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To the Editor:

Activating signaling mutations are common in acute leu-
kemia with KMT2A (previously MLL) rearrangements
(KMT2A-R) [1]. When defining the genetic landscape of
infant KMT2A-R acute lymphoblastic leukemia (ALL), we
identified a novel FLT3"67K mutation in both infant ALL
and non-infant acute myeloid leukemia (AML) [1].
FLT3N%K was the most common FLT3 mutation in our
cohort and we recently showed that it cooperates with
KMT2A-MLLT3 in a syngeneic mouse model [1, 2]. To
study the ability of FLT3""%K to cooperate with KMT2A-
MLLT3 in human leukemogenesis, we transduced human
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Fig. 1 FLT3"°K alters the lineage distribution of KMT2A-MLLT3-
driven leukemia. a Kaplan—-Meier survival curves of NSG mice
transplanted with CD34" cord blood cells cotransduced with KMT2A-
MLLT3 + FLT3"°K (n =23), KMT2A-MLLT3 + MSCV-GFP (n=
26, of which three died and no tissue samples could be collected),
FLT37°K  MSCV-mCherry (n=7), or MSCV-GFP +MSCV-
mCherry (n=5). b Distribution of mice that succumbed to ALL,
AML, DPL, or BLL within KMT2A-MLLT3 + MSCV-GFP and
KMT2A-MLLT3-mCherry 4+ FLT3V7°K_GFP recipients divided on the
fraction of mCherry*GFP+ (<10%, n=11; 10-60%, n = 6; or >60%,
n = 6) cells within hCD45" bone marrow (BM) cells. ¢ Kaplan—Meier

CD34"-enriched cord blood (CB) cells and followed leu-
kemia development immunophenotypically and molecularly
in NOD.Cg-Prkdc*“112rg™™"/Sz] (NSG) mice.

Mice that received KMT2A-MLLT3 with or without
FLT3N676K developed a lethal leukemia, often with spleno-
megaly, thrombocytopenia, and leukocytosis, with no differ-
ence in median disease latency (107.5 and 119 days,
respectively, P =0.48) and mice receiving FLT3""°% alone
showed no sign of disease (Fig. 1a, Supplementary Fig. 1A-E,
and Supplementary Data 1). Leukemic mice succumbed to
ALL (>50% CD197CD337), AML (>50% CD19 CD33"),
double-positive leukemia (DPL, >20% CD197CD33"), or
bilineal leukemia (BLL, <50% CDI197CD33~, <50%
CD197CD33", and <20% CD197CD33™); thus, the leuke-
mias often coexisted with leukemia cells of another immu-
nophenotype (Supplementary Fig. 1F, G and Supplementary
Data 1) [3-5]. Previous studies have shown that retroviral
overexpression of KMT2A-MLLT3 in human CB cells in
NOD.CB17/Prkdc*® ~ (NOD/SCID),  NOD.Cg-Prkdc*™
B2m™!Y" (NOD/SCID-B2m), or NSG immunodeficient mice,
primarily gives rise to ALL, sometimes to leukemias expres-
sing both lymphoid and myeloid markers or bilineal leuke-
mias, but rarely AML [3-6]. KMT2A-MLLT3-driven AML
can only be generated with high penetrance, and re-
transplanted in immunodeficient mice transgenically expres-
sing human myeloid cytokines, consistent with the idea that

survival curves of all xenograft leukemias based on their immuno-
phenotype showed an accelerated disease for AML as compared with
both ALL (P <0.0001) and DPL (P <0.0001). d Fish plot showing
progression of one KMT2A-MLLT3 + MSCV-GFP BLL that gained a
de novo KRAS®"*P (VAF 17% in hCD45" BM cells) in the secondary
recipient (h11.13-1) and targeted resequencing of hCD45"
CD197CD33" and hCD457CD19*CD33~ BM cells from the sec-
ondary recipient (h11.13-1) revealed the KRAS®"*P mutation to reside
in CD197CD33" leukemia cells (VAF 51%). Mantel-Cox log-rank
test, ***P <0.001, ****P <0.0001, ns = not significant

