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Abstract

Ketamine has emerged as a widespread treatment for a variety of psychiatric disorders when used at sub-anesthetic doses,
but the neural mechanisms underlying its acute action remain unclear. Here, we identified NMDA receptors containing the
2A subunit (GluN2A) on parvalbumin (PV)-expressing inhibitory interneurons as a pivotal target of low-dose ketamine.
Genetically deleting GluN2A receptors globally or selectively from PV interneurons abolished the rapid enhancement of
visual cortical responses and gamma-band oscillations by ketamine. Moreover, during the follicular phase of the estrous
cycle in female mice, the ketamine response was transiently attenuated along with a concomitant decrease of grin2A mRNA
expression within PV interneurons. Thus, GluN2A receptors on PV interneurons mediate the immediate actions of low-dose
ketamine treatment, and fluctuations in receptor expression across the estrous cycle may underlie sex-differences in drug

efficacy.

Introduction

For 20 years, ketamine has received considerable attention
for its preclinical and clinical applications when used at sub-
anesthetic doses. Low-dose ketamine in adulthood has been
shown to produce antidepressant effects [1-5] and to relieve
suicidal ideation [6] or post-traumatic disorders [7].
Recently, chronic administration of ketamine has been
described as a promising potential treatment in neurodeve-
lopmental models of Rett (RTT) syndrome [8]. While
ketamine is generally known as a non-competitive NMDA
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receptor antagonist at high doses, its broader mode of action
remains to be elucidated.

Notably, it is unclear how low-dose ketamine triggers its
rapid action and if similar processes act in males vs females
[9, 10]. Indeed, whether NMDA receptors primarily med-
iate ketamine effects is now highly debated as recent studies
point to other systems such as dopaminergic [11], ser-
otonergic [12], sigma [13], opioid [14], GABA [15], or
AMPA receptors [10] as potentially relevant. On the other
hand, a prevalent body of clinical and preclinical
evidence implicates a preferential blockade of NMDA
receptors on parvalbumin-expressing (PV) interneurons as a
central mechanism of classical ketamine action, such as
increased cortical activity and y-band oscillations (GBO) in
the 30-80 Hz range [16-20].

NMDA receptors are heteromeric complexes composed
of at least one GIluN1 subunit and one or more GIluN2A-D
subunits, which define the functional properties of the
receptor [21]. Importantly, this subunit composition dyna-
mically changes over the development in both pyramidal
and PV-cells with a cell-specific time course [22-24].
Although NMDA receptors mainly contain GluN2A sub-
units in adulthood [21], several studies have suggested that
the less prevalent GluN2C/2D-containing NMDARSs might
have an important role in mediating ketamine action
[25, 26] and the role of the GIuN2A subunit in the rapid
action of ketamine has never been tested.
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Here, we directly examined the hypothesis that GluN2A
subunits in PV-cells mediate the rapid actions of acutely
injected, low-dose ketamine (8 mg/kg, i.p.). We used gene-
targeting in mice to delete GIuN2A globally or specifically
from PV-cells, and demonstrate the absence of ketamine-
induced changes in pyramidal cell activity and GBO in the
primary visual cortex (V1). We further compared the
ketamine response in male mice to that of females during
follicular (Estrus/Proestrus) and luteal (Metestrus/Diestrus)
phases of the estrous cycle, revealing that females during
the follicular phase do not display the typical response to
ketamine. This transient, natural loss of ketamine sensitivity
in females was correlated with a shift toward lower gene
expression of grin2a (coding for GluN2A) among PV-cells
as compared to the luteal stage. Our findings carry broad
implications for the therapeutic use of other more specific
NMDA receptor antagonists given the wide gender-based
differences in psychiatric illnesses [27-29].

Materials and methods

All procedures were approved by the Institutional Animal
Care and Use Committee (IACUC) at Boston Children’s
Hospital and performed in adult mice aged between P60 and
P90 except where stated otherwise.

