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ABSTRACT

We present kilohertz-scale video capture rates in a transmission electron microscope, using a camera normally limited to hertz-scale acquisi-
tion. An electrostatic deflector rasters a discrete array of images over a large camera, decoupling the acquisition time per subframe from the
camera readout time. Total-variation regularization allows features in overlapping subframes to be correctly placed in each frame. Moreover,
the system can be operated in a compressive-sensing video mode, whereby the deflections are performed in a known pseudorandom
sequence. Compressive sensing in effect performs data compression before the readout, such that the video resulting from the reconstruction
can have substantially more total pixels than that were read from the camera. This allows, for example, 100 frames of video to be encoded
and reconstructed using only 15 captured subframes in a single camera exposure. We demonstrate experimental tests including laser-driven
melting/dewetting, sintering, and grain coarsening of nanostructured gold, with reconstructed video rates up to 10 kHz. The results exemplify
the power of the technique by showing that it can be used to study the fundamentally different temporal behavior for the three different
physical processes. Both sintering and coarsening exhibited self-limiting behavior, whereby the process essentially stopped even while
the heating laser continued to strike the material. We attribute this to changes in laser absorption and to processes inherent to thin-film
coarsening. In contrast, the dewetting proceeded at a relatively uniform rate after an initial incubation time consistent with the establishment
of a steady-state temperature profile.

VC 2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5115162

INTRODUCTION

Transmission electron microscopy (TEM) is increasingly beset by
data-throughput limitations, dictated in part by readout rates of TEM
cameras. Part of the reason is the rise of TEM techniques yielding
data of more than two dimensions, with additional dimensions includ-
ing time (dynamic, ultrafast, and in situ TEM), tilt angle or depth
(tomography), energy (electron energy loss, energy-dispersive x-ray,
and cathodoluminescence spectrum imaging), and two-dimensional
scattering angles [the field most generally called 4D-STEM, including
scanning TEM (STEM) diffraction, orientation imaging, electron pty-
chography, and some forms of fluctuation electron microscopy].1–7

These operating modes demand extreme data throughput and can be
severely limited by a given instrument’s data capture bottleneck.

In particular, in situ TEM is an excellent platform for studying
nanoscale material processes, but often these processes are too fast for
conventional TEM cameras. Prime examples include pulsed-laser
modification of nanoscale materials, including sintering and dewetting
of nanoparticle aggregates and coarsening of nanocrystalline material,
all of which are relevant to technological applications. Pulsed-laser sin-
tering of particle aggregates, for example, is a core process for many
additive manufacturing technologies.8 There are extremely few tools
for monitoring this process on its natural length and time scales.
Movie-Mode Dynamic TEM (MM-DTEM)4,9 offers burst-mode
multimegahertz TEM imaging frame rates, but only a small number
of such instruments exist, and the number of frames per event is
currently limited to 16. Multikilohertz high-frame-count TEM video
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acquisition would therefore be an essential enabling technology for a
large and timely class of nanoscale materials dynamics studies.
Lacking such tools, studies are often limited to microstructural before-
and-after comparisons and are blind to the crucial transient states that
explain “why” the microstructure changed in the way that it did.

This need is well recognized in the TEM community, evidenced
by the rapid recent development of high-speed cameras with sustained
frame rates of hundreds or even thousands of frames per sec-
ond.1,2,10–15 These cameras are typically direct-detection systems not
subject to the physical time-resolution limits of older indirect scintilla-
tor/CCD-based cameras. This allows sustained high frame rates to be
achieved through scaling and optimization of the entire digital data
pathway starting with the pixel readout. When the digital throughput
limit is reached, most cameras allow users to further increase speed by
trading off the frame rate against the pixel count per frame, through
hardware binning or by reading out a selected subregion of the cam-
era. These options vary with camera design, but this trade-off is typi-
cally on a one-for-one basis (i.e., the total number of pixels per second
is constant) or less.

Here, we present a complementary approach to time resolution
through a completely different mechanism that we call electrostatic
subframing (ES) (Fig. 1). An electrostatic deflector with a nominally
square limiting aperture is placed just after the TEM’s projector lens
(the last electron-optical lens in the standard microscope column) to
allow a TEM camera to be subdivided into a square array of sub-
frames. The deflector determines which subframe is exposed at each

moment. The ES system presented in this article can produce sub-
frame array sizes from 2� 2 up to 16� 16. The results we present use
a 4� 4 array size.

