aperture, the MTF of which may 

be modeled as a Lorentzian times a sinc [32]. In CT, dominant contributors to the NPS 

further comprise the ramp filter, apodization filter, and aliasing. The NPS therefore included 

a ramp multiplied by the square of the MTF (Hann apodization filter) and an additive 

constant. The models and parameters are summarized in Tables I and II. Parameters for G 
and Si were assumed independent of dose, whereas quantum noise parameters were 

computed at each dose level.

A. DRR (I1) and Radiograph (I2)

For the 3D-2D case, the true signal image g(x, y) was given by the DRR, and its estimated 

periodogram was fit via the model in Table I. The DRR carries a small amount of CT-

derived quantum noise which was assumed negligible in fitting G (fx, fy) but should still be 

accounted in Q1 (fx, fy). Based on the projection-slice theorem, Q1 is related to a slice of the 

CT NPS; however, this CT-derived quantum noise was small in magnitude compared to the 

signal, and the model simply approximated Q1 as a constant (cQ). To determine this 

constant, two DRRs from two CT instances (§IV.A) were subtracted to yield a noise-only 

image. A periodogram of the difference image (corrected by a factor 1
2 ) was estimated and 

the constant was set to the mean over this periodogram.

The soft-tissue βS was taken from the radiograph simulations (§IV.A) leaving the power-law 

scaling parameter (αS) and the quantum noise parameters (αQ) to be fit. Periodograms from 

100 radiographs (with DRR subtracted to yield soft-tissue + quantum noise only images) 

were averaged to obtain power spectrum estimates at each dose level. Fits for αS and αQ 

were performed jointly for the highest dose power spectrum, and the resulting αS was fixed 

in fitting αQ at other dose levels.

B. CT Slice

The bone-only g(x, y) images for the Voronoi 3D-3D case were formed from the mean of 

100 CT images (10 quantum noise realizations for 10 different Voronoi backgrounds) at each 

dose level. The g(x, y) from the highest dose level was used to compute the periodogram for 
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G(x, y) which was fit to a power-law + exponential function as shown in Table II. This step 

was repeated to obtain G(x, y) for the bone in the anatomy 3D-3D case using 50 images 

(each with new noise and deformation).

Based on power spectrum analysis in Appendix A, βS = 3 was used for the soft-tissue 

parameter value for both the Voronoi and anatomy images. The remaining noise parameters 

were determined by fits to estimated Si + Qi spectra at each dose. Power spectra for each 

dose level were estimated by averaging the periodograms of 100 CT slices (50 in the 

anatomical case) with g(x, y) subtracted (leaving s (x, y) + q (x, y)). Again, αS was 

determined in a joint fit with the quantum noise parameters at the highest dose level, and the 

value was fixed when fitting the quantum noise parameters for lower dose levels.

VI. EXPERIMENTAL METHODS

A. Registration Experiments

For each image pair in the following registration scenarios, an initial translation of τ = [1.2 

pix, 1.2 pix] (registration was observed to be insensitive to small changes in initial shift 

value) was imparted in the moving image prior to registration using cubic B-spline 

interpolation. Following the shift, translation-only rigid registration was performed in 

SimpleITK [34] using each of the similarity metrics (CC, GC, G2, or G4 as described in §II) 

at σb levels ranging from 1 to 4 pixels in 0.5 increments. As gradient-based similarity 

metrics were not implemented in SimpleITK, an analytical equivalent was implemented by 

noting from (8) that these metrics can be achieved by prefiltering the images to achieve the 

HGn f x, f y; n, σb  frequency weighting in (10) (by filtering both images according to the 

square root of HGn) and using the built-in normalized cross-correlation metric (NCC) in 

SimpleITK. NCC differs slightly from CC (7) in that the images are renormalized at each 

spatial shift according to the values in the overlapping regions; however, the normalization 

primarily serves to reduce the influence of local optima rather than improve accuracy at the 

true solution (which is reflected in (3–4) as both are unaffected by DC shifts and scaling).

For each similarity metric (i.e., n in HGn f x, f y; n, σb ), the optimal blur was determined by 

minimizing (4) with respect to σb, and the observed RMSE at that blur level was compared 

to both the RMSE predicted by (4) and the CRLB in (3) (which is independent of σb). 