external factors can influence the phenotype of the developing
leukemia [3, 6]. In agreement, most recipients that received
KMT2A-MLLTS3 alone developed ALL (16/23, 69.6%) or DPL
(4123, 17.4%) and AML was rare (2/23, 8.7%) (3, 4, 6]. By
contrast, five out of six recipients that received KMT2A-
MLLT3+FLT3"%7°K and that had >60% (n =6, range 60.4—
94.1%) of co-expressing cells, developed AML and one
developed ALL (Fig. 1b, Supplementary Fig. 1H, I, and
Supplementary Data 1). Thus, FLT3"*/5K preferentially drives
myeloid expansion, similar to mutant FIt3 in a syngeneic
setting [7]. FLT3 is expressed in human hematopoietic stem
and progenitor cells, with the highest expression in granulo-
cyte—macrophage progenitors (GMPs), and its signaling sup-
ports survival of those cells [8]. Combined, this suggests that
FLT37K affects the survival of myeloid progenitors. In this
context, it is interesting to note that FLT3 tyr-
osine kinase domain mutations are enriched in pediatric AML
with KMT2A-MLLT3 [9, 10]. Most recipients with <10%
(n =11, range 0.2-5.3%) of co-expressing KMT2A-MLLT3 +
FLT3V97°K cells succumbed to ALL, consistent with leukemia
being driven by KMT2A-MLLT3 alone. Among those with
10-60% (n =6, range 10.9-31.6%) of co-expressing cells, a
mixture of diseases developed since leukemia could be driven
both by KMT2A-MLLT3 alone and KMT2A-MLLT3 +
FLT3"570K (Fig. 1b, Supplementary Fig. 1H, I, and Supple-
mentary Data 1).
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Co-expression of KMT2A-MLLT3 and FLT3“57%K pre-
ferentially expanded myeloid cells (P <0.0001, Supple-
mentary Fig. 1J) and a high proportion of CD19~CD33"
cells at sacrifice, across the cohort, correlated with accel-
erated disease (ry= —0.6537, P<0.0001, Supplementary
Fig. 1K, L). In agreement, AML developed with sig-
nificantly shorter latency as compared with ALL and DPL
(89 vs. 120 and 133 days, respectively, both P <0.0001),
but not with BLL (84 days, Fig. 1c). Further, FLT3N676K_
driven AML had a tendency toward shorter survival
(median latency 78 days, range 62—117 days vs. 93 days for
KMT2A-MLLT3 alone, Supplementary Data 1).

To determine the evolution of phenotypically distinct
leukemia cells in secondary recipients, BM cells from six
primary KMT2A-MLLT3 + FLT3"%7°f  leukemias (three
each with > 60% or 20-32% of FLT3""%%_expressing cells)
and from four primary KMT2A-MLLT3 leukemias, were re-
transplanted. All leukemias gave rise to secondary malig-
nancies and recipients that received BM from AML (n = 2)
and ALL (n=1) with >60% of KMT2A-MLLT3 +
FLT3V970K cells had an accelerated disease onset and
maintained leukemia immunophenotype (median latency of
117 and 41 days, for the primary and secondary recipients,
respectively) (Supplementary Fig. 2A-E and Supplementary
Data 2). Thus, FLT3V7K  circumvented the cytokine
dependence normally required for myeloid cells in immu-
nodeficient mice [3]. By contrast, all secondary recipients
that received BM with 20-32% KMT2A-MLLT3 +
FLT3V7%K cells succumbed to ALL, irrespective of disease
phenotype in the primary recipients (one AML and two
BLL). Thus, the myeloid FLT3""%%_expressing cells unex-
pectedly decreased in size, while the KMT2A-MLLT3-
expressing lymphoid cells increased to clonal dominance
(Supplementary Fig. 2F, G and Supplementary Data 2). This
suggests that the FLT3"*7%K_containing myeloid leukemia
population needs to be sufficiently large to expand in sec-
ondary recipients, either because they otherwise are out-
competed by the larger population of more easily engrafted
ALL cells, or because they themselves need to mediate the
permissive microenvironment that allows myeloid cells to
engraft. Similarly, in all but one of the secondary recipients
that received BM from leukemias expressing only KMT2A-
MLLT3 (two AML, one ALL, and one BLL), the disease
phenotype changed and myeloid cells did not engraft
(Supplementary Fig. 2H-J and Supplementary Data 2).

