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Abstract

Although significant advances in experimental high throughput screening (HTS) have been made 

for drug lead identification, in silico virtual screening (VS) is indispensable owing to its unique 

advantage over experimental HTS, target-focused, cheap, and efficient, albeit its disadvantage of 

producing false positive hits. For both experimental HTS and VS, the quality of screening libraries 

is crucial and determines the outcome of those studies. In this paper, we first reviewed the recent 

progress on screening library construction. We realized the urgent need for compiling high-quality 

screening libraries in drug discovery. Then we compiled a set of screening libraries from about 20 

million druglike ZINC molecules by running fingerprint-based similarity searches against known 

drug molecules. Lastly, the screening libraries were objectively evaluated using 5847 external 

actives covering more than 2000 drug targets. The result of the assessment is very encouraging. 

For example, with the Tanimoto coefficient being set to 0.75, 36% of external actives were 

retrieved and the enrichment factor was 13. Additionally, drug target family specific screening 

libraries were also constructed and evaluated. The druglike screening libraries are available for 

download from https://mulan.pharmacy.pitt.edu.

Graphical Abstract

1. INTRODUCTION

It is a challenging task to turn a new chemical compound into a real drug. First, a 

developable drug lead targeting the right protein or nucleic acid receptor must be discovered. 
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A developable drug lead is then optimized to improve its activity of inhibition, selectivity 

against other targets, and its absorption, distribution, metabolism, excretion (ADME), and 

toxicity properties prior to the clinical trials.

Virtual Screening.

In modern drug discovery, high throughput screening is becoming an indispensable approach 

to identify drug leads. Compared to HTS, virtual screening is another technique which is 

complementary to experimental HTS. Although frequently produce false positives, VS is 

widely used because of its unique features, such as drug target-relevant, cheap, and efficient.

Virtual screening is a widely used technique to enrich developable drug leads in computer-

aided drug design. A commonly used strategy in VS is the so-called hierarchical screenings,
1,2 in the spirit of achieving both accuracy and efficiency. The basic idea of hierarchical 

screenings is to apply multiple filters to enrich the hits sequentially, with the efficient filters 

applied in the early stages and the more advanced and time-consuming filters applied in the 

later stages. Only the hits of the current screening enter the next round. The most efficient 

filters include those based on 2D-substructure, molecular fingerprints, and molecular shapes; 

less efficient filters include pharmacophore models and regular molecular docking; the most 

advanced filters include molecular docking using accurate scoring functions (such as the 

Glide extra precision docking scoring function3) and free energy-based methods (such as 

MM/GBSA and MM/PBSA4–8). We have successfully applied this strategy to identify drug 

leads for HIV-1 RT.1 An alternative screening strategy is parallel screening,2 where a set of 

docking screenings are performed in parallel using several complementary methods and the 

best hits ranked according to each individual method are combined for biological testing.

Virtual Screening Filters.

The VS filters are a key component of VS studies, which can loosely be classified into two 

categories depending on if the drug target information is used or not. The ligand-based 

screenings utilize known bioactives to define queries for VS; on the contrary, the structure-

based screenings measure how tight a compound interacts with the drug target at the binding 

site. Molecular docking is the most widely used structure-based filter. Of course, structure-

based pharmacophores9 and de novo design10 also rely on the structure information on 

protein or nucleic acid targets.2

The ligand-based filters, which are typically much cheaper compared to the structure-based 

ones, include substructures,11,12 topological indexes,13 molecular fingerprints,14 shape15 and 

electrostatic16 properties, and pharmacophore models.17,19 Li et al. developed a shape-based 

method called USR (ultrafast shape recognition) to identify potential drug leads. In about 2 

s, 93.9 million 3D conformers expanded from 23.1 million purchasable molecules are 

screened.19 We recently constructed a set of molecular fingerprint-based artificial neural 

network (FANN) models for virtual screening of large diverse databases.20 Using 1361 

ligands of cannabinoid receptor 2 as the training set, a FANN-QSAR model was derived and 

applied to screening a large NCI database to identify novel compounds bound to the CB2 

receptor. The screening led to the discovery of several compounds which have CB2 binding 

affinities ranging from 6.70 nM to 3.75 μM.

Wang et al. Page 2

J Chem Inf Model. Author manuscript; available in PMC 2019 September 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Drug likeness is widely used to filter out those compounds unlikely to be drugs. Lipinski’s 

“Rule of 5” is the most famous drug likeness filter ever applied in virtual screening. Other 

popular molecular properties for characterizing drug likeness include polar surface area 

(PSA) and polar molecular volume (PMV). It was reported that 90% of orally bioavailable 

non-CNS drugs had a PSA below 120 Å2, and the criterion was dropped to 80 Å2 for CNS 

drugs.21 QSAR models can also serve as a filter in VS.22–25 A QSAR-based filter is widely 

applied in the drug lead optimization phase.

Screening Libraries.

Another key component of VS and experimental HTS is the screening library construction. 

There are two types of screening libraries to be applied in different phases of drug discovery. 