Animals

Mice were maintained on a C57BL/6J background kept
on a 12-h light/dark cycle and provided with food and
water ad libitum. Wild-type males were pooled across the
different lines as no difference was observed in their
response to ketamine (Supp Fig. 1b and c). We generated
conditional PV-Cre/GluN2A" mice by crossing PV-
IRES-Cre mice (JAX 008069) with mice carrying
“floxed” GIuN2A alleles, originally provided by Dr. K.
Sakimura (Niigata University) [30]. Constitutive
GluN2A~~ mice were back-crossed >11 generations
onto C57B1/6] from original breeding pairs provided by
Dr. M. Mishina (University of Tokyo) [31]. PV-GFP
transgenic mouse breeders were originally provided by
Dr. H. Monyer (Heidelberg University) [32]. For each
group, mice were taken across different litters.

Identification of the mouse estrous cycle

We performed vaginal cytology as defined previously [33].
Stages of the estrous cycle were determined by observing
the presence of leukocytes, cornified epithelial cells, and
nucleated epithelial cells in the fluid. We followed the
estrous cycle for a few days before the experiment and
confirmed the stage on the day of the experiment.

In vivo single-unit recordings

Mice were anesthetized under Nembutal (50 mg/kg, i.p.)/
chlorprothixene (0.025 mg/kg, i.p.) using standard techni-
ques [34]. Additionally, atropine (0.3 mg/kg) and dex-
amethasone (2 mg/kg) were administered subcutaneously to
reduce secretions and edema, respectively. Cortical activity
in response to visual stimulation in the binocular zone of V1
was recorded using multichannel probes (Alx16-3 mm
50_177, Neuronexus Technologies).

Gamma power analysis

Laminar location was evaluated with contrast-reversing (0.5
or 1Hz) square checkerboard patterns (0.04 cpd, 25-50
repeats). For local field potential (LFP) recordings, the
extracellular signal was filtered (1-300 Hz) and sampled at
1.5 kHz. Current source density (CSD) was computed from
the average LFP as previously described [34] using the CSD
plotter toolbox. The neural signal was averaged for all
electrodes in layer 2/3 and further filtered (4-100 Hz).
Power spectra were generated by fast Fourier transform on
the average response across trials (1s), starting 500 ms
after horizontal sine wave grating onset, and analyzed
(Chronux).

In vitro whole-cell recordings

Acute coronal slices of binocular V1 (300 um) were
obtained (Leica Microsystems, VT1200S) from PV-GFP
transgenic mice. Whole-cell recordings were made from
PV-cells identified by fluorescence. Isolated NMDA
receptor-mediated  excitatory  post-synaptic  potentials
(EPSCnwvpa) were evoked by pulses of electrical stimula-
tion delivered to cortical layer 4. A stimulus intensity was
chosen that elicited a maximal EPSCyypa (30-100 pA),
which was further isolated using a cocktail of drugs (bicu-
culline, 10uM, Sigma; SCH-50911, 10uM, Tocris
Bioscience; CNQX, 20 uM, Tocris Bioscience; atropine, 1
uM, Sigma). The effects of ketamine (10 uM; Hospira Inc.)
on EPSCyvpa amplitudes were evaluated 15 min after bath
application. The NMDA receptor-mediated component was
verified using NMDA receptor antagonists (CPP, 20 um;
AP-5, 50 uM; Tocris Bioscience). Custom-designed IGOR
(WaveMetrics) programs were used for data acquisition and
analysis.

RNA in situ hybridization
Isoflurane-anesthetized mice were decapitated and their
brains removed, embedded in OCT compound (Tissue-Tek)

and frozen on dry ice. Coronal brain slices (25 um) through
V1 were cut on a cryostat (Leica CM 1900), adhered to
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Fig. 1 GluN2A receptors mediate the rapid actions of low-dose keta-
mine. a Evoked responses from primary visual cortex in vivo using a
multisite silicon probe through the depth of cortex. Pyramidal-cell
activity was recorded in response to drifting gratings of different
orientation (30° spacing; 3-10 repeats) to determine the maximal
evoked response for each cell. b Pyramidal-cell activity was recorded
before/after one injection of low-dose ketamine (8 mg/kg, i.p.). Rapid
changes in activity were evaluated over 30 min post-injection (top).
Representative example of cell activity before and after 30 min of
ketamine in wildtype controls (WT; bottom). ¢ Ketamine-induced
changes of maximal evoked response in WT (black filled square, n =
171 cells; 13 males) and GluN2A~"~ mice (blue filled circle, n =54
cells; 6 males) (median = 95% CI. Asterisk refers to Friedman test with