Computation of (3–4) was achieved using the power spectrum model fits discussed in §V. 

Cases of registration failure were observed to occur for σb < 1 pix or in cases for which fpeak 

[described in (11)] was larger than approximately half the Nyquist frequency; therefore, 

optimization of σb was constrained to satisfy these requirements. Image edge effects 

introduced by prefiltering were avoided by excluding image boundary regions during 

registration.

1) 3D-2D Registration (Effect of Dose):

DRR-to-radiograph registration error was examined as a function of radiograph dose, 

ranging 0.005–500 mAs. For each dose level, 100 simulated radiographs (§IV.A), each with 

different quantum and soft-tissue realization, was registered to the bone-only DRR using 
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CC, GC, G2, and G4. RMSE was computed for each dose level and compared to the 

predicted RMSE and the CRLB.

2) Voronoi 3D-3D Registration (Effect of Dose): Voronoi CT-CT slice registration 

error was examined as a function of dose over the range 5–1500 mAs. For each of 10 

Voronoi images, 10 displacement fields (mean displacement magnitude of ~7 pix) were 

applied to generate 110 CT slices (100 deformed, 10 with original Voronoi) at each dose 

level. Each of the deformed images was registered to the undeformed slice at the matching 

dose level using CC, GC, and G4. RMSE at each dose level was compared to the predicted 

RMSE and CRLB.

3) Anatomy 3D-3D Registration (Effect of Dose): Anatomy CT-CT slice 

registration error was examined as a function of dose over the range 5–1500 mAs. At each 

dose level, 10 non-deformed noisy images were generated and registered to 10 deformed 

images generated at the same dose level, yielding 100 registrations for each dose level. The 

RMSE for CC, GC, and G4 was compared to the predicted RMSE and CRLB. The 

experiment was performed for two conditions of deformation magnitude with mean 

displacement magnitude of ~7 pix and 22 pix.

4) Voronoi 3D-3D Registration (Effect of Deformation Magnitude): Voronoi CT-

CT slice registration error was examined as a function of the soft-tissue deformation 

magnitude. The experiment of §VI.A.2 was repeated (at 250 mAs dose level) for 12 levels of 

displacement field magnitude by varying α in the power-law derived displacement fields to 

yield mean pixel displacement magnitude ranging from ~0.01 to 22 pix.

Registration results were compared to RMSE predictions and RMSE measurements in 

registered images containing different Voronoi backgrounds (such that the soft-tissue noise 

terms were truly independent) to check the extent of deformation necessary to justify the 

assumption of independence. Registrations were performed for each of the 10 no-

deformation CT slices (each with a different Voronoi background), yielding 45 (i.e., 10-

choose-2) registrations to examine RMSE for CC, GC, and G4.

5) Anatomy 3D-3D Registration (Effect of Deformation Magnitude): Anatomy 

CT-CT slice registration error was examined as a function of the soft-tissue deformation 

magnitude. The experiment of §VI.A.3 was repeated (at the 250 mAs dose level) for 14 

levels of displacement field magnitude by varying α in the power-law displacement fields to 

yield mean pixel displacement magnitude ranging from ~0.01 to 22 pix. Registration results 

were compared to RMSE predictions for each similarity metric (CC, GC, and G4).

B. Effect of Soft-Tissue Characterization (αS and βS)

The soft-tissue power-law parameters (αS and βS) can vary as a function of both the contrast 

and texture of the soft-tissue. Increasing αS leads to a greater soft-tissue intensity range. 

Increasing βS leads to cloudier, more smoothly varying texture, whereas reducing βS yields 

higher-frequency content (and βS = 0 giving white noise). Such texture changes may be 

associated with changes in anatomical region (e.g., abdominal anatomy vs. breast tissue) or 

the use of a different imaging modality (e.g., radiography vs. CT or ultrasound). To 
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understand the role of these parameters on registration performance, we used (4) to predict 

the registration error for CC, GC, and G4 (at optimal σb) as a function of these soft-tissue 

power-law parameters. For both 3D-2D and 3D-3D scenarios, we fixed the model 

parameters described by Tables I–II at several dose levels and separately varied αS and βS. 