In the lead-identification phase, one wants the screening compounds structurally diverse so 

that novel drug leads can be identified; while in the sequential lead-optimization phase, one 

wants the screening compounds structurally akin to the drug lead to facilitate the 

construction of the structure–activity relationship. Ideally, the compounds in both kinds of 

libraries are druglike. Even though the current screening compounds only occupy a very tiny 

fraction of the entire chemical space which is estimated to be more than 1060 molecules, the 

registered compounds are more than 27 million.26,27 For example, the ZINC database28 

collects more than 18 million commercially available compounds that satisfy Lipinski’s 

Rule of 529 at the time this paper was being written. It is not practical to screen all of them 

for a drug target both in the in vitro/in vivo HTS experiments and in the in silico virtual 

screenings. Therefore, screening compound libraries, which only collect fractions of the 

total available compounds, must be constructed for either HTS or VS studies. The outcome 

of an experimental HTS or a VS study strongly depends on the quality of the screening 

library.

There are a lot of compound libraries which are widely used in VS studies. The following 

are only some representatives: ZINC database,28 Pubchem,30,31 NCI open database,32 

ChemDiv (www.chemdiv.com), Specs (www.specs.net), Chembridge 

(www.chembridge.com), ChemSpider, ChemNavigator (http://www.chemnavigator.com), 

etc. Most of the screening libraries collect a great number of compounds. Except for the 

most efficient filters, it is impractical to screen all the entries.

To construct diverse screening libraries, molecular diversity must be evaluated. A variety of 

molecular descriptors are applied to define a diversity metric, such as molecular fingerprints,
14 topology index,13 and physicochemical properties.33 Recently, Koutsoukas et al. 

benchmarked a set of 13 molecular descriptors in assessing the diversity of chemical 

libraries.34 The descriptor performance was assessed by the coverage of bioactivity space. It 

was found that Bayes Affinity fingerprints35 and ECFP414 outperform others by retrieving 

more actives than random sampling.

Diverse screening libraries are then constructed by removing redundancy using a set of 

algorithms, including the dissimilarity-based method, cell-based method, cluster-based 

method, and optimization-based method.36,37 Principal component analysis was routinely 

applied to decrease the dimensionality of descriptor matrix and to extract the main variation 

of the descriptor data.38 We recently developed a Compound Library Acquisition and 
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Prioritization (CAP) algorithm to construct diverse screening libraries.37 The CAP algorithm 

was established using the Euclidean distances of the BCUT39 chemical space. It was 

demonstrated that the CAP-selected subsets of an existing in-house screening library have 

their overall chemical diversities enhanced, as measured by using chemistry-space cell 

partition statistics and a similarity index.

Schneider et al. applied a self-organizing map (SOM) to construct diverse screening 

libraries.40 According to the principle of SOM, “neuron vectors” are positioned in the data 

space such that the distribution of data points is represented by the distribution of neuron 

vectors. A training procedure, such as unsupervised learning, is needed to achieve this. 

SOMs cover diverse fields of drug discovery, such as scaffold-hopping, repurposing, and 

screening library design. Noeske et al. developed a SOM by using pharmacophore 

descriptors to map druglike chemical space.41 Naderi et al. recently presented a graph-based 

approach for constructing target-focused screening libraries.42 They developed an exhaustive 

graph-based search algorithm to conduct virtual new compound syntheses by reconnecting 

the building blocks according to their connectivity patterns. However, the acquisition of the 

virtual compounds may be an issue. Sukuru et al. presented an approach based on extended 

connectivity fingerprints to carry out diversity selection on a per plate basis.43 They found 

that a fingerprint-diverse subset of 250 K compounds selected from a 4-fold larger screening 

deck achieved significantly higher hit rates for most of the screenings. Recently, Horvath et 

al. described a method of constructing a general-purpose screening library.38 The work 

represented a collaborative effort to construct the general-purpose screening library of EU-

OPENSCREEN. As this screening is not exclusively targeted at drug discovery, loose 

compliance to druglikeness criteria was applied during the library construction. Mok and 

Brenk established a workflow to generate a target-specific screening library.44 They mined 

the ChEMBL database to assemble an ion channel-focused screening library.

Application of VS in Drug Discovery.

VS is routinely applied in pharmaceutical industry to identify novel and optimize the known 

drug leads. Recently, applications of VS to a family of receptors have emerged. Perez-

Regidor et al. reviewed the latest effort of applying VS to search novel chemical entities for 

a set of Toll-like receptor (TLR) modulators, which include TLR2, TLR3, TLR4, TLR7, and 

TLR8.45 The TLR family proteins are interesting drug targets as they can recognize a wide 

variety of pathogens. Senderowitz and Marantz conducted more than 10 docking VS to 

identify novel compounds targeting GPCRs using the ab initio derived GPCR models.46

Human histamine H4 receptor (H4R) is a key player in inflammatory responses. Istyastono 

et al. recently explored the possibilities and challenges of discovering compounds against 

H4R by performing structure-based virtual screening (SBVS). Of the 37 tested compounds, 

9 fragments had affinities between 0.14 and 6.3 μM against the H4R target. They used the 

area under the ROC curves to evaluate a set of screening studies.47 Ballester et al. conducted 

hierarchical virtual screening to discover new molecular scaffolds for antibacterial drug 

leads.48 Using the combination of shape-based method for rapid screening and molecular 

docking for reliable screening, they were able to explore truly large and diverse databases. 