SuperFrost Plus slides (VWR), and immediately refrozen on
dry ice. Sections were fixed in 4% paraformaldehyde and
dehydrated in increasing concentrations of ethanol. Hybri-
dization and amplification steps were then performed using
the RNAscope Multiplex Assay protocol (Advanced Cell
Diagnostics Inc., Hayward, CA) and the following
fluorophore-conjugated RNAscope probes: Mm-Grin2a-C1
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Dunn’s multiple comparison vs baseline. Hash refers to Kruskal—
Wallis with Dunn’s multiple comparison WT vs GluN2A ™~ mice).
d Spectrogram comparison from WT at baseline (black trace) and 30
min post-ketamine (purple trace). Solid lines, mean of all mice; shaded
areas, sem. Spectrogram calculated as a percentage of total power
measured between 4 and 100 Hz (n = 10 mice). p-Value of two-way
RM ANOVA: yellow shading, regions with statistically significant
effect (Sidak’s multiple comparison p <0.05). Inset, quantification of
y-oscillations between 20-50 Hz and 25-35 Hz (asterisk refers to
Wilcoxon paired test baseline vs 30 min). e Spectrogram comparison
from GIuN2A ™~ mice at baseline and 30 min post-ketamine (n =6
mice). Inset, quantification of y-oscillations between 20-50 Hz and
25-35Hz

(Cat No. 481831) and Mm-PVALB-C2 (Cat No. 461691).
Confocal images were acquired on a Zeiss LSM 710
microscope using a 63x, 1.4 NA oil immersion PlanAPO
objective (1.1x zoom) and quantified with Fiji. ROIs to
delineate the cytoplasm of PVALB-cells were drawn
manually blind to groups, and integrated density (ROI
area X mean intensity) was computed for each group.
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Fig. 2 Rapid ketamine action in fast-spiking PV-cells. a Representa-
tive raster plots of fast-spiking cells in V1 recorded in vivo at baseline
and 5 min post-ketamine injection (top). Firing rate changes in these
putative inhibitory cells recorded in response to visual gratings (n =
17, Wilcoxon matched paired test, p =0.038) (bottom). b Repre-
sentative NMDA receptor-mediated excitatory post-synaptic currents
(EPSCnmpa) recorded from PV-cells in vitro in WT males at baseline
(black traces), 15 min after bath application of ketamine (10 puM,

Statistical analysis

All data are presented as median+ CI unless specified.
Datasets were first analyzed using the Kolmogorov—Smir-
nov test for normality. Because they did not display normal

purple line) then CPP/APS (gray trace). ¢ Quantification of EPSCnypa
amplitude normalized to baseline (mean +sem, n =9 cells, 6 mice;
matched paired test, F=5.85, p=0.042). d Representative in situ
hybridization images from WT mice depicting co-localization of
grin2A and interneuron marker (Pvalb) in visual cortex. e Integrated
density (IntDen) of Pvalb and grin2A in PV-positive cells (median +
95% CI, n = 62 cells). f Positive correlation between Pvalb and grin2A
expression (Spearman p = 0.0005)

distribution, non-parametric tests were used to assess dif-
ferences. In each group, the effect of ketamine over time
was tested using Friedman test with Dunn’s multiple com-
parison. Differences between groups were analyzed using
Kruskal-Wallis with Dunn’s multiple comparison test.
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Two-way RM-ANOVA (matching across row) with Bon-
ferroni’s post-test was used for power spectra analysis. A
paired # test was used to evaluate in vitro effects of ketamine
on EPSCnmpa. Statistical analyses were performed using
GraphPad version 5.0 (Prism) or JMP (SAS Institute) sta-
tistical software. In all figures, *p <0.05, **p <0.01, ***p
<0.001, and ****p <0.0001.

