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Abstract

Assessment of permeability is a critical step in the drug development process for selection of drug 

candidates with favorable ADME properties. We have developed a novel physics-based method for 

fast computational modeling of passive permeation of diverse classes of molecules across lipid 

membranes. The method is based on heterogeneous solubility−diffusion theory and operates with 

all-atom 3D structures of solutes and the anisotropic solvent model of the lipid bilayer 

characterized by transbilayer profiles of dielectric and hydrogen bonding capacity parameters. The 

optimal translocation pathway of a solute is determined by moving an ensemble of representative 

conformations of the molecule through the dioleoyl-phosphatidylcholine (DOPC) bilayer and 

optimizing their rotational orientations in every point of the transmembrane trajectory. The method 

calculates (1) the membrane-bound state of the solute molecule; (2) free energy profile of the 

solute along the permeation pathway; and (3) the permeability coefficient obtained by integration 

over the transbilayer energy profile and assuming a constant size-dependent diffusivity along the 

membrane normal. The accuracy of the predictions was evaluated against experimental 

permeability coefficients measured in pure lipid membranes (for 78 compounds, R2 was 0.88 and 

rmse was 1.15 log units), PAMPA-DS (for 280 compounds, R2 was 0.75 and rmse was 1.59 log 

units), BBB (for 182 compounds, R2 was 0.69 and rmse was 0.87 log units), and Caco-2/MDCK 

assays (for 165 compounds, R2 was 0.52 and rmse was 0.89 log units).
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INTRODUCTION

A variety of organic molecules, including metabolites, drugs, and xenobiotics, interact with 

cellular membranes and modulate their properties. Many of them translocate across the lipid 

bilayer using diverse mechanisms of active and passive membrane transport.1 The 

quantification and analysis of direct physical interactions of organic molecules with the lipid 

bilayer is required to understand, model, and predict many of these processes.

There is strong experimental evidence that small lipophilic molecules, including many 

marketed drugs, are able to traverse artificial lipid bilayers by passive diffusion driven by the 

concentration gradient between the solutions on the opposite sides of the bilayer.1 

Spontaneous membrane permeation is often described in terms of a solubility−diffusion 

model or the so-called “Overton’s rule” stating that the permeability coefficient is 

proportional to the solute partition in water−oil systems.2 Indeed, fair correlations were 

obtained between measured permeability coefficients of organic molecules and their 

partition coefficients in water/organic solvent systems (e.g., octanol, hexadecane, etc.).3,4 To 

rationalize permeation of solutes through the lipid bilayer, solubility−diffusion models were 

applied, where permeability coefficients were assessed using solute diffusion coefficients in 

the membrane, their partitioning between water and the nonpolar solvent, and the width of 

the barrier domain.4–6

In natural membranes, mechanisms of selective permeability are more complex: in addition 

to passive transbilayer diffusion and diffusion through aqueous boundary layer, there are 

compound-specific transporter- and carrier-mediated influx and efflux, adsorptive 

transcytosis of cationic compounds, receptor-mediated endocytosis, micropinocytosis, and 

other mechanisms.2,7–9 The relevance of the passive diffusion and transport-mediated influx 

and efflux of drug-related compounds has been extensively discussed,1,8,10–13 and it was 

concluded that both mechanisms coexist and contribute to translocation across biological 

membranes.1,10 However, rigorous evaluation of the contribution of passive diffusion in vivo 
is a challenging task, as the measurable permeation of drugs across biological membranes 

depends on many factors, such as physicochemical properties of drugs (molecular weight, 

polarity, lipophilicity, hydrogen bonding capacity, charge, etc.) and specific properties of 

biological membranes, including the presence of particular transporters.

The prediction of membrane permeability is also required for the development and 

optimization of new drugs. The primary goal of drug development is to enhance drug 
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efficiency, bioavailability, and delivery to the intended target while reducing its toxicity and 

side effects. During the design of promising drug candidates, optimization of their pharmaco 

logical efficiency is usually performed in parallel with selection of leads with favorable 

pharmacokinetics, i.e. absorption, distribution, metabolism, and excretion (ADME). 

Properties that influence drug delivery and distribution, include water solubility, metabolic 

stability, absorption, and the permeability coefficient. The latter determines the rate at which 

drugs cross permeability barriers, such as epithelial cell membranes from the intestinal 

mucosal barrier or endothelial cell membranes of the blood−brain barrier (BBB). Several in 
vitro experimental systems have been developed to predict drug permeation across the BBB 

or the intestinal barrier: black lipid membranes (BLM), liposomes, parallel artificial 

membrane permeability assay (PAMPA), cell-based Caco-2 (colon adenocarcinoma cell 

line), or MDCK (Madin−Darby canine kidney cell line) assays, as well as in situ rodent 

brain perfusion experiments.14–17

As an alternative, diverse computational methods have been proposed. These methods have 

an advantage over experimental approaches for conducting high-throughput permeability 

analysis. At the early stages of drug discovery, the filtering of candidates that more likely 

exhibit poor permeation is routinely based on the violation of two or more physicochemical 

criteria of drug-likeness, known as Lipinski’s “rule-of-five” (MW < 500, calculated octanol

−water partition coefficient < 5, number of H-bond donors ≤ 5; number of H-bond acceptors 

≤ 10).18 However, this rule is not quantitative; it focuses mainly on the oral drug space and 

does not apply to natural products (NP) or substrates of transporters. Besides, up to 6% of 

FDA-approved oral drugs that are not NPs violate two or more of these criteria.19 To refine 

this rule, quantitative estimates of drug-likeness were proposed.19

Quantitative structure−activity relationship (QSAR) and structure−permeability relationship 

(QSPR) models are regarded as primary quantitative tools for ADME optimiza tion.20–23 

Statistically based QSPR models of drug absorption use correlations between the 

experimental cell permeability and physicochemical descriptors related to experimentally 

derived molecular properties. Improved multidimensional QSAR models have been 

developed that use addition levels of chemical structure representation, including molecular 

topology (2D-QSAR), information from 3D-structures (3D QSAR), combination of 3D-

coordinates and sampling of conformations (4D-QSAR), or mutual orientation and dynamics 

(4D-6D QSAR).20–24 Some models, such as the MI-QSAR models developed by Hopfinger, 

complement properties of solutes by descriptors for membrane interactions calculated by 

MD simulations.25 More general QSPR models26–28 predict partition and permeability 

coefficients of solutes using a set of five Abraham solvation parameters.

The QSPR models are usually trained on limited sets of compounds and show good 

performance for classes of similar molecules but have poor transferability to compounds 

with different molecular skeletons.21 The statistical relationships derived from limited 

training sets of chemicals do not encompass numerous newly approved drugs, including 

orally available NP-inspired compounds which lay outside the traditional drug property 

space but can passively penetrate through membranes.18,29,30 Importantly, the QSPR models 

for drug transport do not allow deriving a physically accurate picture of the permeation 

process through the lipid bilayers.
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Optimization of permeability coefficients of structurally diverse and complex leads, 

including large permeants violating Lipinski’s rules, requires a theoretical model that 

adequately describes different aspects of drug−membrane interactions, such as the 

anisotropic lipid environment, membrane binding and dissociation, rotational and 

translational diffusion, and conformational changes.31 For relatively large and structurally 

flexible molecules, it is important to address the existence of multiple conformations32,33 

and their spatial positioning in membranes that may influence calculated partitioning and 

permeability coefficients.5

Several general physics-based computational methods have been applied to overcome these 

problems. All-atom molecular dynamics (MD) simulations,31,34–41 multiscale (CG/MD) 

simulations,42,43 Monte Carlo simulations,44 and simulations with milestoning 

algorithms45,46 were used to obtain detailed information on the dynamics of small molecules 

in phospholipid bilayers. MD simulations in explicit lipid bilayers were used to calculate 

free-energy profiles of small molecules in membranes and their permeability coefficients,
35–43 evaluate their optimal orientations in the bilayer,47 and predict BBB-permeable drugs.
48,49 However, high computational cost hampers application of MD simulations with explicit 

solvent models for high-throughput drug screening.