Fifty new active molecular scaffolds were identified from their VS studies.
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Hierarchical VS has been routinely applied in our drug design projects. In the HIV-1 RT 

project, pharmacophore modeling, molecular docking, and binding free energy calculations 

using MM-PBSA were applied to identify novel drug leads targeting at the non-nucleoside 

binding site.1 In another project, we discovered the first small molecule that inhibits 

p18INK4C by using the computational chemical genomics screening approach and stem cells 

specific chemogenomics knowledgebase.49 p18INK4C, a potent negative regulator of human 

hematopoietic stem cell (HSC) self-renewal, is a member of the cyclin-dependent kinase 

inhibitory proteins. In the transient receptor potential vanilloid type 1 (TRPVl) project, we 

developed a five-point pharmacophore model using known antagonists and constructed a 

homology model for docking-based screening. The in silico screenings using both types of 

filters yielded a set of promising hits and some were confirmed as hTRPV1 antagonists in 

assay.50

Above we briefly reviewed the VS technique with an emphasis on screening library 

construction. More reviews on VS can be found in other recent publications.51–54 The 

reviews on the latest advances of molecular docking can be found elsewhere.55–58

As a summary, virtual screening has become a daily practice in modern drug discovery. The 

screening libraries which collect millions of compounds need to be condensed to be applied 

in VS studies. Most effort is focused on developing structurally diverse libraries and target-

specific libraries. However, general-purpose druglike screening libraries, which have 

moderate sizes and are suitable for daily virtual screenings of arbitrary drug targets, are 

under construction. The objective of this work is to construct and evaluate this kind of 

screening libraries.

In the following, we first justify our effort of applying known drugs to enrich screening 

compounds by conduct a survey on drug–target interactions. Next, a set of generic and 

target-specific screening libraries have been compiled using known drugs. Last, the 

screening libraries have been critically evaluated using an external library of actives. 

Recommendations on how to use those screening libraries are also discussed.

2. METHODS

Drug–Target Interaction Analysis.

How should a VS be evaluated and how many hits should be selected to do a bioassay? Of 

course, the answer to this question is target-dependent. We hope to provide some hints to 

this question by performing a survey of drug–target interactions. A major challenge in drug 

repositioning is to identify interactions between known drugs and targets. In silico prediction 

of drug–target interaction (DTI) can speed up the process of identifying novel DTIs by 

providing the most promising DTI candidates to minimize the larger scale expensive and 

time-consuming experimental work.

In the following, we conducted a survey on DTIs collected by the Drug Bank Database.59,60 

As a unique bioinformatics and cheminformatics resource, the DrugBank database combines 

detailed drug data with comprehensive drug–target information. The data used in the present 

study was released on April 1, 2017 (version 5.0.6). The drug–target interaction data were 
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extracted from the “Drug Target Identifiers” table under the “Protein Identifiers” category on 

the DrugBank website (https://www.drugbank.ca/releases/latest#protein-identifiers). Other 

databases that collect DTIs include the TTD (Therapeutic Target Database).61

Special attention was paid to some drug target classes, including G-protein coupled 

receptors (GPCR), ion channels, kinase, and protease, which comprise a large fraction of the 

targets of the approved and investigational drugs.62 GPCRs play prominent roles in many 

physiological processes, which makes them ideal targets to be regulated by small molecule 

drugs.63 Owing to the key roles in many bioprocesses that involve rapid changes in cells, ion 

channels are another type of popular drug targets for pharmacological intervention. Those 

bioprocesses include cardiac, skeletal, and smooth muscle contraction, T-cell activation, 

epithelial transport of nutrients and ions, and pancreatic beta-cell insulin release.64 In many 

cellular processes, such as cell cycle progression and signal transduction, kinases play a key 

role.65 Proteases play an important role in many signaling pathways, and they are the 

prominent modulators of many diseases, such as cardiovascular disorders and cancer. 

Proteases are also drug targets for combating many parasites and viruses.66

The members of the four prominent target classes were determined using multiple UniProt 

sources. First, the <keyword> child elements of each protein entry in the UniProt XML file 

were identified. A protein was determined to be a GPCR if the “id” attribute of a <keyword> 

element was “KW-0297”. Similarly, the protein belonged to the ion channel family if the 

“id” attribute was either KW-0107, KW-0407, KW-0631, KW-0851, KW-0869, KW-0894, 

or KW-1071; the protein belonged to the kinase family if the “id” attribute was either 

KW-0418, KW-0723, or KW-0829; and the protein was a member of protease family if the 

“id” attribute was either KW-0031, KW-0064, KW-0121, KW-0224, KW-0482, KW-0645, 

KW-0720, KW-0788, or KW-0888.