Results

NMDA-GIuN2A receptor mediates rapid
enhancement of cortical activity by ketamine

Visually-evoked responses to drifting gratings at different
orientations were recorded in anesthetized adult male mice
(P60-80) using a multisite silicon probe through the depth
of V1 (Fig. 1a). The maximal evoked response was deter-
mined for each regular spiking (putative pyramidal) cell
before and 30 min after ketamine injection (8 mg/kg, i.p.;
Fig. 1b). Importantly, we analyzed our data at an early time
point (5-30 min post-injection), when ketamine concentra-
tion peaks in the brain [8, 10].

In wildtype (WT) mice, ketamine induced a rapid and
sustained increase of maximal evoked firing, that was
immediately significant and persisted throughout the
recording (Friedman test p<0.0001, Dunn’s multiple
comparison T5 vs TO, p<0.0001, T20-30 vs TO p<
0.0001; Fig. Ic). Strikingly, genetic ablation of GIuN2A
abolished the ketamine effect: in GIuN2A ™~ mice, the
maximal evoked response first decreased at 5 min post-
injection (Friedman test p =0.0011, TO vs TS5, p = 0.048)
then recovered to baseline levels (TO vs T20 p =0.64, vs
T30, p=0.49, Fig. lc). The response to ketamine was
significantly different from WT at all time points (Kruskal—
Wallis test p <0.0001; Dunn’s multiple comparison at: 5
min p=0.0004, 20min p<0.0001, and 30min p=
0.0041).

Ketamine at low doses is well known to modulate neu-
ronal oscillatory activity in humans and rodents [17, 18,
35]. Oscillatory activity at y-frequency (30-80Hz) is
implicated in information processing, memory, and sensory
perception and used as an index of network activity and
cognitive performance [36]. In particular, ketamine alters
these GBO that are generated by PV-cells [37]. To evaluate
a role for the GIuN2A receptor in the ketamine response at
the network level, we therefore measured visually-driven
GBO in superficial cortical layers. In mouse V1, visual
stimulation triggers GBO mainly between 20 and 50 Hz that
are not time-locked to the stimulus onset [38]. Visually-
driven GBO were measured before and 30 min post-
ketamine injection for 1s starting 500 ms after horizontal
grating stimulus onset.

SPRINGER NATURE

In WT, spectrogram power analysis revealed an overall
increase of GBO between 20 and 50 Hz (row matched two-
way ANOVA, p <0.0001), including an especially promi-
nent enhancement from 25 to 35Hz (yellow shading;
Sidak’s multiple comparison, p <0.05, Fig. 1d). Quantifi-
cation of GBO power confirmed a significant increase 30
min post-ketamine injection (Fig. 1d, asterisk: Wilcoxon
test p =0.03). In GluN2A '~ mice, this ketamine-induced
increase of GBO was absent (Fig. le, p = 0.34). Spectro-
gram analysis instead revealed a decrease in the low range
of GBO (between 20 and 22 Hz, Fig. le). Taken together,
these results reveal that GluN2A receptors contribute sig-
nificantly to the classical acute ketamine response.

NMDA-GIuN2A receptors on PV-cells underlie rapid
ketamine action

While it has been proposed that PV interneurons pre-
ferentially mediate the low-dose ketamine response [16,
39], little is known about how these cells are acutely
modulated by the drug. Identified on the basis of their
average waveform properties, we isolated narrow-spiking
cells (putative inhibitory PV interneurons) from regular-
spiking, presumptive pyramidal cells (Supp Fig. 1a). Unlike
the latter, putative PV-cell mean activity was reduced
in WT mice immediately after ketamine injection in com-
parison to their baseline firing rates (Fig. 2a and Supp
Fig. 1d.e).

To further understand the role of NMDA receptors on
PV-cells in the rapid ketamine action, we recorded NMDA
receptor-mediated  excitatory = postsynaptic  currents
(EPSCympa) from PV-cells in brain slices of V1 in vitro
(Fig. 2b). EPSCnvpa Wwere isolated using a cocktail of
drugs, and evoked by extracellular stimulation (200 ps, 30—
100 pA). Bath-applied ketamine (10uM) significantly
reduced EPSCnyvpa amplitude (69 + 13% of baseline, n =9
cells, matched pairs test, p = 0.042) with some variability
across PV-cells. Whereas the majority showed a pro-
nounced decrease of EPSCyumpa amplitude, a few cells
showed little effect of ketamine. The NMDA receptor-
mediated component was then verified using NMDA
receptor antagonists, CPP and AP5, which abolished the
current (9.5 £4.1% of baseline, n =8 cells; Fig. 2b, c).