Simulations of molecules in the membrane treated as a low-dielectric continuum50–53 are 

less computationally extensive. Such an approach was applied in the SMx-based54,55 and 

COSMO-based methods.56–61 The anisotropic complexity of the lipid bilayer was 

approximated by a low-dielectric slab with either isotropic or anisotropic properties along 

the normal.62,63 Implicit solvent models have been successfully applied for prediction of 

transfer free energies and partition coefficients of neutral and ionic solutes from water to 

organic solvents, micelles, and lipid bilayers.57,60,62–65 More recently, physical models of 

passive membrane permeation based on solubility−diffusion and barrier domain approaches 

were developed by Leung et al.,32,33 Swift and Amaro,66,67 and Brocke et al.68 These 

models assume that the passive membrane permeability primarily depends on the free 

energy change of barrier crossing, ΔG. The value of ΔG can be calculated as the solvation 

energy difference between global minimum con formations evaluated in water and in 

implicit nonpolar organic solvent32,33 or by integration of transbilayer profiles of the free 

energy of membrane insertion using heterogeneous dielectric generalized Born (HDGB) or 

dynamic HDGB (DHGDB) implicit membrane models.68 An extended solubility-diffusion 

model was proposed by Ferrarini et al.69 to describe translocation across membrane using 

complex free energy landscapes, multiple permeation paths, and the mechanical properties 

of membranes, such as lateral pressure and acyl chain ordering. Despite rigorous treatment 

of conformational distributions of permeants32 or advanced models for lipid membranes,68 

the performance of these methods against PAMPA permeability coefficients for sufficiently 

large data sets (≥70 compounds) was unremarkable, with correlation coefficients (R2) below 

0.60 and highly variable slopes (ranging from 0.5 to 5) and intercepts (from −9 to 15) of 

correlation plots for different data sets.32,68

Here we present a novel physics-based computational method, PerMM, that calculates the 

passive transmembrane translocation pathways and permeability coefficients of structurally 

diverse molecules (first reported as a conference abstract70). It is based on the solubility
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−diffusion model5 and our computational method PPM (positioning of proteins in 

membranes) that was developed for analysis of interactions of arbitrary organic molecules 

with the lipid bilayer.63,71 The PPM method was parametrized to reproduce free energies of 

transfer for a large set of small molecules from water to various isotropic organic solvents or 

anisotropic solvent environments, such as the lipid bilayer. Unlike most other implicit 

solvent models, it accounts not only for the hydrophobic interactions and electrostatic 

solvation energy, but also for the solute−solvent hydrogen bonding. The corresponding 

dielectric and hydrogen bonding polarity profiles were derived from the distributions of 

different lipid groups that were experimentally determined for DOPC and other bilayers by 

X-ray and neutron scattering. PPM has been successfully applied to predict membrane 

binding affinities and spatial positions in membranes of small molecules, peptides, and 

proteins.63,71,72 The PerMM method calculates (1) the spatial arrangement of solutes in 

membranes, including the selective accumulation of amphiphilic molecules on the 

membrane/water interface; (2) the solvation free energy changes of compounds as they move 

along the translocation pathway in the fluid DOPC bilayer; and (3) the permeability 

coefficient across the artificial (BLM, PAMPA) and natural (Caco-2/MDCK and BBB) lipid 

membranes. The method was not trained using any data sets but relies on a general approach 

to calculating the energy of atomic solvation and electrostatic interactions of solutes 

translocated across the implicit membrane with anisotropic properties. It successfully 

reproduced the experimental permeability coefficients of large sets of compounds across 

different membrane systems with R2 ranging from 0.52 (Caco-2/MDCK cells) to 0.88 

(BLM) and root-mean-square errors (rmses) ranging from 0.69 (BBB) to 1.59 (PAMPA-DS) 

log units. The method has been implemented into an open-access PerMM web server 

(https://permm.phar.umich.edu/server).

METHODS

Calculation of Membrane Permeability Coefficients.

The overall membrane resistance (R), which is inverse to the permeability coefficient (Pm), 

was calculated based on the inhomogeneous solubility-diffusion model5 as the integral of the 

local resistance across the membrane:

R = 1
Pm

= ∫
−d /2

d /2 dz
K(z)D(z) (1)

where K(z) and D(z) are partition and diffusion coefficients, respectively, which depend on 

the z position of the solute along the bilayer normal and d is the membrane thickness.

The K(z) value was calculated from the Gibbs free energy of a solute in membrane:

K(z) = e
−ΔGtransf(z)/RT

(2)
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where ΔGtransf(z) is the transfer free energy of the molecule from water to the position z 
along the bilayer normal (the energy was averaged for a set of conformers). The profile 

ΔGtransf(z) reflects the solute affinity to the different membrane regions and determines the 

lowest free energy translocation pathway.

Diffusion coefficients of molecules in membranes cannot be measured experimentally but 

can be approximated by their diffusion coefficients in water or organic solvents73 or 

assessed from MD simulations.35–43,74 According to MD simulations, the diffusion 

coefficient profiles, D(z), are relatively flat along the bilayer normal, with values that are 

several times lower than in water or at the water−lipid interface.35,36,42 A notable exception 

includes small molecules (e.g., water, ammonia, oxygen) that demonstrate an increased 

diffusivity at the center of the membrane.74 Hence, we assumed that the diffusion coefficient 

Di for an organic molecule i can be considered invariable along the lipid bilayer but 

dependent on the permeant size. The dependence of diffusion coefficient Di on the volume 

of a permeant molecule, Vi, is frequently described as in the publication by Xiang and 

Anderson:6

Di =
D0(η)

V i
n (3)

where D0 is a constant for a particular membrane type characterized by its microviscosity η. 

The parameter n was suggested to be ~2/3 because the diffusion coefficient depends mainly 

on the cross-sectional area of the permeant.75 However, fitting to experimental permeability 

data for bilayers suggested a slightly higher value of n ~ 0.8.6

To simplify the calculations, we used the total accessible surface area of the molecule 

(ASA), instead of molecular volume, as another parameter related to the cross-section area:

Di = k
D0(η)
ASAi

n (4)

Based on eqs 1–4, the log of calculated membrane permeability coefficient for compound i, 
can be written as

logPm, i = a + blogPΣi (5)

where a = log kD0(η) and

logPΣi = − log ASAi
n∫

−d /2

d /2 dz
Ki(z) (6)
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Parameters “a” and “b” can be empirically determined by a linear fit of experimental 

coefficients for N compounds and the corresponding calculated log PΣi values.

We also tested a simplified version of the model, without molecular size correction, where 

D(z) was considered constant and independent of molecular size. We found that including 

the cross-section area-dependent contribution ASAn leads to only a minor improvement of 

the fit, and the results are not sensitive to the value of n in (4). Hence, we used n = 1.

The calculation of the free energy profiles, ΔGtransf(z), was performed in the interval from 

−30 to +30 Å distance from the lipid bilayer center. The permeability barriers (positive 

values of ΔGtransf relative to the aqueous solution) were observed only in the hydrophobic 

lipid core but not in the headgroup regions for all compounds, hydrophilic and hydrophobic. 

Therefore, the integral in eq 6 was calculated through the hydrocarbon core of the lipid 

bilayer, i.e. in the interval from −15 to +15 Å distance relative to the bilayer center with a 

step of 1 Å. This part of the lipid bilayer includes the acyl chains and lipid carbonyls with 

some residual water (Figure S1). Extending the integration interval did not lead to 

significant changes in the calculated permeability coefficients or to a better agreement with 

experimental data. We did not include the unstirred water layers outside membrane 

boundaries, also known as aqueous boundary layer (ABL). While calculating the 

permeability coefficients of highly hydrophobic compounds, we focused on their intrinsic 

permeability coefficients, omitting ABL-effects.

Free Energy of Transfer from Water to the Lipid Bilayer.