As αS values are not comparable for different values of βS, the αS value was scaled to 

achieve the same area under the curve (energy) of the original power-law distribution.

VII. RESULTS

A. Registration Results: Comparison of Theory and Measurement

Fig. 4A shows 3D-2D registration error as a function of dose for 4 similarity metrics. Solid 

lines depict the predicted RMSE via (4) for each metric at optimal σb (computed for each 

dose level and metric), and the markers represent the experimental error using that σb. 

Immediately apparent is the large performance gap between CC and gradient-based metrics, 

with CC showing more than an order-of-magnitude greater error than the other metrics. 

Further, CC performance appears to be soft-tissue limited in that increased dose (and thus 

reduced quantum noise) does not yield improved registration accuracy. For the gradient-

based metrics, however, RMSE decreases as a function of dose over the range ~0.005–1 

mAs and follows the trend set by the CRLB (dashed line). For higher dose, a plateau in 

RMSE is exhibited for all metrics (and the CRLB), again indicating that the registration is 

limited by soft-tissue noise rather than quantum noise. The best registration error was 

obtained using the G4 metric, giving RMSE = 0.006 pix, (compared to the CRLB = 0.003 

pix) at the 500 mAs dose level.

Fig. 4B shows Voronoi 3D-3D registration error as a function of dose for CC, GC, and G4 

similarity metrics in the presence of soft-tissue deformation. Each metric exhibits a similar 

plateau as seen above; however, CC plateaus at a much lower dose level than GC, G4 (~25 

mAs vs. ~1000 mAs). Interestingly, GC (only slightly outperforming G4) nearly achieves 

the CRLB over all dose ranges tested, indicating near optimality as a metric for the soft-

tissue deformation scenario.

Fig. 4C,D shows anatomy 3D-3D registration error in the presence of soft-tissue 

deformation with mean deformation magnitude of 7 mm and 22 mm, respectively. RMSE is 

shown as a function of dose for CC, GC, and G4 similarity metrics. Interestingly, the 

agreement between theory and measurement improve with the magnitude of displacement – 

with predictions underestimating the measurements at 7 pix displacement and agreeing well 

for larger displacement (e.g., 22 pix deformation). It is important to note that the predicted 

RMSE is identical for the two plots in Fig. 4C,D, showing that the measured RMSE for CC 

and GC improves greatly in the presence of increased soft-tissue deformation. Meanwhile, 

the G4 metric shows good agreement between measurement and prediction for both the 

small and large deformation scenarios. Together, this indicates that small deformations in the 

case of real anatomy (c.f., the sharp edge scenario of the Voronoi images) do not sufficiently 

decorrelate the soft-tissue background for the CC and GC metrics, and the lack of non-

correspondence in soft-tissue backgrounds degrades the search space. The G4 metric, 

however, emphasizes finer gradient features, and a smaller magnitude of deformation is 
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sufficient for corresponding background structures to become uncorrelated, thereby 

improving the search space quality and improving registration accuracy.

It is important to keep in mind that for both scenarios of soft-tissue noise (i.e., soft-tissue 

absence in 3D-2D and soft-tissue deformation in 3D-3D), the model predictions were 

achieved by simply incorporating soft-tissue as a power-law noise distribution in (3–4). 

Further, in both scenarios the predictions and experiments showed improved performance 

when using the gradient-based similarity metrics. This is particularly interesting when 

compared to results in the following section which show that CC outperforms GC when no 

deformation is present. To understand this change in the preferred metric, it is important to 

examine the power spectra of both the signal and noise terms as seen in Fig. 5 and to 

compare these spectra with the frequency weighting that each metric provides. In the 

presence of quantum noise alone, it is clear from Fig. 5A–B that there is a large signal-to-

noise ratio near the zero-frequency region; therefore, it is intuitive that CC (which weights 

the low-frequency band) is the preferred metric. However, in the presence of soft-tissue 

deformation (modeled as low-frequency noise), the low-pass nature of the power-law soft-

tissue spectrum leads to a sharp reduction in signal-to-noise ratio near zero frequency. 