ES can augment the performance envelope of a camera in three
distinct ways. First, in a continuous acquisition mode, it allows the
one-for-one trade-off curve of pixel count against the frame rate to be
extended beyond the range normally available to the camera. ES allows
a 16-megapixel camera to act like a 1-megapixel camera with 16 times
the frame rate or a 0.06-megapixel camera with 256 times the frame
rate, for example. Second, in a burst acquisition mode, ES completely
decouples the time resolution from considerations such as phosphor
decay times, beam blanker settling times, and readout times by com-
bining multiple frames of the video into a single acquisition. Third, ES
enables compressive sensing (CS), whereby the reconstructed video
can contain substantially more pixels or subframes than were read in
from the camera. For example, in the 4 � 4 ES tests presented below,
we demonstrate the ability to reconstruct not 16 but 100 subframes of
videos from one burst-mode camera acquisition, i.e., a frame rate com-
pression ratio of more than 6:1. In the present article, we will illustrate
the burst-mode and CS advantages by demonstrating the ability to
record known laser-driven material processes at kilohertz-scale frame
rates using a TEM camera normally limited to subhertz frame rates.
As this is the first detailed introduction of the ES/CS method, we con-
fine ourselves to demonstrations of already-known processes in order
to validate the approach. Continuous-mode acquisition will be dis-
cussed in a separate publication.

FIG. 1. General illustration of electrostatic subframing (ES) in a TEM. (a) A fast two-dimensional electrostatic deflector is inserted below the projector lens and well above the
camera, allowing a square array of subframes to be defined (angles exaggerated for illustration). (b) A hypothetical image that could be captured in a single acquisition in a 4
� 4-subframe mode (with TEM in diffraction mode) and using 1-to-1 sequential subframing, producing 16 diffraction patterns from one camera acquisition. (c) The CS mode
replaces the 1-to-1 deflection sequence with a pseudorandom sequence shifting subframes multiple times per time slice, with typically 100 time slices and �500 subframe tran-
sitions defined per camera exposure time. CS algorithms then allow 100 frames to be reconstructed from one exposure. (d) A typical measurement of a static sample (nano-
crystalline platinum, acquired on the SNL I3TEM). Each subframe except for the upper-left sacrificial subframe is a 12ms exposure. (e) An example temporal measurement
matrix M, showing how time is apportioned to each subframe during each time slice in pseudorandom mode. In this example, one sacrificial beam-blanker subframe was
removed, leaving 15 for the main acquisition, thus 15 rows in the matrix. 100 time slices were used in this example (number of columns in the matrix).
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CS is a set of approaches for applying data compression to the
acquisition of data rather than just the transmission and storage of
data,16–20 by operating the equipment in a nonstandard way that effec-
tively performs data compression before the signal reaches the analog
to digital convertors. We now summarize the core points of the math-
ematical theory of CS, established in seminal papers from over a
decade ago16–19 and actively researched to the present day in many
areas including electron microscopy.20–30 The theory shows that an
N-dimensional vector x may be recovered to within specified error
bounds with K<N measurements y if (1) x is known to be sparse in
some known or discoverable mathematical representation defined by a
“sparsifying transform” W, (2) K is sufficiently large, and (3) the CS
measurement matrix that controls how the elements of x are mixed
and subsampled to produce y is well chosen. Further, this recovery
may be performed efficiently such as by regularizing the underdeter-
mined measurement equations by penalizing the l1 norm applied to
the sparsified data, i.e., jWxj1. Subject to some minimal assumptions,
the convex nature of the optimization problem ensures that the
algorithms will converge to an optimal solution with error bounds
guaranteed to high probability.16–19

Various efforts have been made to apply CS and related concepts
(such as undersampling and inpainting) to electron microscopy.21–30

These efforts demonstrate that conventionally acquired electron
microscopy data are often heavily oversampled relative to their true
information content and that acceptable results are often possible even
with compression ratios N/K of�10 or more.