The energy of transfer of a molecule from water to different positions (z) in membrane, 

ΔGtransf(z), was calculated by the PPM 2.0 method, as previously described.63 Calculations 

were based on our version of the universal solvation model65 and the anisotropic solvent 

model of the lipid bilayer,63 which account for contributions of ionizable groups and the 

dependence of atomic solvation parameters σ and η on the atom position along the bilayer 

normal (z). The energy was represented as a sum of a short-range ASA-dependent term 

(hydrogen bonding, van der Waals, and hydrophobic interactions), long-range electrostatic 

contributions of dipole moments (μ), and energy of deionization of ionizable groups in the 

nonpolar environment:

ΔGtransf (d, φ, τ) = ∑
i = 1

N
σi

wat   bil  zi ASAi + ∑
j = 1

M

η j
wat bil z j μ j + ∑

k = 1

L

min ΔEk
ion, ΔEk

neutr

(7)

where σi(zi) is an atomic solvation parameter describing transfer energy (per squared 

angstrom) of atom i from water to the point zi along the bilayer normal, ASAi is a solvent-

accessible surface area of atom i, η(zj) is an energy penalty of transferring the dipole 

moment of 1D from water to point zj, μj is a dipole moment of group j, Ek
ion  and Ek

neutr  are 
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energies of ionizable group k in ionized and neutral states, respectively, N is the number of 

atoms in the molecule, M is the number of group dipoles, L is the number of ionizable 

groups, and parameters d, φ, and τ define spatial position of the molecule with respect to the 

lipid bilayer, as previously described.71 Thus, for each ionizable group, the lowest energy 

ionization state (charged or uncharged one) was automatically selected at the given position 

in the membrane. The transfer energy of an ionizable group k in neutral state was calculated 

as a sum of the deionization energy of the group and ASA-dependent transfer energies of the 

corresponding atoms (Lk is the number of atoms in ionizable group k):

ΔEk
neutr  = ΔGk

deionization  + ∑
l = 1

Lk
σl

wat   bil  zl  ASAl (8)

The energy cost of deionization during transfer from water to the nonpolar environment was 

defined by the Henderson−Hasselbalch equation:

ΔGk
deionization  = 2.3RT pH−pKak (9)

The transfer energy in the ionized state was described by the following equation:

ΔEk
ion =

166eBorn
rk

FAbe
wat − FAbe zk + ∑

l = 1

Lk
σl, ion

wat bil zl ASAl (10)

where σl,ion is solvation parameter of O or N atoms in a charged state; eBorn is a weight 

factor of long-range electrostatic contribution to transfer energy; rk is an ionic radius. The 

dielectric function for ions was described by the Born equation modified by Abe:76

FAbe(z) = 1
lnε(z) − 1

ε(z)lnε(z) − 1 (11)

Dipolar contribution was calculated using the Block−Walker dielectric function of the 

media, FBW(ε):77

ηwat bil(z) = edip,Bw FBW
bil (z) − FBW

wat (12)

FBW = 3εlnε
(εlnε − e + 1) − 6

lnε − 2 (13)
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All types of atoms (26 types) with their solvation parameters and atomic radii were chosen 

as described previously.65 We assumed that all charged and dipolar groups with ASA > 0.1 

Å are in contact with the surrounding solvent and, therefore, their electrostatic contributions 

to solvation energy should be included.

The atomic solvation parameters σi depend on the polarity parameters of the lipid bilayer:

σi
wat bil(z) = σi

0 − ei
1

εbil(z) − 1
εwat

+ ai αbil(z) − αwat + bi βbil(z) − βwat

(14)

where αbil(z), βbil(z), and εbil(z) are transbilayer profiles of hydrogen bonding donor and 

acceptor capacities and dielectric constant, respectively, and αwat, βwat, and εwat are the 

corresponding values in water. The values of coefficients eBorn, σ0, ei, ai, bi, edip,π, and 

edip,BW (from eqs 10, 12, and 14) were defined previously.63

The profiles of hydrogen bonding donor and acceptor capacities (αbil(z), βbil(z)), dielectric 

constant (εbil(z)), and dipolarity/polarizability parameter πbil * (z)  were calculated for several 

artificial membranes from distributions of groups in lipids and membrane protein structures 

along the bilayer normal.78 In this work, we used profiles obtained for the fluid DOPC 

bilayer based on the distributions of lipid segments determined by X-ray and neutron 

scattering78,79 (Figure S1).

Here, we modified the original PPM method to work with small molecules. The adapted 

PPM version automatically defines atom types and assigns dipole moments to all polar 

groups. The program uses a library of dipole moments for different standard functional 

groups, taken from the previously published tabulations of group dipole moments.80,81 In 

addition, the pKa values of ionizable groups should be included in the coordinate file. The 

experimental pKa values were taken from the compilation by Avdeef82 and from the 

literature.83–85 In a few cases, the values were not experimentally determined and, therefore, 

they were calculated using Marvin Suite (ChemAxon). All pKa values for compounds used 

in this work can be found in the PerMM database (https://permm.phar.umich.edu/).

Calculation of Transmembrane Translocation Path way.

To determine the lowest energy pathway of a molecule across the lipid bilayer, we used two 

options. The first option was the “drag” method for finding saddle points.86 The transfer 

energy was locally minimized with respect to rotational variables of the molecule in every z 
+ Δz point of the transmembrane pathway, starting from the optimal rotational orientation 

calculated in the previous point z. Hence, the rotational position of a molecule was gradually 

changing during its movement along the membrane normal. This method produced an 

asymmetric energy curve.

As an alternative approach, we tested an option of “global rotational optimization” of 

transfer energy with respect to rotational variables of the molecule at every point (z) along 
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the membrane normal. Step Δz was taken as 1 Å. To sample different orientations, the 

permeant was rotated using 2° steps in the intervals [0°, 360°] and [0°, 180°] in the 

rotational (φ) and tilt (τ) angles relative to the membrane normal, and the solvation energy 

was locally minimized with respect to the φ and τ variables starting from each rotational 

position. The lowest energy orientation was selected automatically for each z value. This 

approach produced a symmetric energy curves, but it nullified the energy barrier for flip-flop 

of the molecule in the middle of the membrane. Therefore, the “drag” optimization is 

preferable for calculation of permeability coefficients.

The location of a molecule along membrane normal was defined by the coordinate z of a 

“reference atom” representing the atom closest to the center of mass of polar groups of the 

molecule. To simultaneously move an ensemble of multiple conformations through the 

membrane, we superimposed conformations through four common atoms that are the closest 

to the “reference atom”. The local rotational optimization was accomplished for each 

conformer, and the Boltzmann average value of ΔGtransf(z) was calculated for the set of 

conformers. For local energy minimization, we used the Davidon−Fletcher−Powell method 

with analytically calculated partial derivatives of the transfer energy (as implemented in the 

original PPM method63), where each conformer was considered as a rigid body.

The free energy profiles for 506 compounds that were used in this work can be obtained by 

running the PerMM web server with source coordinate files provided in the PerMM 

database. The web server and the database are described in more detail in the accompanying 

paper.97 The PerMM source code will be provided by the authors upon request, after 

receiving permission from the owners of the program NACCESS used for ASA calculations.

Generating Structures of Molecules.

The 3D structures of compounds used in this study were downloaded from the PubChem 

databases in the structure data format (sdf), converted into the pdb format using PyMol 

(https://pymol.org/2/). The PubChem structures were already energetically optimized.87 

Only in a few cases, the 3D structures were taken from the Protein Data Bank (PDB)88 or 

the Cambridge Structural Database (CSD).89 For example, 3D structures of the 11-residue 

cyclic peptide cyclosporine A were downloaded from PDB (PDB IDs 2mrc, 1ikf) and CSD 

(CSD ID KERNAU). The coordinates of several molecules not found in public databases 

were generated using molecular modeling modules of QUANTA software package for 

molecular mechanics simulations (BIOVIA-Accerlys Inc.).