Therefore, using gradient-based metrics, which down-weight the near-zero frequency 

regions, is preferred.

B. Effect of Deformation Magnitude

Fig. 6A shows Voronoi CT-CT slice registration error as a function of the mean magnitude 

of pixel displacement in deforming soft tissue. The results are compared with the dashed 

lines that show predicted RMSE and dotted lines showing experimental registration 

performance for images with different realizations of Voronoi background (i.e., independent 

soft-tissue noise terms). The lowest registration error was observed for cases of minimal 

deformation, since soft tissue anatomy contributes to accurate alignment in such cases. 

Furthermore, in the absence of deformation (in which case the underlying images differ only 

by quantum noise), CC is found to be the optimal metric. However, as deformation 

magnitude increases, registration error increases up to a plateau near 5–6 mean pixel 

displacement, showing that beyond a certain level of deformation, when the soft-tissue 

backgrounds are sufficiently decorrelated, the magnitude of deformation has little effect on 

the registration error. For both metrics, the plateau occurs at the error level observed when 

registering newly-generated independent Voronoi backgrounds, supporting the assumption 

that, under large deformations, the soft-tissue can be treated as an independent noise term. It 

is also interesting to note the hump in RMSE for GC, which is attributable to local optima 

created when gradient-based metrics are used with small deformation.

Fig. 6B similarly examines the impact of deformation magnitude for anatomy CT-CT slice 

registration. A similar behavior to the Voronoi results is observed for deformation <5 pix, 

and the measured RMSE values plateau at much higher levels of deformation than in Fig. 

6A, particularly for the CC and GC metrics. Interestingly, it appears that the speed of 

convergence is related to the metric order, with G4 plateauing faster than GC, which in turn 

converges faster than CC. We observe this effect also in Figs. 4 C–D, where smaller 
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deformation magnitude was needed for the soft-tissue background to be sufficiently 

decorrelated when using higher-order gradient metrics.

C. Effect of Soft-Tissue Characteristics (αS and βS) on Registration Performance

Figure 7A shows the predicted 3D-2D RMSE at optimal σb for CC (red), GC (blue), and G4 

(green) as a function of soft-tissue magnitude (αS) for 2 dose levels. At small αS (thus 

dominated by quantum noise) CC slightly outperforms the others and registration 

performance is quantum limited, with changes in αS having little or no effect on registration. 

As αS increases, however, (yielding stronger contrast from soft-tissue) GC becomes the 

preferred metric due to its effective down-weighting of low frequency noise content. As αS 

becomes large, G4 becomes the preferred metric and the RMSE converges for all dose 

levels, indicating that the performance is limited by soft-tissue deformation. Similar 

behavior is observed in Fig. 7B for 3D-3D registration.

Figure 8A shows the effect of βS (at fixed total power) on the performance of CC, GC, and 

G4 similarity metrics for 3D-2D registration. At βS = 0 (i.e., white noise) CC is the preferred 

metric, since the NPS does not peak near zero frequency. As βS increases, however, soft-

tissue noise occupies the same frequency region as the signal term, leading to increased error 

for all metrics. For further increase in βS (and the soft-tissue power spectrum is concentrated 

near the zero frequency) we see that error decreases for the GC and G4 metrics, since they 

effectively attenuate the increasingly low-frequency soft-tissue noise. The performance of 

CC, however, plateaus at a much higher RMSE and has no dose dependence, illustrating that 

soft-tissue deformation dominates CC registration performance. Figure 8B shows a similar 

non-monotonic trend for the GC and G4 case in 3D-3D registration. Interestingly in both 

scenarios, the highest CRLB error is seen for βS in the range of 1–2. This can be understood 

by comparison of (3) with signal power spectra of Fig. 5A–B, where we see from the f j
2

term in (3) that higher frequencies provide quadratically more information in registration 

(with the DC component providing no information). However, in Fig. 5A–B we see that the 

signal power spectrum is concentrated in the low frequency range, which combined with the 

f i
2 weighting, implies that the mid-to-low frequencies effectively provide the most 

information for registration. Therefore, soft-tissue noise with βS ~ 1–2 presents the most 

confounding influence in the mid-to-low frequency range. Higher values of βS concentrate 

the noise in the low-frequency region, and lower values of βS pushes the noise to the higher 

frequency range, where there is little signal power.