In the secondary recipient with maintained immuno-
phenotype (a BLL, h11.13-1), the myeloid cells unexpect-
edly expanded from 38% to close to 50% (Fig. 1d and
Supplementary Data 2). This suggested that the myeloid
cells had acquired a de novo mutation that allowed serial
transplantation, similar to what was observed for
FLT3V570K  Strikingly, targeted sequencing of AML-
associated genes on hCD45" BM from this mouse
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identified a KRASY"?" in 34% of the cells. Resequencing of
hCD457CD19 CD33" and hCD457CD197CD33~ BM
showed that KRAS®*P was present exclusively in the
myeloid population and based on the variant allele fre-
quency of 51%, that all cells carried the mutation (Fig. 1d
and Supplementary Table 1, 2). Further, KRAS®"?" likely
arose independently in h11.13-1 as no mutation was iden-
tified, at the level of our detection, in the primary (h11.13)
or in a separate secondary recipient (h11.13-2) from the
same primary mouse (h11.13) that developed ALL (Sup-
plementary Table 2 and Supplementary Data 2).

Gene expression profiling (GEP) followed by principal
component analysis (PCA) showed that the leukemias
segregated based on their immunophenotype, with an evi-
dent separation between leukemias and normal hemato-
poietic cells (Fig. 2a, Supplementary Fig. 3A, B, and
Supplementary Table 3). All leukemias expressed high
levels of known KMTZ2A-R target genes and showed
enrichment of gene signatures associated with primary
KMT2A-R leukemia, indicating that they maintain a GEP
representative of human disease (Supplementary Fig. 3C, D
and Supplementary Data 3—6). In line with the hypothesis
that KMT2A-MLLT3 DPL cells are ALL cells with aberrant
CD33 expression, they clustered closely with ALL cells.
Both populations expressed high levels of ALL-associated
cell surface markers and lymphoid transcription factors
(Fig. 2a and Supplementary Fig. 3B, E-H). Further, CD33
and other AML-associated cell surface markers and key
myeloid transcription factors, all showed lower expression
in DPL cells as compared with normal myeloid- and AML
cells (Supplementary Fig. 3G-I).

By correlating the GEPs of the xenograft leukemias to
those of normal hematopoietic cells [11], DPL and ALL
were found to resemble normal common lymphoid pro-
genitors (CLPs) and AML cells normal GMPs (Fig. 2b).
Further, ALL and DPL cells had significantly higher
expression of the transcription factor CEBPA as com-
pared with normal lymphoid cells which lacked CEBPA
expression (Fig. 2c). CEBPA drives myeloid programs
and is expressed in most hematopoietic progenitors, in
particular in GMPs, with CLPs lacking CEBPA expres-
sion (Fig. 2c) [11]. Finally, to link the GEPs of our
xenograft leukemias to those of pediatric KMT2A-R
leukemia, we utilized a dataset of pediatric B-cell pre-
cursor ALL (BCP-ALL) [12]. Multigroup comparison
visualized by PCA showed that KMT2A-MLLT3 DPL
and ALL mainly resembled KMT2A-R BCP-ALL
(Fig. 2d), again highlighting that the xenograft leuke-
mias resemble human leukemia.