Second, a protein was also recognized as a GPCR if it was listed as a 7- transmembrane G-

linked receptor (http://www.uniprot.org/docs/7tmrlist). Similarly, a protein was determined 

to be a kinase if its name appears in http://www.uniprot.org/docs/pkinfam, or a protease, if 

its name shows in http://www.uniprot.org/docs/peptidas.

Screening Library Construction.

The screening libraries were compiled from the druglike data set of the ZINC database.28 In 

total, 18 855 206 entries were downloaded. All the ZINC entries obey the Lipinski’s Rule of 

5 without any violation. Then the FP2 fingerprints were generated using the OpenBabel 

software.67 2D-similarity searches were performed using drug molecules as queries. A ZINC 

molecule was recognized as a hit when the Tanimoto coefficient between its FP2 fingerprint 

and any drug molecule’s FP2 fingerprint was equal to or larger than a threshold. A drug 

molecule belongs to one of the three categories: approved drug (AD, 1596), investigational 

drug (ID, 486), and experimental drug (ED, 4437). For each drug category, the number in 

the parentheses is the number of drugs for that category. The numbers of drugs belonging to 

the four major drug target classes are listed in Table 1. In this work, a series of structural 

similarity (SS) thresholds, 85, 80, 75, 70, 65, 60, 55, and 50%, were applied to prioritize the 

screening libraries.
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Evaluation of VS Studies.

The success of VS is determined by the ability of VS filters to distinguish actives from 

inactives through ranking compounds.68 The ideal performance of VS is that all actives but 

not one inactive was selected, which is basically impractical. The performance of a VS is 

evaluated using a set of metrics and statistical parameters including hit rate (HR), 

enrichment factor (EF), true positive rate (TPR), false positive rate (FPR), false discovery 

rate (FDR), receiver operator characterization (ROC), and the resulting area under the curve. 

Other parameters, such as precision, recall, accuracy, F1 score, and Matthews correlation 

coefficient (MCC) are also applied to evaluate the performance of virtual screenings.69 The 

two most important metrics of evaluating the performance of a VS, HR, and EF, are defined 

below. Hit percentage (HP) is applied to measure how well a VS filter condense a screening 

library.

HR= m
M (1)

HP= n
N (2)

EF=HR/HP= m
M × N

n (3)

where M is known actives and m is known actives being selected as hits. N and n are total 

numbers of compounds in a screening library and number of hits, respectively. Unlike HP, 

HR and EF are calculated using known actives. HR measures the ratio of known actives 

being selected as hits. EF measures the ratio of the probability of selecting a true active from 

hits to the probability of selecting a true active randomly from the whole database. With HR 

and EF, one can calculate the hit rate for a random screening library of the same size: 

HRrandom = HR/EF.

Critical Evaluation of the Screening Libraries.

The developed screening libraries were assessed by a set of test data sets of bioactives. All 

the bioactives, which are more potent than 10 μM against at least one target, were extracted 

from the target subset of the ZINC database.28 The entries which are duplicated with any 

drug molecules were eliminated from the test data sets.

3. RESULTS

Drug–Target Interaction Analysis.

There are 7874 drug entries and 4704 drug targets in the Drug Bank as of May 2017. In 

total, 20 426 drug–target pairs were collected and 6854 drug entries and 4277 drug targets 
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were involved. After the further elimination of drugs not having structures, 6248 drugs were 

left which cover 4046 drug targets. The total number of DTIs drops to 19 057. On average, 

each drug corresponds to 3.0 drug targets and each drug target corresponds to 4.7 drugs. The 

total numbers of drugs, targets, and drug–target pairs for the approved, investigational, and 

experimental drugs are summarized in Table 1.

The total number of approved drugs of the four major drug target classes is 975, which 

accounts for 61% of all the approved drugs. This percentile slightly drops to 55% in the 

investigational drugs, and it further drops to 39% in the experimental drugs. It is worthy to 

point out that the number of ED targeting proteases and kinases dramatically outnumber the 

numbers of AD and ID, reflecting the fact that proteases and kinases are becoming hot drug 

targets today. It is pointed out that there are some overlaps between the drugs of the four 

different classes. For the GPCR category, there are 85, 223, and 10 drugs overlapped with 

the ion channel, protease, and kinase categories, respectively. The numbers of overlapped 

drugs are 71, 16, and 18 between ion channel/protease, ion channel/kinase, and protease/

kinase, respectively. When only approved drugs are considered, the numbers of overlapped 

drugs are much fewer: there are 77, 3, 7, 6, 7, and 4 drugs overlapped between GPCR/ion 

channel, GPCR/protease, GPCR/kinase, ion channel/protease, ion channel/kinase, and 

protease/kinase, correspondingly.

Useful information on the drug discovery trends can be revealed by studying Table 1 and 

Figure 1. On average every GPCR target has 16.4 drugs, and every ion channel target has 

10.1 drugs, both are significantly more than the average of 4.7 for all drug target classes. 

Interestingly, the number of experimental GPCR drugs, 35, is much smaller than that of 

investigational GPCR drugs. On the contrary, there are much more experimental than 

investigational drugs for the protease and kinase drug targets.