Mature NMDA currents recorded in cortical PV cells are
primarily mediated by 2A subunits [24, 40]. Using in situ
hybridization in V1, we quantified co-expression of
mRNAs encoding grin2A and Pvalb (Fig. 2d) and con-
firmed that GluN2A was heterogeneously expressed among
PV-cells. Cells exhibiting high expression (IntDensity >
85% percentile) and those showing low expression
(IntDensity < 15% percentile) were identified (Fig. 2e).
Notably, Spearman correlation revealed a significant rela-
tionship between Pvalb and grin2A expression (R = 0.427,
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Fig. 3 GluN2A receptors on PV-cells mediate rapid ketamine action. a
Schematic of PV-Cre*/GluN2A" mouse construction. b Ketamine-
induced changes of maximal evoked response were abolished in PV-
Cre*/GluN2A" males (blue filled circle, n =72, 6 mice) (% of pre-
ketamine level, median + 95% CI, asterisk refers to Friedman test with
Dunn’s multiple comparison vs baseline; hash refers to Kruskal-
Wallis with Dunn’s multiple comparison WT vs mutant).

p =0.0005, Fig. 2f). Interestingly, heterogeneity was pre-
sent in all layers (Supp Fig. 2).

To directly determine whether the GIuN2A receptor on
PV-cells is necessary for rapid ketamine effects on cor-
tical activity, we selectively deleted these subunits using
Cre-recombinase technology (PV-Cre™/GluN2A" mice;
Fig. 3a). In contrast to WT animals, ketamine did not
significantly increase maximal evoked responses in PV-
Cre"/GluN2A™ mice (Fig. 3b; Friedman test p = 0.1467).
As a result, ketamine action was significantly greater in
WT than in PV-Cre"/GluN2A"" mice at 20 and 30 min
after injection (Kruskal-Wallis p <0.0001 with Dunn’s
multiple comparison test, p <0.001, Fig. 3b). Deleting
GluN2A exclusively from PV-cells also abolished the
ketamine-induced increase of GBO (Fig. 3c).

Together, our results reveal a major role for NMDA
receptors—in particular those containing the GIuN2A sub-
unit in PV-cells—in the rapid actions of ketamine on cor-
tical neuronal activity. Importantly, deleting GIuN2A from
PV-cells alone mimics the effect of total GluN2A deletion.

Ketamine action is disrupted in females during
estrous

Our results suggest that modulating NMDA receptor
activity could influence the rapid ketamine response.
Interestingly, NMDA receptors are altered by gonadal
hormones. Estradiol increases NMDA receptor density in
rat hippocampus [41-45], modulates its activity/sensitivity
[45, 46], and also modifies its phosphorylation status [47].
Behavioral studies have suggested that female rodents may
be differentially sensitive to NMDA receptor antagonists
than males [48-51]. Thus, we evaluated the rapid action of
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ketamine in WT females according to their estrous cycle as
determined by vaginal smears (Fig. 4a).

Females were classified in two groups: (1) follicular
phase (Estrus + Proestrus) when estradiol concentration is
low, and (2) luteal phase (Metestrus + Diestrus) when
estradiol concentration is high [33, 52]. In luteal females,
the ketamine-induced increase of evoked response was
similar to that observed in males (Supp Fig. 3a). In con-
trast, the administration of ketamine to females during the
follicular stage elicited only weak, transient effects on
neuronal activity. The evoked response increased slightly
at 5 min (127 + 8% of baseline, Friedman p = 0.0319) but
was no different from baseline at 20 and 30 min. As a
result, the response to ketamine was significantly different
from both males (Supp Fig. 4c) and females during the
luteal phase (Fig. 4b; KW p <0.0001, Dunn’s at T20 and
30 p<0.0001).