VIII. CONCLUSION

This work demonstrates a model for rigid registration performance including soft-tissue 

deformation as a noise source. By adopting concepts from signal detection theory in 

modeling soft tissue by a power-law spatial-frequency distribution and incorporating it in a 

statistical framework for registration error, we quantify the influence of factors such as dose, 

noise, and choice of similarity metric on registration performance. In particular, CC-based 

and gradient-based metrics were shown to differ according to their frequency domain 

weighting of the signal, quantum noise and soft-tissue power spectra.
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This work investigates the extent to which large magnitude soft-tissue deformation can be 

treated as “noise” in the model for rigid registration performance. Of course, soft-tissue 

deformation is not a random process, but the abstraction was shown to hold reasonably well 

for large deformations giving rise to large regions of non-corresponding tissue overlap. This 

in turn was shown to be modeled well as noise in the RMSE for various similarity metrics. 

We further showed (Fig. 6A) that large deformations yield the same RMSE as that for 

registering images with independent realizations of soft-tissue background (which closely 

follows the assumption of an independent noise source), supporting the notion that soft-

tissue deformation may be incorporated as a confounding influence (viz., noise) in rigid 

registration. It is important to note that deformation magnitude should be much larger than 

the correlation length of the soft-tissue gradient image (such that high-gradient regions are 

no longer overlapping). The study shown above (§VII.B) investigated the magnitude of 

deformation required to justify this claim for Voronoi images in the 3D-3D case, where 

mean deformation magnitudes >5 pix yielded the same error as the independent background 

case. However, the Voronoi images contain sharp gradients which have small correlation 

length (on the level of system blur, ~2 pix) due to the step-function nature of the model. For 

the anatomy CT-CT registration case (which exhibited somewhat longer-range correlations 

in the gradient images compared to the Voronoi case) larger deformations were necessary to 

support the assumption of independence. Interestingly, however, the long-range gradient 

correlations in such images were suppressed by gradient-based similarity metrics (especially 

G4), thereby greatly reducing the magnitude of deformation that was necessary for the 

independence assumption. Finally, it is important to note that this assumption is not 

necessary in the 3D-2D registration case, since soft tissue is only present in one of the 

images.

The experiments in this work examined x-ray projection (3D-2D) and CT images (3D-3D). 

The framework, however, is certainly generalizable in the 3D-3D case to other same-

modality registration scenarios (e.g., magnetic resonance, MR-MR, or ultrasound, US-US), 

as long as the underlying image content is consistent, and the noise is properly 

characterized. While the projection-based 3D-2D registration is unique to x-ray/CT, the 

model may generalize to other 3D-2D scenarios (e.g., US slice-to-volume). Multi-modality 

registration is not considered in the current work, as significant modification to the statistical 

model would be required to capture the mismatch in the image content.

The method for simulating soft-tissue deformation in this work (§IV.B) involved a random 

displacement that was not physically / biomechanically motivated and may imply somewhat 

unrealistic deformation characteristics. For example, since the displacement fields were 

randomly generated from a power-law distribution, there is no guarantee that the 

transformations are Sdiffeomorphic; despite this, we observed that the method did indeed 

exhibit diffeomorphic properties (positive Jacobian determinant) over the range of 

deformation magnitude considered. (Non-diffeomorphic fields were observed for mean pixel 

displacement greater than 23 pix). Another potential limitation in the simulation is the lack 

of a biomechanical model to constrain deformation magnitude – for example, constraining 

deformation to be small near bone-tissue interfaces (attachment). Doing so would suggest 

that some soft-tissue (i.e., that near bone) should not be treated as noise and should be 

included as salient features for registration. A simple method to accomplish this would be to 
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split the soft-tissue power spectrum across N and G, with 

Ni f x, f y = Qi f x, f y + 1 − a Si f x, f y  and G f x, f y G f x, f y + aSi f x, f y , where a ϵ [0, 

1] represents the portion of non-deformed soft tissue. However, such a model is outside of 

the scope of this work.