The analysis of flexible molecules requires conformational sampling.33,90 To increase the 

speed of calculations, a set of low-energy conformers was precalculated for every 

conformationally flexible molecule, and each conformer was considered as a rigid body. As 

described above, the multiple conformers were superimposed and moved through the 

membrane to calculate their average transfer energy from water. We found that it is sufficient 

to include only 6 to 15 significantly dissimilar conformers for medium-size flexible 

molecules. Further increasing the conformational ensemble did not affect the values of 

calculated permeability coefficients. For compounds used in this study, we selected 

conformers that were the lowest energy representatives of different structural clusters 

identified using the Conformational Search module of QUANTA. A grid scan in the space of 
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torsion angles was followed by ABNR local energy minimization was conducted with 

CHARMm27 (100 steps, ε = 10) and cluster analysis. Multiple conformers of a molecule 

were included into an input coordinate file (in pdb format) as multiple models, using 

MODEL records.

Experimental Permeability Coefficients.

Using reliable experimental data from publications is critical for development and testing of 

a new permeability model. Our work is focused on modeling of passive permeability across 

the fluid DOPC bilayer. Thus, to verify our method, we compared our calculations with 

permeability coefficients measured in vitro through artificial lipid bilayers. After collecting 

available data from publications and a critical assessment of the data quality, we obtained 

132 permeability coefficients through BLM and liposomes: 111 intrinsic permeability 

coefficients (logP0exp 
BLM in Table S1) and 21 membrane permeability coefficients for ionized 

compounds (logPmexp
BLM in Table S1). These data originated from many reputable research 

groups (e.g., those of Xiang and Anderson, Finkelstein, Walter and Gutknecht, Pohl, 

Antonenko, and others; see the Supporting Information for references). The main data set 

included 58 logP0exp
BLM values for the un-ionized species and 20 logPmexp

BLM values for the 

ionized in water species obtained in comparable experimental conditions (eggPC and DOPC, 

25 °C). Data obtained in slightly modified experimental conditions were included in the 

additional data set.

Data for more complex membrane systems were taken from a compilation by Avdeef15–17 

who provided the intrinsic permeability, P0, which refers to the membrane permeability of 

the neutral form of ionized molecules, i.e., the maximum possible value that the membrane 

permeability can reach. Overall, we used ~700 intrinsic permeability coefficients through 

PAMPA-DS, BBB, and Caco-2/MDCK cells that Avdeef collected from reliable publications 

and processed using the pCEL-X computer program (http://www.in-adme.com/pcel_x.html).

Hence the intrinsic permeability data obtained in vivo for BBB logP0exp 
BBB  (Table S3) were 

taken from Avdeef’s compilation.16 Most data were obtained from in situ rodent brain 

perfusion studies and referred to permeation from saline at pH 7.4 and corrected for 

ionization, while some were based on in vivo intravenous injections (i.v.). The i.v. data were 

not used for lipophilic compounds that are known to bind plasma proteins. The in situ brain 

perfusion technique is used for the in vivo measurement of the initial rate of brain 

penetration at the luminal BBB membrane.16 The permeability−surface area product, PS, is 

the product of the luminal permeability, Pc (cm s−1), and the endothelial surface area, S (cm2 

g−1). PS is the transfer constant for the initial brain transport of a drug corrected for the 

velocity of the perfusion flow. Data were selected for efflux-minimized conditions, in which 

PS values were measured during inhibition of carrier- or transporter-mediated permeability 

or in knockout mouse models.

Intrinsic permeability data for intestinal cellular membranes logP0exp
Caco−2/MDCK  (Table S4) 

were taken from Avdeef’s database17 that collects high-quality Papp values measured in 

Caco-2 and MDCK epithelial cell lines. These data were collected by Avdeef from 55 
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reliable publications and corrected for all non-trans-cellular effects using the pCEL-X 

computer program (http://www.in-adme.com/pcel_x.html). To cancel contributions from 

active or facilitated transport, the average was taken between apical-to-basolateral and 

basolateral-to-apical measurements for compounds that are known as substrates for efflux/

uptake carrier-mediated transport.

The parallel artificial membrane permeability assay (PAMPA) is another experimental assay 

quantifying the passive diffusive permeability of artificial membrane systems 

logP0exp 
PAMPA‐DS  . Here we used values obtained by Avdeef in PAMPA-DS assay using the 

lecithin-based double sink model (with 0.5% DMSO in donor chamber, surfactant in 

acceptor chamber), where the membrane retention of hydrophobic compounds is greatly 

reduced (Table S5).15 These experimentally obtained permeability coefficients were 

additionally corrected by Avdeef for permeability through the ABL adjacent at both sides of 

the membrane.

Experimental permeability coefficients for 506 compounds measured in different membrane 

systems can be found in our PerMM database (https://permm.phar.umich.edu/, see the 

accompanying paper97).

RESULTS

We assessed the performance of the PerMM method using large sets of organic compounds, 

FDA-approved drugs, and similar molecules, for which permeability coefficients were 

experimentally determined in artificial (BLM/liposomes and PAMPA-DS) and natural (BBB 

and Caco-2/MDCK cells) membrane systems (Tables S1–S9). For each molecule studied, 

the program calculated a series of its optimized spatial arrangements as a permeant moves 

along the membrane normal. The free energy profile (ΔGtransf(z)) along the permeation 

pathways was produced by optimizing the free energy of transfer of the molecule from water 

to each position within the lipid bilayer combined with the search for its optimal conformer 

from precalculated variants. Integration of the obtained transfer energy profile along the 

membrane normal (eqs 5 and 6) allows calculating the permeability coefficient.

Such energy profiles were calculated for more than 500 permeants, most of which were 

included in this work. The representative examples of transbilayer energy profiles obtained 

for five BBB-penetrating drugs, a cyclic peptide, and 17 organic molecules from the initial 

testing set are shown in the Figures 1, S2, and S3, respectively. For hydrophilic molecules, 

the free energy profile has a maximum at the bilayer center, which constitutes the main 

barrier for their permeation (Figure 1B). For hydrophobic molecules, the transbilayer 

profiles of ΔGtransf are negative at all depths, with a minimum at the membrane center, so 

that the partition is more favored in the hydrophobic core of the lipid bilayer than at the lipid

−water interface. In contrast, all amphiphilic molecules have two minima with negative 

ΔGtransf values at the water−lipid interfaces and a maximum in the membrane center. Similar 

free energy profiles for small organic molecules and drugs were obtained in MD 

simulations,35,41,43,47,48,91 except that small energy barriers were found in the lipid 

headgroup region for some hydrophobic compounds in a number of studies.35,38,42,92,93 

During the movement, the permeant molecule rotates to place its nonpolar groups deeper to 
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the lipid acyl chain region and to orient the most polar atoms toward the membrane 

boundaries (see Figure 1A). The predicted changes in spatial orientations along the 

translocation pathway of 506 permeants can be inspected using the interactive GL mol 

viewer included in the PerMM database.

Performance of PerMM for Model Lipid Bilayers.

The current version of PerMM was developed using polarity parameters of the DOPC 

bilayer. Therefore, the performance of the method was initially assessed using data for 

similar lipid bilayer systems, such as BLM or liposomes primarily composed of 

phosphatidylcholine (PC), rather than data for more complex PAMPA, Caco-2/MDCK, and 

BBB membranes. Hence, we compared the permeability coefficients calculated by PerMM 

with the corresponding experimental data measured in PC-based BLM or liposomes (Tables 

S1 and S2). First, we used a main set of the most frequently cited data determined by 

Anderson and co-workers, Walter and Gutknecht, and several other groups. It included 58 

intrinsic permeability coefficients published for uncharged forms of permeants (logP0exp
BLM for 

42 acids, 3 bases, and 13 neutral molecules) and 20 membrane permeability coefficients for 

molecules ionized in water (logPmexp
BLM for 11 acids, 5 bases, and 4 zwitterions). The PPM 

solvation model considers the equilibrium between charged and neutral states of ionizable 

groups, depending on their pKa and pH values (eqs 7–13),63 thus allowing ionizable groups 

to diffuse through the membrane in the neutral state. The ionized species can still be present 

in the membrane region at 10−15 Å distance from the membrane center, where the 

protonation or deprotonation takes place. The deionization energy cost was estimated using 

the Henderson−Hasselbalch equation. This energy was not included in calculation of 

permeability coefficients for the neutral states of acids, bases, and zwitterions.