To identify a mechanism underlying this attenuated,
estrus state-dependent response to ketamine in females, we
compared Pvalb and grin2a mRNA expression between
males and females during luteal or follicular phases. No
differences were observed between groups in Pvalb
expression (Fig. 4d). However, in female mice during the
follicular phase, the overall expression of grin2a was sig-
nificantly lower in comparison to males and luteal females
(Fig. 4e). In particular, the distribution of cells with zero,
low, and high expression was significantly different in
follicular females (Fig. 4f; f—test, male vs follicular p =
0.01, male vs luteal p=0.68, luteal vs follicular p =
0.0006). Instead, the correlated expression between Pvalb
and grin2A was preserved in both groups of females
(Fig. 4g; follicular R = 0.391, p = 0.0003; luteal R = 0.605,
p<0.0001).
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Fig. 4 Attenuated female response to ketamine during the follicular
phase. a Representative vaginal smears during Estrus, Metestrus,
Diestrus, and Proestrus stages of the estrous cycle. b Ketamine-
induced changes of maximal evoked response in C57Bl/6J females
during the follicular phase (Estrus/Proestrus, red filled circles, n = 87
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cells; 6 mice) (median + 95% CI; asterisk refers to Friedman test with
Dunn’s multiple comparison vs baseline; hash refers to Kruskal-
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line, C57B1/6] male values for comparison (n =67 cells/4 mice). ¢
Representative in situ hybridization images of female mouse
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grin2A (IntDen)

V1 showing different categories of Pvalb-positive cells. d Integrated
density of Pvalb mRNA in luteal and follicular stages (median + 95%
CI, n =81 and 90 cells; Kruskal-Wallis test, not significant). e Inte-
grated density (IntDen) of grin2A mRNA in luteal and follicular stages
(Mann—Whitney, p =0.0016). Dotted line, median value in males.
f Proportion of Pvalb-positive cells without grin2A (0), low level (L:
IntDen < 15% percentiles in males), medium (M) or high level of
grin2A expression (H: IntDen>85% percentiles in males). Males
(black) and females during luteal (gray) and follicular (red) phases
(asterisk refers to y*-test). g Positive correlation between Pvalb and
grin2A expression in females
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Discussion

Our findings clarify how low-dose ketamine triggers its
rapid action within the neocortex. Acute sub-anesthetic
ketamine administration in healthy volunteers induces
schizophrenia-like symptoms and neurocognitive deficits
while impacting thalamo-cortical processing distinct from
the disease state [53]. At clinically relevant low-dose, we
found that cortical response enhancement is borne by 2A
subunit-containing NMDA receptors localized to a subset of
PV-positive, fast-spiking interneurons. Moreover, we found
that ketamine sensitivity was transiently absent in females
during the follicular phase of their estrous cycle, associated
with a decreased percentage of PV-cells expressing high
grin2a levels.

Ketamine has been shown to have rapid and long-last-
ing, beneficial effects as a potential treatment for depres-
sion, suicidal ideation, or post-traumatic stress disorder.
Yet, the mechanism underlying such actions remains under
intensive debate. Recently, it was reported to act through
NMDA receptors on glutamatergic neurons within the lat-
eral habenula leading to disinhibition of reward center
pathways to relieve depression [54]. We verified a further
role for the GIuN2A subunit in such antidepressant effects
at the low doses of ketamine used here. After saline injec-
tion, GluN2A ™"~ mice displayed a reduced immobility time
in the forced swim test (Supp Fig. 4a), which occluded
further antidepressant like effects of ketamine (Supp
Fig. 4b,c). Moreover, ketamine-induced decrease in Akt and
eEF2 phosphorylation in the frontal cortex was attenuated
in GIuN2A "~ mice (Supp Fig. 4d—f). A deficit in neuronal
activity in the prefrontal cortex has been suggested in both
clinically depressed humans and mouse models, while
optogenetic stimulation therein generates an antidepressant
like effect in mice [55].