The number of targets a drug molecule has is quite different for the approved, 

investigational, and experimental drugs, as demonstrated in Figure 1A. As to specific target 

classes, those numbers do not share common patterns at all. The protease and kinase drugs 

have fewer drug targets than the GPCR and ion channel drugs.

As suggested by Table 1 and Figure 1, a drug molecule is likely associated with many drug 

targets; therefore, it is a good idea to identify those drug molecules that may interact with 

the drug target in study. Moreover, more potential drug leads may be identified from 

screening libraries which collect structurally similar compounds to known drugs. 

Constructing a set of prioritized druglike screening libraries is the objective of this work.

Screening Library Construction.

It is a dogma that the properties of a molecule are determined by its structure, and as such, 

similar structures tend to bear similar properties.70 This similarity principle is the basis of 

the similarity searches. The higher the similarity between two compounds, the higher the 

chance the two compounds share the similar bioactivities for a drug target.

The performance of fingerprint-based screenings is summarized in Table 2. The efficiency of 

a virtual screening, which is measured by HP, strongly depends on the SS threshold. With 
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the SS threshold of 85%, only less than 1% of entries were selected; while the efficiency is 

dropped to 50% (only 50% of entries were filtered out) with the SS threshold of 50%. In the 

following text, we labeled the screening libraries using the threshold; for example, SS85 is 

the screening library retrieved using the SS threshold of 85%.

With the continually increased computer power, it is practical to screen a database with 200 

000 or more entries using regular docking filters. Taking the docking program of Glide as an 

example,3 Glide can screen 10 000 to 20 000 molecules for a typical drug target with one 

CPU core using the standard precision scoring function. As our screening libraries are 

prioritized, one should always start from SS85, followed by SS80, SS75, and so on.

Besides the general-purpose screening libraries, target class-specific screening libraries were 

also constructed. It is not a surprise that the screening efficiencies are much higher (smaller 

HP values) for all four drug target classes (Table 3).

The average and maximum hit numbers of all the fingerprint-based screenings are listed in 

Tables S1–S4. Studying those tables helps us estimate how many hits we expect to retrieve 

for a given SS threshold. There are some orphan drug molecules which are not well 

represented in the ZINC screening library since zero hit was retrieved for them even using a 

very low SS threshold of 50%. The percentages of zero-hit drugs are listed in Table S5. 

Other drugs have hits from one to thousands. We allocated the drugs into 17 groups which 

have hits of 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11–20, 21–50, 51–100, 101–200, 201–500, 501–1000, 

and 1001 and above. The distributions of drugs among the 17 groups are demonstrated in 

Figures 2–5 for different SS thresholds. Although the distribution patterns are different from 

one SS threshold to another and from one drug category to another, the most abundant 

groups are 11–20, 21–50, and 51–100 hits when SS thresholds are larger than 70%. The 

distributions of drugs among the 17 groups for SS thresholds of 65, 60, 55, and 50% are 

demonstrated in Figures S1–S4.

Critical Evaluation of the Screening Libraries.

In total, we collected 5847 bioactives and most of them were tested on human drug targets. 

Subsets of the bioactives targeting at GPCR, ion channel, kinase, and protease were 

compiled. Interestingly, only four compounds targeting proteases were left after the removal 

of the duplicated entries. Details on the composition of the test data sets are provided in 

Table S6.

Table 4 lists the HR and EF for four drug sets using eight SS thresholds. The relationships 

between hit rates versus SS thresholds and enrichment factors versus SS thresholds are 

shown in Figure 6. The overall quality of the screening libraries is satisfactory. For example, 

the enrichment factors are 36.9, 53.5 and 55.5, 24.8 for SS85 of drug (all drugs), AD 

(approved drugs), AD_ID (approved and investigational drugs), and ED (experimental 

drugs), respectively. The corresponding hit rates are 24.1, 14.2, 15.2, and 13.0% for the four 

SS85 sets. For the drug SS75 set, although EF is dropped to 12.9, HR increases to 36.1%. To 

seek a balance between HR and EF, we would recommend drug SS75 and AD SS70 (HR = 

25.4, EF = 10.7) for virtual screening studies. The HR and EF of the screening libraries 
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against “Human”, a subset which collects 4078 actives of human drug targets, are listed in 

Table S7.

The screening performance for specific drug target classes was also investigated (Tables S8–

S11). The HR versus SS threshold plots are shown in Figure 7, and the EF vs SS threshold 

plots are shown in Figure 8. Although the target class-specific screening libraries usually 

have larger enrichment factors (Figure 8), the hit rates are lower than the general-purpose 

screening libraries (Figure 7), such as Drug SS75 and AD SS70. The striking differences 

between the general-purpose and target-class-specific screening libraries occur when SS 

thresholds are larger than 0.8. It is also noted that the patterns of HR ~ SS threshold and EF 

~ threshold plots may not be representative for the protease class, as there are only four 

actives of protease targets left after those overlapping with the known drugs are excluded.

4. DISCUSSION

Drug–Target Interaction Prediction.

The above drug–target interaction analysis was based on the experimentally confirmed 

drug–target interactions. It is of great interest to identify unknown drug-target interactions. 