We found a good correlation (R2 = 0.88) between integrals log PΣ
BLM  calculated according 

to eq 6 and experimental permeability coefficients logP0exp 
BLM  of 58 un-ionized and 20 

ionized compounds combined, which covered a wide range of experimental permeability 

values, from −13 to +1 log units (Figure 2A). The linear fitting of the scatter plot allowed us 

to find parameters “a” (intercept) and “b” (slope) in eq 5. Importantly, the slope b was found 

to be close to 1, as expected. The intercept value a represents a constant related to the 

diffusion coefficient in membrane with the viscosity η that depends on the lipid 

composition. The following linear regression model (eq 15) was included into the PerMM 

method for the prediction of permeability coefficients of molecules crossing lecithin-based 

bilayers (e.g., BLM):

logPcalc
BLM = 1.063logPΣ

BLM + 3.669 (15)

Equation 15 was applied for scaling the logPΣ
BLM values to experimental BLM data so that a 

and b became 0 and 1, respectively. This transformation resulted in rmse value of 1.15 log 

units between experimental and estimated permeability coefficients (Figure 2B).
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We found that it was important to have a sufficiently large set of compounds (>50) to obtain 

a reliable calibration curve (Figure 2A). For example, two separate linear regression fits for 

58 un-ionized and 20 ionized molecules were described by the equations: 

logP0calc 
BLM = 1.03logPΣ

BLM + 3.71 n = 58, R2 = 0.88  and log 

logPmcalc
BLM = 0.83logPmΣ

BLM + 0.58 n = 20, R2 = 0.79 , respectively (Figure S4). The regression 

function for the first data set of 58 compounds was similar to that for the larger set of 78 

compounds (Figure 2A) but different for the data set of 20 molecules. The parameters of 

regression varied for small data sets from individual publications.

To validate the linear model described by eq 15, we increased the main data set by including 

54 additional compounds that were studied in BLM and liposomes under more variable 

experimental conditions. The linear regression fit for the extended set of 132 compounds 

was described by equation logPcalc
BLM = 0.86logPΣ

BLM + 1.91 n = 132, R2 = 0.82  (Figure S5A). 

After excluding three outliers (represented using green triangles in Figure S5A), the 

equation did not change significantly, but the correlation improved: 

logPcalc 
BLM = 0.90logPΣ

BLM + 2.24 n = 129, R2 = 0.85 . Thus, after addition of 51 experimental 

data points obtained in slightly altered experimental conditions, R2 only slightly decreased, 

but the slope remained close to 1. The estimated rmse for sets of 129 and 132 compounds 

were of 1.40 and 1.56 log units, respectively. Thus, we defined as outliers three additional 

compounds (nitric acid, hydrofluoric acid, and lysine), which significantly increased the 

rmse.

Importantly, our model was able to evaluate the intrinsic permeability coefficients for highly 

hydrophobic compounds with P0 ≫ PABL, whose measurable permeability coefficients are 

limited by diffusion through ABL (PABL of 15−30 × 10−6 cm/s).15 For example, PerMM-

calculated permeability coefficients through the DOPC bilayer logP0calc 
BLM  for imipramine, 

desipramine, and chlorpromazine were 2.70, 2.63, and 1.39, respectively, whereas 

experimental values through the DOPC bilayer logP0exp 
BLM  provided by Avdeef (Figures 7.26 

and 7.30 in ref 15) were 5.1, 1.74, and 1.62, respectively.

We also tested the influence of the conformational flexibility of molecules with multiple 

rotating bonds on the results of our calculations. We found that the use of multiple 

precalculated conformations of compounds slightly changed the permeability coefficients of 

some conformationally flexible compounds (Figure S2). For example, the optimal 

membrane-bound conformation of the cyclic peptide cyclosporine A was oval-shaped and 

stabilized by four intramolecular hydrogen bonds (CSD ID KERNAU), while the optimal 

conformations in water and at the water−membrane interface were more round-shaped (PDB 

IDs 2rmc, 1ikf) with one intramolecular hydrogen bond. The application of three dissimilar 

con formations of cyclosporine A in our PerMM calculation decreased the BLM 

permeability coefficient by ~0.6 log units as compared to calculations with just one round-

shaped conformation. For the whole data set, the use of a conformational ensemble instead 

of a single conformation did not significantly improve the accuracy of calculations (Figure 
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S4). Nevertheless, we opted to use multiple conformations for flexible compounds in all 

subsequent calculations.

Comparison of Experimental Permeability Coefficients in Different Membrane Systems.

To investigate how permeability data depend on the experimental method applied, we 

compared experimental permeability coefficients of the same compounds measured in 

different artificial (BLM and PAMPA-DS) and natural (BBB and Caco-2/MDCK) 

membranes. To simplify the analysis, we considered only intrinsic permeability coefficients 

with log P0exp values ranging from −7 to 0 (Tables S7–S9).

Such comparisons lead to several important conclusions. First, we found a sufficiently good 

correlation between the intrinsic permeability coefficients obtained using in situ BBB assay 

and in vitro cell-based Caco-2/MDCK assays (73 compounds, Figure 3A). The linear 

regression curve had a slope b close to 1, the intercept a close to zero, and R2 of 0.78 This is 

consistent with the general expectation that Caco-2 or MDCK cell-based assays can be used 

as models for predicting BBB permeability of drugs.94

Second, we found a good correlation (R2 of 0.82 and slope b of 0.81) between experimental 

permeability coefficients measured in BLM and in “efflux minimized” BBB assay or 

Caco-2/MDCK assays after correction for nontrancellular effects (set of 32 compounds, 

Figure 3B). The regression function was

logP0calc
PM = 0.81logP0calc

BLM − 1.88 (16)

The significant intercept value (a = −1.88) in the linear regression line can be explained by 

the difference in lipid composition between epithelial membranes and BLM. The presence 

of cholesterol and sphingomyelin in epithelial membranes could be a cause of the much 

lower permeability (by 1.88 log units) of natural membranes as compared to lecithin-based 

BLM. Indeed, the addition of cholesterol (CHOL) to BLM formed by PC in experiments 

performed by Finkelstein95 and Xiang et al.,96 reduced the experimental permeability 

coefficients by ~0.6 log units, while addition of both cholesterol and sphingomyelin (CHOL

+SM) decreased these coefficients by ~1.9 log units, which appeared as a decrease of the 

intercept values in corresponding plots (Figure S5B). The PM-correction in accordance with 

eq 16 was included to predict the permeability coefficients through the plasma membranes.

Finally, we compared permeability coefficients measured in PAMPA-DS vs BLM assays for 

the set of 24 compounds (Figure 4A). We found a slightly lower correlation between 

experimental data obtained in both assays (R2 = 0.62, slope b of 0.94). The regression 

function, based on PAMPA-DS data, was

logP0calc 
PM = 0.94logP0calc 

BLM − 1.75 (17)

The value of the intercept a indicated the lower permeability coefficients (by 1.75 log units) 

through PAMPA-DS membranes as compared to BLM, which is reminiscent of the 
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decreased permeability of cholesterol- and SM-rich epithelial membranes of Caco-2/MDCK 

cells and the BBB.Such a permeability difference could be attributed to a larger width and 

different lipid composition (20% lipid mixture of PC, PE, PI, PA, and triglycerides)15 of a 

hydrophobic barrier in PAMPA-DS relative to that in BLM. Equation 17 was used instead of 

eq 16 for PM-correction, while calculating data for the PAMPA-DS assay.

Prediction of Permeability Coefficients for BBB, Caco-2/MDCK, and PAMPA-DS Assays.