ES enables compressive video acquisition in two distinct modes.
First, we consider the overlap resolution (OR) in what we call “1-to-1”
sequences [Fig. 1(b)] such that each subframe is exposed in a simple
sequence, once per camera readout. OR can yield modest compression
ratios in terms of reconstructed video pixels per original-image pixel.
Very often, the subframes in an ES acquisition will overlap [Figs. 1(d)
and 2(a), for example], with some pixels receiving information from
two or more subframes. Typically, the deflector will be configured to
make the best use of the camera area, with the great majority of pixels
belonging to one and only one subframe. Yet, one may also configure
the system to produce a substantial overlap, as desired. As we will
show, the information in these overlap regions is not lost; a CS-
inspired reconstruction algorithm can successfully determine which

features belong to each of the overlapping subframes. It is this mecha-
nism—enabling one camera pixel in an overlap region to inform two
or more output video voxels—that enables compression ratios greater
than one in this mode. The 1-to-1/OR mode is worth considering
when the signal-to-noise ratio and/or the compressibility of the under-
lying data stream would not support more aggressive compression
techniques. We shall present a proof-of-principle result from this
operating mode, in which nanoparticle aggregates in the overlap
regions are clearly identified as coming from the correct subframes,
and 15 frames of the overlap-resolved video are recovered from a sin-
gle camera acquisition.

The second compressive video acquisition mode is a true tempo-
ral CS video mode, in our tests offering frame-count compression
ratios of 6.67 (i.e., 100 frames of video reconstructed from 15 sub-
frames). The deflector is not operated in a 1-to-1 sequence but in a
known pseudorandom sequence, distributing the intensity in each
short span of time among several of the subframes [Fig. 1(c)]. The
sequence is dictated by a temporal measurement matrix M [Fig. 1(e)].
The rows ofM correspond to subframes on the camera, while the col-
umns represent equal subdivisions—which we term “time slices”—of
the “effective exposure time” during which the electron beam is strik-
ing the camera (corrected for the measured speed of the TEM’s beam
blanker).

The time slices are defined as the finest temporal resolution at
which we will attempt reconstruction. This means that all points in
time within a single slice are considered simultaneous. The entries
in the matrix are dwell times, in milliseconds. Thus, in the example in
Fig. 1(e), during the first time slice, the deflector spends equal time in
subframes 3, 5, 6, and 15 (the row numbers in which the first column
is nonzero). During the second time slice, the deflector partially
exposes subframes 4, 12, and 13, and so forth, so that the sum of all
elements in one column of M is the duration of a time slice and the
sum of all elements is the total effective exposure time for the entire
camera frame. The matrix elements can be specified arbitrarily, apart
from non-negativity and sum constraints, thus allowing our approach
to enter the domain of the classic results in the CS literature16–19 which
demand the measurement matrix to have certain mathematical prop-
erties, including incoherence with respect to W. In the large-N
limit, Bernoulli random measurement matrices generally have these

FIG. 2. 1-to-1/OR reconstruction of melting/
sintering of nanostructured Au on SiNx.
The raw camera image was preprocessed
to eliminate the upper-left sacrificial frame
and then segmented, aligned, and
denoised using the same algorithm used
for CS reconstructions to produce the
overlap-resolved, drift-stabilized 15-frame
video. Circles highlight features relevant to
the overlap resolution; see the text. See
also Fig. S2 and Videos S2 and S3.
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properties to high probability for many choices of W.16–19 We there-
fore used Bernoulli random matrices for the test results presented
here. Because the measurements are dominated by noise that scales as
Poisson noise (see Materials and Methods), the optimal selection frac-
tion for the Bernoulli matrices is less than 0.5;29 we set this parameter
in the range of 0.15–0.35 for most of our tests.

Each subframe is exposed with a different temporal multiple-
exposure of the series of events occurring during the entire exposure
time. A computer can then, knowing the camera image, theMmatrix,
and the sparsity-inducing transformation W, determine the sparsest
video sequence consistent with the measurement. As we may specify
M and W arbitrarily, we can take advantage of the voluminous CS
applied mathematics literature for performing robust reconstructions.
Using this form of CS video, we have reconstructed 50- to 100-frame
videos from single camera acquisitions, with effective frame rates rang-
ing from 500Hz to 10 kHz. This was performed on conventional scin-
tillator/fiber-bundle/CCD TEM cameras normally limited to subhertz
frame rates.