We next studied the transcriptional changes induced by
FLT3Y7%% in  KMT2A-MLLT3 AML cells. Gene set
enrichment analysis (GSEA) revealed enrichment of gene
sets connected to the Myc-transcriptional network, cell
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Fig. 2 DPL cells are ALL cells with aberrant CD33 expression.
a Hierarchical clustering based on multigroup comparison of myeloid
CD19 CD33" leukemia cells from KMT2A-MLLT3 4+ MSCV-GFP
(KM-CD33) and KMT2A-MLLT3 + FLT3Y7°K (KM + FLT3"*7°K.
CD33), lymphoid CD197CD33~ leukemia cells from KMT2A-
MLLT3 +MSCV-GFP (KM-CD19), and double-positive CD19"
CD33" leukemia cells from KMT2A-MLLT3 +MSCV-GFP (KM-
CD19,CD33), as well as normal myeloid- CD197CD33" (normal
CD33) and lymphoid CD19*CD33~ (normal CD19) cells from
MSCV-GFP + MSCV-mCherry using 637 variables (P =2.2e" ",
FDR =4.9¢™ ). b Supervised (1500 variables, P=3.6e"*, FDR =
3.1e73) PCA based on human hematopoietic stem cells (HSC), mul-
tipotent progenitors (MPP), lymphoid-primed multipotent progenitors
(LMPP), common myeloid progenitors (CMP), granulocyte—

cycle, and proliferation when compared with KMT2A-
MLLT3 AML (Supplementary Data 7). Similar to our pre-
vious findings in a syngeneic KMT2A-MLLT3 mouse model
[2], the Myc-centered program [13] was not linked to the
pluripotency network (Supplementary Fig. 4A and Sup-
plementary Data 8, 9). Since FLT3 mutations activate
mitogen-activated protein kinase (MAPK) signaling [14],
we investigated if FLT3"%°K increased expression of MEK/
ERK-pathway genes, by studying the expression of known

macrophage progenitors (GMP), and common lymphoid progenitors
(CLP) [11]. Samples with leukemia cells from KM-CD33, KM +
FLT3"7K.CD33, KM-CD19, and KM-CD19,CD33 were inserted into
the same PCA (still based solely on the normal populations [11]),
revealing that AML cells mainly resembled GMPs and that both ALL
and DPL mainly resembled CLPs. ¢ CEBPA expression (FPKM log2)
within sorted leukemia, normal populations, and within HSC, MPP,
LMPP, CMP, GMP, CLP, MEP, monocytes, and B cells [11].
d Supervised (1501 variables, P = 3.3¢”'°, FDR = 3.1¢ ) PCA based
on pediatric BCP-ALL with ETV6-RUNX]I, high hyperdiploid (HeH),
TCF3-PBX1, or KMT2A-R [12]. Samples with leukemia cells from
KM-CD19 and KM-CD19,CD33 were inserted into the same PCA
(still based solely on the pediatric BCP-ALL populations [12]). Mann—
Whitney U test used in (c), *P <0.05, **P <0.01, ns = not significant

transcriptional output genes and negative feedback reg-
ulators of the pathway [15]. Indeed, enrichment of MEK/
ERK-associated genes was evident in FLT3"57K_expressing
cells, suggesting that FLT3"%K allows cells to overcome
normal feedback regulation, leading to sustained signaling
[15] (Supplementary Fig. 4B). Finally, FLT3N676K-expres-
sing AML showed preserved transcriptional changes to
those seen in infant KMT2A-AFF1 ALL with activating
mutations [1] (Supplementary Fig. 4C). Thus, FLT3V575K

SPRINGER NATURE
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may circumvent the cytokine dependence seen for myeloid
cells in immunodeficient mice by providing constitutive
active signaling promoting cell proliferation, likely through
the MAPK/ERK pathway.

Herein, we demonstrate that co-expression of KMT2A-
MLLT3 and FLT3"%% in human CB cells primarily causes
AML and thus alters the lineage distribution of KMT2A-
MLLT3-driven leukemia. AML could only be serially
transplanted with maintained immunophenotype in the
presence of FLT3"%/%K This is consistent with the idea that
activated signaling allows myeloid cells to more efficiently
engraft and maintain their self-renewal. In agreement, we
identified a de novo KRAS*P in myeloid KMT2A-MLLT3-
expressing cells that had expanded upon secondary trans-
plantation. Altogether, this shows that constitutively active
signaling mutations can substitute for external factors and
influence the phenotype of the developing KMT2A-R leu-
kemia, at least in xenograft models.
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