In silico prediction of DTI promotes drug repurposing and facilitates us to explore the 

potential side effects of a drug due to multiple drug–target interactions. DTIs also provide 

insights about potential drug–drug interactions. Recently, Wen et al. developed a deep-

learning-based method to predict drug-target interactions.71 Using both the extended 

connectivity fingerprints of drugs and the protein sequence composition (the protein 

sequence compositions consist of amino acid composition, dipeptide composition, and 

tripeptide composition) of drug targets as descriptors, they built up a deep-belief-network 

(DBN) model which outperforms the other state-of-the-art methods. The DBN model can be 

further applied to predict whether a new target interacts with some existing drugs or whether 

a drug molecule can bind to some existing targets.

We developed an online tool, TargetHunter, to identify potential drug targets for a chemical 

compound.72 The basic idea is to predict ligand–target interactions by comparing a query 

compound with bioactives for which their drug targets are well documented. The bioactive 

database TargetHunter explored is ChEMBL,73 which collects millions of bioactivity data 

covering more than 8000 drug targets.72 An algorithm, called TAMOSIC (targets associated 

with its most similar counterparts) was developed by us to assign the targets which are 

associated with the compounds most similar to a query compound as the potential drug 

targets of the query compound.72 The case studies demonstrated that Target-Hunter was a 

promising technique for new target identification or repurposing drugs.

Further Development on Screening Library Construction.

Screening library construction plays a critical role in both HTS experiments and virtual 

screenings. There are two types of screening libraries, diverse screening libraries for drug 

lead identification and focused libraries for drug lead optimization. The former may not be 

druglike as they are compiled to maximize the structure diversity or molecular property 

diversity. The target-focused library using a limit number of known actives might not be able 

Wang et al. Page 10

J Chem Inf Model. Author manuscript; available in PMC 2019 September 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



to cover other potential hits. On the contrary, the druglike data sets constructed in this work 

have the following advantages. First of all, those screening libraries are druglike as they are 

enriched by known drugs; second, those screening libraries, although belong to focused 

libraries, have considerable diversity as they are enriched using all kinds of known drugs. 

Therefore, the screening libraries developed in this work are general-purpose screening 

libraries which can be applied in both drug lead identification and optimization for arbitrary 

drug targets. With our screening libraries, one may identify more actives from VS for the 

target in study, as the molecules enriched by the drugs of the other drug targets may be 

potential hits of the drug target in study, as revealed by the complicate DTIs between drugs 

and drug targets. The advantage of our general-purpose screening libraries is even more 

obvious for new drug targets for which there are no or only few known actives.

Although the screening libraries constructed in this work are mainly for VS studies, they 

may provide useful hints on compound library construction for experimental HTS because 

of the following reasons. First, all the entries of the screening libraries are commercially 

available; second, the compounds of screening libraries (especially Drug SS80 and the AD 

SS75) are druglike; last but not least, a compound library for experimental HTS is usually 

constructed for multiple drug discovery projects.

Certainly, it is worthwhile to continue to improve the enrichment factors of the screening 

data sets. We plan to further condense the screening data sets by removing those that are 

least druglike. The drug likeness score of a compound is a function of both molecular 

properties (aqueous solubility, human oral bio availability, human intestinal absorption, 

plasma protein binding, and other ADME and pharmacokinetic properties) and druglike 

fingerprints described by the building blocks of drugs and bioactives. Deng et al. proposed to 

use biological relevance to assemble screening libraries.69 The biological relevance score 

will also become a component of our drug likeness score. We are in the process of 

developing such a kind of druglike function.

The opposite trend is to include more compounds into the screening libraries. Natural 

products could be applied as queries to recruit compounds in the ZINC database. Gu et al. 

found that there was a large portion of overlap in chemical space between FDA-approved 

drugs and natural products.74 Therefore, we are planning to compile natural product-like 

screening libraries.

Wenlock et al. identified the trends in physio chemical properties that likely lead to a drug 

successful passes through clinical development and go to the market.75 Those physio 

chemical properties include aqueous solubility, logP (logarithm of octanol–water partition 

coefficient), molecular weight, numbers of hydrogen donors and acceptors, and so on. The 

drug likeness of a compound can be further measured by its ADME properties. Among the 

many ADME/PK properties, oral bio availability is particularly important for the orally 

administered drugs26,76–78

Besides the molecular properties, molecular scaffolds are widely used to measure the 

druglike score of a compound. We have developed a brutal-force algorithm to enumerate all 

the possible building blocks of a given molecule. Druglike scaffolds and fragments were 
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then identified and assigned drug likeness scores.26 Bemis and Murcko identified the 

molecular frameworks that are frequently found in the drug molecules of the Comprehensive 

Medicinal Chemistry (CMC) database.79 It is possible to build a drug likeness fingerprint 

using the results of building block analysis to facilitate screening library construction. We 

recently performed a large-scale analysis on the interaction of ligand fragments with 20 

ammonia acids.80 First, the small molecule binders of protein targets were extracted and 

dissected into fragments. Then, LigFrag-RPM, an algorithm matching the preference of 

ligand fragments and amino acid residues, was developed by comparing the profiles of the 

interactions between ligand fragments and the 20 proteinogenic amino acid residues. The 

LigFrag-RMP algorithm could serve as a filter to remove ineligible compounds in the 

screening libraries for a given protein target. In addition, the recent construction of an 

allosteric ligand fragment library by us provides promising venue to design functional 

allosteric modulators for GPCRs.81

5. CONCLUSION

In this work, a set of druglike data sets for virtual screenings have been constructed. These 

data sets have been prioritized and critically evaluated using a large data set of bioactives. 