In this work, we used three sets of experimental intrinsic permeability coefficients (log 

P0exp) that were compiled by Avdeef for PAMPA-DS, BBB, and Caco-2/MDCK assays.15–17 

They included 322, 199, and 185 data points, respectively. The intrinsic permeability 

coefficients of these compounds ranged from −12 to +2 for PAMPA-DS, from −9 to +1 for 

BBB, and from −7 to −2 for Caco-2/MDCK assays.

To reproduce these data, logPΣ
BLM values were calculated for all compounds in the neutral 

form using eq 6. For each of three data sets, we then compared experimental log P0exp 

values with calculated integrals logPΣ
BLM  in three subsets: (1) the whole data set; (2) the 

core set, excluding outliers; and (3) the reduced set, excluding outliers and zwitterions 

(Figure S6). We considered data points as outliers if they deviated by more than 2 rmse from 

the value predicted by the linear regression line(i.e., the cutoff of 2 in absolute value for 

standardized residuals) and their one-by-one exclusion significantly improved the correlation 

coefficient and decreased the rmse. Such an approach allowed us to exclude 42 compounds 

from the PAMPA-DS data set (13% outliers), 17 compounds from the BBB data set (8.5% 

outliers), and 20 compounds from the Caco-2/MDCK data set (10.8% outliers) (shown as 

green triangles on Figures S6 and S7). Interestingly, excluding zwitterions from these sets 

did not significantly improve the R2 for BBB data and even decreased the R2 for PAMPA-

DS and Caco-2/MDCK data. Therefore, during subsequent calculations, we used the core 

sets of 280, 182, and 165 compounds for PAMPA-DS, BBB, and Caco-2/MDCK data, 

respectively.

As follows from the experimental data (Figures 3B and 4A), the permeability of plasma 

membranes (PM) of the BBB and Caco-2/MDCK cells and of PAMPA membranes is lower 

by ~1.8 log units as compared to permeability of the lecithin-based BLM. Therefore, we 

used corrected logP0calc 
PM  values for PM in all subsequent comparisons. The calculation of 

logP0calc 
PM  values can be viewed as a two-step linear transformation. First, the permeability 

coefficients through BLM logP0calc 
BLM  were estimated using eq 15. Then, we applied eq 16 to 

obtain PM-corrected logP0calc 
PM  values for BBB and Caco-2/MDCK or eq 17 for PAMPA-DS 

data.

The scatter plots for experimental permeability coefficients for PAMPA-DS, BBB, and 

Caco-2/MDCK assays versus logP0calc 
PM  are shown in Figures 4B and 5. We found a 

sufficiently good correlation (R2 = 0.75, b ~ 1, a ~ 0) between experimental intrinsic 

PAMPA-DS permeability coefficients logP0exp 
PAMPA − DS  for 280 diverse molecules (50 acids, 
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122 base, 72 neutral molecules, and 36 zwitterions) and the corresponding PM-corrected 

permeability values logP0calc 
PM  (Figure 4 B). The linear regression model for PAMPA-DS 

was

logP0exp
PAMPA−DS = 0.98logP0calc

PM + 0.49 (18)

Using this model for scaling calculated data produced the rmse value of 1.59 log units 

(Figures 6B and S6B).

The relationships between experimental and PM-corrected permeability coefficients of 182 

compounds (18 acids, 80 bases, 60 neutral molecules, and 24 zwitterions) studied in the 

BBB assay and 165 compounds (10 acids, 69 bases, 53 neutral molecules, and 33 

zwitterions) studied in Caco-2/MDCK assays can be described by the linear regression lines 

with R2 of 0.69 and 0.52, respectively, and slopes b of 0.43 and 0.32, respectively (Figure 

5A, B). The observed deviation of slopes from 1 can be attributed to the presence of diverse 

transporters in natural membranes, which, despite experimental efforts to minimize their 

contribution, may not be completely eliminated. The presence of influx and efflux 

transporters would increase the uptake of low-permeable polar molecules and decrease the 

inward translocation (by promoting the outward efflux) of highly permeable hydrophobic 

molecules. The linear regression models for BBB and Caco-2/MDCK data were the 

following:

logP0exp 
BBB = 0.43logPcalc

PM − 2.08 (19)

logP0exp
Caco−2/MDCK = 0.32logP0calc

PM − 2.89 (20)

Using eqs 19 and 20 for scaling calculated data to experimental data to get linear regression 

line with a = 0 and b = 1 produced the rmse values of 0.87 log units for BBB data and 0.89 

log units for Caco-2/MCDK data (Figures 6C, D and S6C, D).

Hence, the resulting equations to relate the integrals over transfer energy profiles logPΣ
BLM

for the neutral forms and calculated intrinsic permeability coefficients (log P0calc) through 

PAMPA-DS, BBB, and Caco-2/MDCK membranes were the following (Figures 6 and S6):

logP0calc 
PAMPA‐DS  = 0.981logPΣ

BLM + 2.159 (21)

logP0calc 
BBB = 0.375logPΣ

BLM − 1.600 (22)
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logP0calc 
Caco−2/MDCK = 0.272logPΣ

BLM − 2.541 (23)

Equations 15 and 21 can be also applied to predict membrane permeability coefficients 

through artificial membranes of compounds ionized in water. In this case, the corresponding 

integrals of transbilayer energy profiles log PmΣ
BLM  will account for contribution from 

deionization penalty for ionizable group(s) with specified pKa at indicated pH. Indeed, 

membrane permeability coefficients for ionized compounds were satisfactory reproduced for 

artificial bilayers, BLM and liposomes (Figures 2, S4, and S5), and the PAMPA DS system 

(Figure S8). In the latter case, a reasonably good prediction of PAMPA-DS log Pmexp values 

at pH 6.5 and 7.4 (with rmse of 1.77 and 1.69 log units; R2 of 0.58 and 0.69, respectively) 

was obtained for weak acids and bases from Avdeef’s data set15 (Table S6), excluding 

zwitterions.

To predict membrane permeability coefficients of ionized compounds through the BBB 

membranes, the following equation was obtained:

logPm − 7.4calc 
BBB = 0.229logPm

BLM − 0.830 (24)

The accuracy of the prediction of BBB membrane permeability coefficients logPPSexp 
BBB

using eq 24 was moderate (rmse of 0.65 log units; R2 of 0.60) for the set of 79 bases and 23 

acids from the Avdeef’s database.16

Finally, we assessed the ability of PerMM to distinguish compounds able to cross BBB by 

passive diffusion (BBB+) from BBB-impermeable molecules (BBB−). We analyzed the 

range of permeability coefficients for both types of compounds (Figure S9) and found that 

the predicted intrinsic permeability coefficients of BBB-impermeable compounds were less 

than −4.35 log units.

Thus, the compounds with higher permeability coefficients logP0calc 
BBB ≥ − 4.35  are expected 

to cross the BBB and serve as central nervous system-active agents, unless they are 

substrates for efflux transporters, such as P-glycoprotein or other ABC transporters.

Equations 7 and 13–15 were included in our PerMM program and the web server for 

prediction of permeability coefficients of organic chemicals and drug-like molecules through 

different membrane systems based on integration of transfer energy profiles over the 

permeation pathway. Using these equations, PerMM reproduced experimental permeability 

coefficients in different systems well: BLM and liposomes (78 compounds, R2 = 0.88, rmse 

= 1.15), PAMPA-DS assay (280 compounds, R2 = 0.75, rmse = 1.59), Caco-2/MDCK assays 

(165 compounds, R2 = 0.52, rmse = 0.89), and in situ brain perfusion experiments (182 

compounds, R2 = 0.69, rmse =0.87) (Figure 6).
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Comparison of PerMM with Other Computational Methods.