The equations in Tables 1–2 represent anatomy, soft-tissue clutter, and quantum noise 

described by circularly symmetric power spectra for purposes of simplicity. The isotropic 

assumption is not central to the methods described above, and while such models provided 

reasonable fits to the experiments conducted in this work, anisotropic power spectra can 

straightforwardly be incorporated in the framework. Scenarios that may warrant such models 

include anatomy presenting strong directionality (e.g., 3D ductal breast tissue [35]) or CT 

quantum noise that can be strongly correlated in non-circular objects and/or with x-ray tube 

mA modulation techniques.

In the current work, the statistical framework describes the translation-only case in order to 

gain basic insight into more general scenarios. Extension to the rigid translation + rotation 

scenario adds a degree of freedom and should follow the framework described above in 

principle, but with considerably more complex error terms associated with rotation. While 

the effect of soft-tissue deformation on rigid registration was examined in this work, it is 

important to note that the current framework does not apply to deformable registration. 

Future work aims to extend the analysis to scenarios of deformable registration in which 

both bone and soft tissue present salient information in the registration process.
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Appendix A

A. Voronoi Power Spectrum in 2D

Consider the distributions X ~ Uniform(Xmin, Xmax ), Y ~ Uniform (Ymin, Ymax ), θ ~ 
Uniform(0, 2π), and E{A2} to be finite. As the Fourier transform of a rotated function is 

simply the rotation of the Fourier transform, we begin by computing the power spectrum of 

unrotated rect functions and then compute the expectation over θ in Fourier space:

E G f x, f y

=
i = 1

n
E Ai

2Xi
2Y i

2sinc2 πXi f x sinc2 πY i f y

= E A2
i = 1

n
E

sin2 πXi f x sin2 πY i f y

π4 f x
2 f y

2

(A1)

Rewriting in polar coordinates and simplifying, we have:
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E G f , θ

=
E A2

π4 f 4
i = 1

n
E

sin2 πXi f cos θ sin2 πY i f sin θ

cos2 θ sin2 θ

(A2)

where the expectation of the inner function is computed over X, Y, and θ. Numerical 

simulation showed this expectation to closely follow:

E
sin2 πXi f cos θ sin2 πY i f sin θ

cos2 θ sin2 θ

≈ π f
Xmax + Xmin + Ymax + Ymin

4

= π f μXY

(A3)

for large values of (Xmax − Xmin) and (Ymax − Ymin), where we simplify notation by using 

µXY to refer the mean over the uniform random variable parameters for the rect widths, 

giving:

E G f x, f y ≈
nE A2

π3 f 3 μXY (A4)

B. Voronoi Power Spectrum in 3D

Extending the analysis to 3D rect functions begins by incorporating spherical rotations so 

that:

g x, y, z =
i = 1

n
Ai rect

x − x0i
Xi

,
y − y0i

Y i
,

z − z0i
Zi

; θi, φi (A5)

The distributions of the random variables are identical to the 2D case, where now Z ~ 
Uniform (Zmin, Zmax ) and φ ranges from 0 to 2π and follows a distribution with a 

cumulative distribution function F (φ) = (1 − cos (φ))/2 so that the spherical rotations 

uniformly sample the sphere. Similarly:
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E G f x, f y, f z

=
i = 1

n
E Ai

2Xi
2Y i

2Zi
2sinc2 πXi f x sinc2 πY i f y × sinc2 πZi f z

= E A2
i = 1

n
E

sin2 πXi f x sin2 πY i f y sin2 πZi f z

π6 f x
2 f y

2 f z
2

(A6)

By converting to spherical coordinates, numerical simulation shows the expectation to 

closely follow the form:

E G f x, f y, f z ≈ 2
nE A2

π4 f 4 μXYZ
2 (A7)

where f is now the 3D Euclidian distance and µXYZ is mean over the 6 uniform distribution 

width parameters.
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Fig. 1. 
3D-2D registration. (A) Lateral DRR computed from a CT image thresholded to remove soft 

tissue. (B) Lateral radiograph (in this case, simulated from the DRR in (A) plus power-law 

soft-tissue anatomical noise).
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Fig. 2. 
3D-3D registration. (A) Axial CT with a rigid bone (vertebra) and simulated soft-tissue 

background approximated by a deformable Voronoi distribution of piece-wise constant 

regions. (B) Colorwash depicting misalignment (green/magenta) of soft tissues following 

rigid registration. (C) Axial CT image showing real anatomy (abdominal CT). (D) 

Colorwash depicting misalignment (green/magenta) of soft tissues following rigid 

registration.
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Fig. 3. 
Images depicting rigid bone (vertebra) and deformable soft-tissue background. (A) 

Displacement field overlaid on a Voronoi soft-tissue model. (The example shows a mean 

displacement of 7 pixels). (B) Example vertebra + Voronoi image showing a realistic level of 

correlated noise in CT. (C) Anatomical image (abdominal CT) overlaid with an example 

deformation field (mean displacement 7 pixels). A mask was applied to ensure rigid motion 

within the bone region.
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Fig. 4. 
Effect of dose on registration performance for (A) 3D-2D registration and (B) Voronoi 

3D-3D registration with 7 pix mean deformation, and anatomy 3D-3D registration with (C) 

7 pix mean deformation and (D) 22 pix mean deformation. Each plot shows the predicted 

error for each metric at optimal σb (solid lines), the measured error for each metric at that σb 

(markers), and the CRLB (dashed line). Similarity metrics examined included CC (red), GC 

(blue), G2 (magenta), and G4 (green).
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Fig. 5. 
Power-spectrum profiles for the signal (black), soft-tissue (red), and quantum noise (blue) 

terms fit to (A) Radiograph (10 mAs) and (B) Voronoi CT slice (50 mAs) image data (with 

an additional dashed line profile of the soft tissue anatomy spectrum) using the models in 

Tables I–II. Registration frequency weighting profiles using Eq. 10 for CC (red), GC (blue), 

G2 (magenta), and G4 (black) at (C) σb = 1 pix and (D) σb = 2 pix.
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Fig. 6. 
3D-3D registration error as a function soft-tissue deformation magnitude for CC (red, solid 

circle), GC (blue, open circle), and G4 (green square) for (A) Voronoi and (B) anatomy CT-

CT slice registration. Dashed lines show the predicted registration performance of Eq. 4 for 

each metric. Dotted lines in (A) depict the registration performance for each metric when 

registering CT slices that contain different (independent) instances of Voronoi soft-tissue 

background.
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Fig. 7. 
The effect of the deformed soft-tissue contrast term, αS, on registration performance. 

Predicted RMSE at optimal σb shown for CC (red), GC (blue), and G4 (green) at various 

dose levels for (A) DRR-radiograph and (B) voronoi CT-CT slice registration.
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Fig. 8. 
The effect of the deformed soft-tissue texture term, βS, on registration performance. 

Predicted RMSE at optimal σb shown for CC (red), GC (blue), and G4 (green) at various 

dose levels for (A) DRR-radiograph and (B) voronoi CT-CT slice registration.
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TABLE I

POWER SPECTRUM MODELS FOR DRRS AND RADIOGRAPHS

3D-2D: DRR (I1) to Radiograph(I2)

Signal (Bone) Spectrum G f x, f y =
αG

f 0
βG + f

βG
MTF2

Soft-Tissue Spectrum S1 = 0, S2 f x, f y =
αS

f 0
βS + f

βS
MTF2

Quantum Noise Q1 = cQ, Q2 f x, f y = αQ ⋅ MTF2

MTF MTF f x, f y = 1
1 + L f 2sinc f x, f y
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TABLE II

POWER SPECTRUM MODELS FOR CT SLICE

3D-3D: CT-to-CT Slice

Signal (Bone) Spectrum G f x, f y =
αG

f 0
βG + f

βG
+ aGe

−bG f
MTF2

Soft-Tissue Spectrum Si f x, f y =
αS

f 0
βS + f

βS
MTF2

Quantum Noise Qi f x, f y = αQ ⋅ f MTF2 + cQ

MTF MTF f x, f y = Hann f c
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