Some data sets, particularly drug SS80 and AD SS75 are highly recommended to serve as 

general purpose screening libraries. These data sets can be used for both drug lead 

identification and drug lead optimization.
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ABBREVIATIONS USED

AD approved drugs

AD_ID approved and investigational drugs

ADME absorption, distribution, metabolism, excretion

CAP compound library acquisition and prioritization

DTI drug–target interaction

ED experimental drugs

EF enrichment factor

FANN fingerprint-based artificial neural network

FDR false discovery rate
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FPR false positive rate

HR hit rate

HTS high throughput screening

HP hit percentage

GPCR G-protein coupled receptors

ID investigational drugs

MCC Matthews correlation coefficient

MM/GBSA molecular mechanics/generalized Born surface area

MM/PBSA molecular mechanics/Poisson–Boltzmann surface area

PMV polar molecular volume

PSA polar surface area

QSAR quantitative structure–activity relationship

ROC receiver operator characterization

SOM self-organizing map

SS structural similarity

TPR true positive rate

TTD therapeutic target database

USR ultrafast shape recognition

VS virtual screening
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Figure 1. 
Summary of drug–target interaction. (A) Number of targets per drug. (B) Number of drugs 

per target.

Wang et al. Page 18

J Chem Inf Model. Author manuscript; available in PMC 2019 September 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Distributions of drug molecules (%) in 17 hit number groups. A molecule of the ZINC 

druglike data set is recognized as a hit if its 2D-similarity score against the query drug 

molecule is equal to or better than 0.85.
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Figure 3. 
Distributions of drug molecules (%) in 17 hit number groups. A molecule of the ZINC 

druglike data set is recognized as a hit if its 2D-similarity score against the query drug 

molecule is equal to or better than 0.80.
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Figure 4. 
Distributions of drug molecules (%) in 17 hit number groups. A molecule of the ZINC 

druglike data set is recognized as a hit if its 2D-similarity score against the query drug 

molecule is equal to or better than 0.75.
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Figure 5. 
Distributions of drug molecules (%) in 17 hit number groups. A molecule of the ZINC 

druglike data set is recognized as a hit if its 2D-similarity score against the query drug 

molecule is equal to or better than 0.70.

Wang et al. Page 22

J Chem Inf Model. Author manuscript; available in PMC 2019 September 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. 
Performance of virtual screenings for external actives (5847 entries) against screening 

libraries. (A) Hit rates. (B) Enrichment factors.
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Figure 7. 
Hit rates of virtual screenings for external target-specific active sets against general-purpose 

and target-class-specific screening libraries. (A) GPCR. (B) Ion channel. (C) Kinase. (D) 

Protease.
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Figure 8. 
Enrichment factors of virtual screenings for external target-specific active sets against 

general-purpose and target-class-specific screening libraries. (A) GPCR. (B) Ion channel. 

(C) Kinase. (D) Protease.
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Table 1.

Summary on the Total Entries of Drugs, Targets, and Drug–Target Pairs for All and Four Major Drug Target 

Classes

all AD ID ED

all no. drugs 6248 1596 486 4437

no. targets 4046 1858 774 2632

no. D-T pairs 19057 10387 2492 7679

GPCR no. drugs 559 474 135 35

no. targets 117 111 83 25

no. D-T pairs 1920 1759 426 53

ion channel no. drugs 407 277 55 103

no. targets 206 162 84 66

no. D-T pairs 2075 1794 234 165

protease no. drugs 1091 125 36 947

no. targets 246 93 60 193

no. D-T pairs 1388 237 78 1125

kinase no. drugs 758 99 43 644

no. targets 267 124 58 202

no. D-T pairs 1143 275 101 846

J Chem Inf Model. Author manuscript; available in PMC 2019 September 23.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Wang et al. Page 27

Ta
b

le
 2

.

L
is

t o
f 

th
e 

E
nt

ry
 N

um
be

rs
 a

nd
 H

it 
Pe

rc
en

ta
ge

s 
(%

) 
of

 G
en

er
al

-P
ur

po
se

 D
ru

gl
ik

e 
D

at
a 

Se
ts

dr
ug

A
D

A
D

_I
D

E
D

SS
no

. e
nt

ri
es

H
P

no
. e

nt
ri

es
H

P
no

. e
nt

ri
es

H
P

no
. e

nt
ri

es
H

P

85
12

31
92

0.
7

50
22

0
0.

3
51

60
2

0.
3

99
04

2
0.

5

80
25

58
61

1.
4

95
04

4
0.

5
99

01
4

0.
5

20
44

80
1.