Our results are consistent with a disinhibition of cortical
excitatory activity due to a greater NMDA sensitivity of
inhibitory circuits [16, 56-60]. As in the anesthetized
mouse V1 here, acute ketamine exposure in adulthood
increases excitatory transmission in frontal and anterior
cingulate cortex across species [61], as well as evoked
pyramidal cell activity and GBO in awake rodents [16—19].
Moreover, the effects described here mirror those observed
in healthy human subjects after ketamine injection [35, 62,
63], implicating shared mechanisms relevant for translation
to humans. Interestingly, disinhibition of somatostatin-
positive interneurons has recently been suggested to med-
iate the long-lasting antidepressant actions of selective
serotonin reuptake inhibitors (SSRI), indicating a distinct
inhibitory circuit logic may mediate rapid (PV-cells) or
slow antidepressant effects [64, 65].

The subunit composition of NMDA receptors in PV-cells
differs from neighboring pyramidal neurons, with GluN2A

and GIuN2C subunits being highly expressed [66, 67]. At
physiological Mg2+ concentrations, NMDA receptor
antagonists such as ketamine or memantine have little
impact on reconstituted GIuN2A- or GIuN2B-containing
receptors in vitro, while their blockade of GluN2C- or
GluN2D-containing receptors is largely preserved [25]. Yet,
deletion of GIuN2B from pyramidal cells in the cortex and
hippocampus may mimic and occlude ketamine actions on
depression-like behavior, excitatory synaptic transmission,
mTOR activation, and synaptic protein synthesis in
response to six-fold higher drug doses (50 mg/kg) than used
here [68]. Our findings reveal a pivotal role for GIluN2A
receptors in PV-cells underlying clinical, low-dose (8 mg/
kg) ketamine action in the intact brain. This may reflect an
enhanced sensitivity of GIuN2A currents in these fast-
spiking cells in vivo, which typically exhibit depolarized
membrane potentials and high spontaneous input [69], as
well as elevated redox regulation [70] known to rapidly and
reversibly potentiate currents through NMDA receptors
composed of GIuN1:GIuN2A subunits [71].

The PV circuit mechanism may also help to explain
striking sex-differences in drug efficacy. We found that
ketamine does not increase cortical responses in females
during the follicular phase of the estrous cycle. The loss of
sensitivity was associated with a population shift toward
PV-cells transiently expressing less grin2A mRNA. Instead,
for luteal females the response to ketamine was similar to
that of males. Such transcriptional regulation of NMDA
receptor mRNA during the estrous cycle was made evident
only by our targeted examination of changes specifically
within PV-cells. These modifications complement previous
results showing that estradiol, which peaks during the luteal
phase, increases NMDA receptor density more broadly [41—
45]. Thus, fluctuations in estradiol might mediate the vari-
able sensitivity to ketamine and other NMDA receptor
antagonists in females [50].

Remarkably, just a subtle change in grin2a expression
during estrus was associated with a complete loss of acute
ketamine action on cortical activity, similar to the full
GluN2A deletion in males. While fine-tuning of GIluN2A
levels in a subset of PV-cells may explain this effect, it is
also possible that additional post-translational modifica-
tions of the NMDA receptor are taking place during the
follicular stage. Estrogen modulation of NMDA receptor
activity and sensitivity involves extranuclear estrogen
receptors (ER) [45, 47, 72], including potential activation
of several signaling pathways such as ERK and Akt which
phosphorylate NMDA receptor subunits [47]. Of parti-
cular interest is ER-o which is expressed more during
non-estrus phases [73] and could therefore be responsible
for increased NMDA receptor function and greater keta-
mine efficacy. It is also possible that the oxidative profile
of free radical oxygen species generation/clearance is
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highly dynamic and region-specific in the female
brain [74, 75].

Our findings bear directly upon discrepancies in the lit-
erature whether ketamine has greater, lesser, or no different
effect in men and women. The day of injection might
greatly influence the acute benefits of ketamine and differ-
ences in treatment timing might explain the great variability
(anywhere from 40 to 80%) across clinical trials, including
a recent report of only 43% of women showing improve-
ment after ketamine infusion [76]. Increased understanding
of these mechanisms with regard to sex differences will help
develop tailored therapies and identify new risk and/or
protective factors for psychiatric disorders.
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