To assess the utility and the predictive power of the PerMM method, we compared it with 

other computational methods, in particular, with the physics-based methods recently 

developed by Leung et al.32 and Brocke et al. (implemented in the MemDrugPerm web 

server).68 These methods were applied for the relatively large and structurally diverse sets of 

compounds, many of which were also calculated by PerMM. We also compared results of 

calculations by PerMM, with predictions by the QSPR-based QikProp method (Schrödinger) 

and by the machine learning algorithm developed by Brocke et al.68 as an alternative 

approach to MemDrugPerm. Comparison of performances of these methods is shown in 

Figures S10 and S11. We evaluated the intrinsic permeability coefficients of compounds that 

were common for our and other data sets against the experimental intrinsic log P0exp values 

compiled for PAMPA-DS and Caco-2 assays by Avdeef,15,17 rather than against diverse data 

sets obtained by various authors in dissimilar experimental conditions.

We founds that PerMM outperformed both physics-based methods with respect to R2 and 

rmse values and demonstrated better accuracy than the statistically based QikProt method 

and the machine learning algorithm. For the set of 58 common compounds, PerMM 

predicted PAMPA-DS permeability coefficients with R2 of 0.67 and rmse of 1.51, while the 

HDGB and DHDGB models of Brocke et al. demonstrated rmse of 1.99 and 1.73 log units 

and R2 of 0.50 and 0.49, respectively (Figure S10A, C, D). Results of the machine learning 

algorithm were less impressive with R2 of 0.40 and rmse of 2.28 log units, though rmse 

decreased to 1.68 log units after scaling the calculated values to the experimental values to 

get a linear regression line with a = 0, b = 1 (Figure S10B). Importantly, the slopes (b) of the 

regression lines were rather close to 1 for PerMM and the HDGB model but smaller for the 

DHDGB model (b = 0.66) and much smaller for the machine learning algorithm (b = 0.23), 

while intercepts increased from 0 for PerMM to ~0.5 for both HDGB and DHDGB models 

and to ~4 for the machine learning approach. Scaling the calculated values to experimental 

values for HDGB and DHGB models did not improve rsme values (Figure S10C and D).

The performance of the method by Leung et al. for the prediction of PAMPA-DS 

permeability was also moderate. The scatter plot of predicted vs experimental data for 73 

compounds was fitted by the regression line with R2 of 0.38,b of 1.31, and a of −9.12. The 

significant intercept value was likely due to the extremely low permeability coefficients 

predicted by Leung’s model (in the range from −28 to −4 log units) (Figure S11C). For the 

same set of compounds, the accuracy of PerMM predictions was much better: the linear 

regression line had R2 of 0.68, b close to 1, and a close to 0 (Figure S10A). The accuracy of 

the Leung’s and QikProp methods for prediction of Caco-2 permeability for 44 compounds 

was also lower than that of PerMM: R2 values were of 0.30, 0.27, and 0.59, respectively 

(Figure S11B, D, and F).

DISCUSSION

In this study, we developed a novel physics-based computational method PerMM for 

predicting passive membrane permeation of structurally diverse molecules through the 

phospholipid bilayer. In addition to estimating the permeability coefficients, this method 

provides visualization of the transmembrane translocation pathway for a compound of 
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interest. By describing the thermodynamics of membrane-solute interactions, such an 

approach helps to understand the mechanisms of permeability of drug candidates, which 

may assist in optimization of their ADME properties.

Our data set included nonpolar and polar nonelectrolytes and weak electrolytes. According 

to results of our calculations, the ionized species of weak acids and bases become uncharged 

in the lipid carbonyl region and cross the lipid bilayer in the neutral form. Consistent with 

experimental studies,4 we found that the permeability barriers are located in the hydrophobic 

domain of the lipid bilayer but not outside this region.

To verify the method, we compared the results of our calculations for the DOPC bilayer with 

permeability coefficients measured in unilamellar phospholipid bilayers (Figures 2 and S4). 

This comparison covered a wide range of log P0 values (from −12 to +2) and produced R2 of 

0.88 and the slope b close to 1 (Figure 2 A), as expected. A comparison of experimental and 

calculated permeability coefficient through BBB and Caco-2/MDCK cells demonstrated a 

smaller slope (b of 0.43 and 0.32, respectively) and lower R2 values (0.69 and 0.52, 

respectively) (Figure 5). Although these correlations can be used for evaluation of 

permeability of BBB and Caco-2/MDCK systems, the prediction accuracy is lower than that 

for model phospholipid bilayers (Figures 2 and 6C, D).

We assume that the observed permeability differences between artificial and natural 

membrane systems could be due to the presence of the facilitated molecular transport in 

biological membranes. To reduce the effect of transporters, a significant effort was made by 

Avdeef in collecting “efflux-minimized” BBB permeability data16 and including Caco-2/

MDCK data that represent the averages of apical-to-basolateral and basolateral-to-apical 

measurements canceling out some of carrier-mediated contributions.17 Nevertheless, the 

efflux and influx effects can still be present or not completely eliminated for a number of 

permeants due to the presence of multiple transporters. In fact, the vast majority of drugs 

included in our data set can interact with a variety of influx and efflux transporters8 (see 

pages for individual molecules in the PerMM database). The possible effect of influx 

transporters is expected to result in a higher permeability of polar permeants than that 

predicted from passive diffusion. The possible effect of efflux transporters would decrease 

the measured permeability of highly hydrophobic permeants relative to predictions based on 

passive diffusion. Thus, both effects would results in the observed slope b < 1 of the linear 

regression fits for BBB and Caco-2/MDCK data (in addition to possible scattering), as we 

actually observed (Figure 5).

Similar to other physics-based methods, PerMM operates with atomic structures of 

molecules moving across the lipid bilayer and uses the solubility-diffusion framework for 

estimating the molecular permeability. However, our and other methods employ different 

approaches for calculating the free energy change of barrier crossing and the corresponding 

permeability coefficients of permeants. For example, Leung et al.32 represent the lipid 

bilayer as an implicit organic solvent and calculate the solvation energy difference between 

global minimum conformations evaluated in water and chloroform. Brocke et al.68 describe 

the implicit membrane by varying dielectric profiles along the membrane normal, based on 

either standard HDGB or dynamic (D)HDGB models, and calculates membrane insertion 
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energy profiles and their integrals to derive permeability coefficients. The PerMM method 

uses a general anisotropic solvent representation of the lipid bilayer that has been previously 

developed and extensively tested to study spatial positioning in membranes of peptides, 

proteins, and small molecules.63,71,72 Furthermore, similar to Brocke’s method, PerMM 

calculates permeability coefficients by integration over transfer energy profiles instead of 

using a simple barrier approximation as in the Leung method.

There are other methodological differences between these methods, including treatment of 

conformational flexibility of permeants and calculation of their diffusivity in membranes. 

For better computational efficiency, PerMM utilizes precalculated structures of permeants, 

similar to that in Brocke’s method.68 To account for the conformational dynamics, we use a 

limited set of structurally diverse conformations for flexible molecules, instead of 

performing the more exhaustive conformational sampling proposed by Leung et al.32 We 

found that including conformational flexibility only slightly improves the permeability 

coefficients of conformationally flexible molecules but does not significantly affect the 

overall accuracy of permeability predictions (Figures S2 and S4). Similar to other methods, 

we consider the size-dependence of permeant diffusion in membranes. However, instead of 

diffusivity profiles along the membrane normal, we assume a constant diffusivity of a solute 

throughout the membrane. This is a reasonable approximation, because the exact shape of 

D(z) was shown not to be important for permeability prediction.68

As described in Results, PerMM demonstrated better performance than two other recently 

developed physics-based methods, as well as the machine learning algorithm by Brocke et 

al. and the regression-based QikProp method. We found that PerMM outperformed these 

methods in terms of R2 and rmse for prediction of PAMPA or Caco-2 permeability 

coefficients for relatively large data sets (Figures S10 and S11). The MemDrugPerm 

method68 showed the closest accuracy to PerMM against PAMPA data.