1

75
52

92
76

2.
8

19
92

05
1.

1
21

00
71

1.
1

40
79

09
2.

2

70
10

96
00

3
5.

8
44

86
88

2.
4

47
99

25
2.

5
83

33
00

4.
4

65
21

65
86

4
11

.5
96

78
61

5.
1

10
51

01
0

5.
6

16
48

63
0

8.
7

60
39

49
71

1
20

.9
19

23
58

1
10

.2
21

09
27

7
11

.2
30

98
32

6
16

.4

55
65

93
07

3
34

.9
35

70
44

6
18

.9
38

88
54

2
20

.6
55

11
03

4
29

.2

50
95

60
61

8
50

.7
58

83
36

2
31

.2
62

88
14

6
33

.3
85

13
98

3
45

.1

J Chem Inf Model. Author manuscript; available in PMC 2019 September 23.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Wang et al. Page 28

Ta
b

le
 3

.

L
is

t o
f 

th
e 

E
nt

ry
 N

um
be

rs
 a

nd
 H

it 
Pe

rc
en

ta
ge

s 
(%

) 
of

 T
ar

ge
t-

Sp
ec

if
ic

 D
ru

gl
ik

e 
D

at
as

et
s

G
P

C
R

io
n

ki
na

se
pr

ot
ea

se

SS
no

. e
nt

ri
es

H
P

no
. e

nt
ri

es
H

P
no

. e
nt

ri
es

H
P

no
. e

nt
ri

es
H

P

85
25

59
5

0.
1

22
00

0
0.

1
95

73
0.

1
40

10
1

0.
2

80
44

67
3

0.
2

42
12

6
0.

2
17

67
7

0.
1

84
26

4
0.

4

75
96

74
1

0.
5

94
51

3
0.

5
36

47
1

0.
2

17
71

68
0.

9

70
23

19
63

1.
2

23
31

55
1.

2
83

74
6

0.
4

37
64

00
2.

0

65
55

73
28

3.
0

54
88

82
2.

9
19

73
94

1.
0

80
12

59
4.

2

60
12

34
29

1
6.

5
11

69
75

0
6.

2
46

77
69

2.
5

16
61

32
9

8.
8

55
25

05
66

8
13

.3
23

63
31

2
12

.5
11

61
05

4
6.

2
32

93
67

9
17

.5

50
42

93
28

4
22

.8
41

77
07

7
22

.1
26

76
62

9
14

.2
57

33
63

3
30

.4

J Chem Inf Model. Author manuscript; available in PMC 2019 September 23.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Wang et al. Page 29

Ta
b

le
 4

.

Pe
rf

or
m

an
ce

 o
f 

D
ru

gl
ik

e 
D

at
as

et
s 

ag
ai

ns
t a

n 
E

xt
er

na
l A

ct
iv

e 
Se

t w
ith

 5
84

7 
E

nt
ri

es

dr
ag

A
D

A
D

_I
D

E
D

SS
no

. h
it

s
H

R
E

F
no

. h
it

s
H

R
E

F
no

. h
it

s
H

R
E

F
no

. h
it

s
H

R
E

F

85
14

09
24

.1
36

.9
83

2
14

.2
53

.5
88

6
15

.2
55

.4
76

1
13

.0
24

.8

80
17

12
29

.3
21

.6
99

6
17

.0
33

.8
10

66
18

.2
34

.7
98

2
16

.8
15

.5

75
21

09
36

.1
12

.9
12

29
21

.0
19

.9
13

29
22

.7
20

.4
12

89
22

.0
10

.2

70
25

08
42

.9
7.

4
14

86
25

.4
10

.7
15

86
27

.1
10

.7
16

24
27

.8
6.

3

65
30

59
52

.3
4.

6
18

67
31

.9
6.

2
19

75
33

.8
6.

1
21

53
36

.8
4.

2

60
37

15
63

.5
3.

0
23

50
40

.2
3.

9
24

62
42

.1
3.

8
28

43
48

.6
3.

0

55
43

46
74

.3
2.

1
29

26
50

.0
2.

6
30

51
52

.2
2.

5
36

52
62

.5
2.

1

50
48

65
83

.2
1.

6
35

40
60

.5
1.

9
36

71
62

.8
1.

9
43

98
75

.2
1.

7

J Chem Inf Model. Author manuscript; available in PMC 2019 September 23.


	Abstract
	Graphical Abstract
	INTRODUCTION
	Virtual Screening.
	Virtual Screening Filters.
	Screening Libraries.
	Application of VS in Drug Discovery.

	METHODS
	Drug–Target Interaction Analysis.
	Screening Library Construction.
	Evaluation of VS Studies.
	Critical Evaluation of the Screening Libraries.

	RESULTS
	Drug–Target Interaction Analysis.
	Screening Library Construction.
	Critical Evaluation of the Screening Libraries.

	DISCUSSION
	Drug–Target Interaction Prediction.
	Further Development on Screening Library Construction.

	CONCLUSION
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Figure 6.
	Figure 7.
	Figure 8.
	Table 1.
	Table 2.
	Table 3.
	Table 4.