The advantages of our approach are likely due to the better parametrization of atomic 

solvation (σ) and dipolar (η) parameters for different chemical groups in our universal 

solvation model, as described in our previous publication65 and to the use of dielectric and 

hydrogen bonding parameter profiles for the DOPC bilayer in the PPM method.63 The 

correct evaluation of the solvation energy in the heterogeneous environment is critical, 

because permeability depends exponentially of this energy.

It is of note that PerMM has broad applicability: it allows quantitative calculation of 

permeability coefficients in different membrane systems, including BLM, PAMPA, Caco-2/

MDCK cells, and the BBB. It demonstrated the best accuracy (R2 =0.88, rmse of 1.15 log 

units) for pure lecithin-based unilamellar membranes. This was expected because the 

method implements the dielectric and polarity parameters of the DOPC bilayer. PerMM also 

showed a reasonably good performance in predicting BBB and Caco-2/MDCK permeability 

coefficients with accuracy within 1 log unit (rmse of 0.87 and 0.87 log units, respectively), 

even though the permeability of a number of compounds in such systems could be affected 

by the active efflux and influx and carrier-facilitated transport, in addition to passive 

diffusion. Our results suggest that plasma membranes of Caco-2/MDCK and the BBB 
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cellular systems are less permeable than the lecithin-based bilayers or DOPC by ~1.8 log P0 

units, probably due to the presence of cholesterol and sphingomyelin.

The PerMM method properly reproduced experimental permeability coefficients for a large 

set of 506 compounds, which differed in sizes, structural scaffolds, and chemical classes. 

This demonstrates the transferability of our approach, similar to other physics-based 

methods. Importantly, the PerMM allows predicting the absolute values of intrinsic 

permeability coefficients, especially for the phospholipid bilayers, rather than the relative 

permeability data for a series of compounds, as is customary in other methods. We also 

found that correlations between calculated and experimental permeability coefficients for 

molecules from different charge classes (acids, bases, neutral molecules) can be described 

by the same regression line, as should be expected for calculations with any physics-based 

model.

In summary, the PerMM method can be useful for prediction of intrinsic permeability 

coefficients through lipid membranes of a wide spectrum of drug candidates, including 

natural product-derived compounds with large molecular weight. However, our method is 

still approximate, as it employs the flat diffusion coefficient profiles across the membrane, 

does not account for the mechanical properties and the lipid composition of membranes, 

especially in the headgroup region, and does not include effects of dipole and surface 

membrane potentials, as well as the influence of permeants on properties of the lipid bilayer. 

We envision addressing these issues in the future, which may improve the method’s 

accuracy. To facilitate practical use of our method by the scientific community, we have 

implemented it as a publicly available web server with a supplementary database, as 

described in the accompanying paper.97

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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ADME absorption, distribution, metabolism, and excretion

ABNR adopted basis Newton−Raphson

ASA accessible surface area

BBB blood−brain barrier

BLM black lipid membranes
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Caco-2 colon adenocarcinoma cell line

CG/MD coarse-grained molecular dynamics

CHARMm chemistry at Harvard molecular mechanics

DHDGB dynamic heterogeneous dielectric generalized Born

DOPC dioleoyl phosphatidylcholine

FDA Food and Drug Administration

HDGB heterogeneous dielectric generalized Born

MD molecular dynamics

MDCK Madin−Darby canine kidney cell line

NP natural product

PAMPA parallel artificial membrane permeability assay

PAMPA-DS PAMPA double-sink

PC phosphatidylcholine

PDB Protein Data Bank

PPM positioning of proteins in membranes

QSAR quantitative structure−activity relationship

QSPR quantitative structure−permeability relationship

rmse root-mean-square error
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Figure 1. 
Spatial positions, optimized orientations (A), and transfer energy profiles (B) calculated for 

several drug molecules as they move through the DOPC bilayer. Calculations of transbilayer 

energy profiles were performed by the publicly available PerMM web server (https://

permm.phar.umich.edu/server) using the “global rotational optimization” option. The 

locations of hydrocarbon core boundaries between the acyl chains and head groups of lipids 

(at ±15 Å distances from the membrane center) are approximated by planes and shown as 

dummy atoms (A).
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Figure 2. 
Prediction of the permeability of artificial lipid bilayers to organic molecules. (A) 

Comparison of experimental logPexp
BLM  and calculated logPΣ

BLM  permeability coefficients 

across unilamellar lipid bilayers of 58 un-ionized (black circles) and 20 ionized in water 

(open circles) organic molecules. The corresponding data values are from Tables S1 and S2. 

(B) Plot of experimental BLM permeability coefficients logPexp
BLM  vs the calculated ones 

logPcalc 
BLM  for 78 organic molecules. Dashed lines indicate ideal line and residual line limits 

(using a cutoff of |3.1| that corresponds to 2.0 rmse for ionized molecules). Predicted 

permeability coefficients, logPcalc 
BLM, in B were calculated using eq 15. The logPΣ

BLM values 

were calculated using eq 6. For ionized species, the integral logPmΣ
BLM accounted for the 

deionization penalty of ionizable groups at the specified pH. The number of molecules “n” is 

indicated in parentheses.
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Figure 3. 
Comparison of experimental permeability data for natural and artificial membrane systems. 

(A) Correlation between intrinsic permeability coefficients obtained in situ rodent brain 

perfusion experiments logP0exp 
BBB  vs Caco-2/MDCK assays logP0exp

Caco−2/MDCK . (B) 

Correlation between intrinsic BBB or Caco-2/MDCK permeability coefficients vs intrinsic 

permeability coefficients through BLM/liposomes logP0exp 
BLM . Colors indicate different types 

of molecules: red for acids, blue for bases, gray for neutral molecules, and yellow for 

zwitterions. The number of molecules “n” is indicated in parentheses. Experimental BLM, 

BBB, and Caco-2/MDCK permeability coefficients are from Tables S7 and S8.
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Figure 4. 
Experimental and calculated permeability data for PAMPA-DS. (A) Correlation between 

intrinsic permeability coefficients obtained in PAMPA-DS assays and using BLM or 

liposomes logP0exp
BLM . Experimental PAMPA-DS and BLM data were taken from Table S9. 

(B) Correlation between permeability coefficients through the plasma membrane and 

PAMPA-DS. Intrinsic permeability coefficients of molecules through the plasma membrane 

logP0calc 
PM  were calculated using eq 17. Experimental data for PAMPA-DS logP0calc 

PAMPA‐DS 

were taken from Table S5. Colors indicate different types of molecules: red for acids, blue 

for bases, gray for neutral molecules, and yellow for zwitterions. The number of molecules 

“n” is indicated in parentheses.

Lomize and Pogozheva Page 32

J Chem Inf Model. Author manuscript; available in PMC 2019 September 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
Correlation between calculated intrinsic permeability coefficients through the plasma 

membrane (PM) and experimental intrinsic permeability coefficients through BBB (A) and 

Caco-2/MDCK cells (B). Intrinsic permeability coefficients of molecules through the plasma 

membrane logP0calc
PM  were calculated using eq 16. Experimental data were taken from 

Tables S3 for BBB logP0exp
BBB  and Table S4 for Caco-2/MDCK assays logP0exp 

Caco−2/MDCK . 

Colors indicate different types of molecules: red for acids, blue for bases, gray for neutral 

molecules, and yellow for zwitterions. The number of molecules “n” is indicated in 

parentheses.
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Figure 6. 
Prediction of intrinsic permeability coefficients through different membrane systems. Plot of 

experimental vs calculated permeability coefficients through BLM (A), PAMPA-DS (B), 

BBB (C), and Caco-2/MDCK cells (D). The formula above each panel relates the calculated 

intrinsic log P0calc values for each systems and the integral logPΣ
BLM values of molecules in 

the neutral state determined by integration of eq 6. Dashed lines indicate the ideal line and 

residual line limits with cutoffs of |3.2| (A and B) and |2.0| (C and D). Colored circles 

indicate different charge classes of molecules: red for acids, blue for bases, gray for neutral 

molecules, and yellow for zwitterions. The number of molecules “n” is indicated in 

parentheses.
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