RESULTS

Initial proof-of-principle tests were performed on the Dynamic
Transmission Electron Microscope (DTEM) facility at the Lawrence
Livermore National Laboratory (LLNL),4,9 while the bulk of the results
were generated using the In situ Ion Irradiation TEM (I3TEM) at
Sandia National Laboratories (SNL), Albuquerque, equipped with a
thermionic LaB6 electron source.31 An additional system is installed at
the Ultrafast Dynamic Transmission Electron Microscope (UDTEM)
facility at the University of Strasbourg.32

Since the first tests (Fig. S1 and Video S1), we have improved the
voltage-driving circuits, control systems, and data analysis methods
and are now able to produce much higher quality video reconstruc-
tions of real in situ experiments. Figure 2 (along with Fig. S2 and
Videos S2 and S3) is a prime example. This measurement shows a 1-
to-1/OR acquisition of laser-driven melting and dewetting of presin-
tered (via previous laser shots) gold nanoparticle aggregates on a sili-
con nitride substrate, using the I3TEM. To the left of Fig. 2, we see the
raw image on the camera, with 16 subframes superposed in a single
camera exposure. The overexposed upper-left frame is a beam-blanker
sacrificial frame that is removed from the analysis; see Materials and
Methods. The remaining 15 frames thus constitute the time-resolved
measurement, with the 52ms effective exposure time parceled equally
into each subframe in sequence. The frame rate is thus (15 frames)/
(52ms)¼ 288Hz (i.e., 3.47ms/frame). The 1.06lm sample drive laser,
running on its own 33 kHz clock and producing 36ns FWHM pulses
with a diameter of approximately 100 lm at the sample, is gated by a
signal sent by the same digital sequencer that controls the deflector.
Thus, the laser is on only during the 52-ms reconstructed exposure
time devoted to the 15 frames (i.e., not including the beam-blank sacri-
ficial time; again, see Materials and Methods). Photodiode oscilloscope
measurements show that the sample drive laser takes�0.5ms to ramp
up (Fig. S5), after which the pulse intensities reach the steady-state and
remain there throughout the exposure. The same temporal profile is
used for all laser-driven experiments.

The data analysis, detailed in Materials and Methods, produced
the 15-frame reconstructed video while simultaneously compensating
for multiple effects: the displacement and distortion of each subframe
on the camera, camera noise and other sources of error, sample drift,

subframe overlap on the camera, and CS temporal mixing. The combi-
nation of these factors lets the algorithm determine a calibrated v2 per
pixel for a given reconstruction estimate x. It then iterates, finding the
target solution that minimizes anisotropic total variation (TV; defined
in Materials and Methods) for a given v2/pixel target j. In other
words, it finds the reconstructed video that is simultaneously (1) con-
sistent with the measurement, quantitatively accounting for all known
sources of distortion and error, to a precision specified by j and (2)
has as low as possible a value of TV¼ Wxj j1, whereW is a scaled dis-
crete gradient operator. Much previous work has shown TV-
minimization to be an effective choice for regularizing noisy and
underdetermined video reconstruction.33 More advanced methods,
e.g., using total generalized variation (TGV), dictionary learning, etc.,
also exist,30,34,35 but for the present results, we found more than ade-
quate performance using simple anisotropic TV minimization. The
algorithms could of course be generalized as dictated by the results of
further experimental tests.

We contrast the 1-to-1/OR-mode measurement of melting/dew-
etting with another measurement, this time laser-sintering an isolated
aggregate of �20-nm gold particles [before-shot state in Fig. 3(a)] that
had not been sintered by previous laser shots (Figs. 3 and S3 and
Videos S4 and S5). This exposure was performed in the pseudoran-
dom CS mode [Fig. 1(c)], using a temporal measurement matrix M
similar to that in Fig. 1(e), with 100 frames of video superposed into
15 subframes during a single camera acquisition [raw camera image in
Fig. 1(b)]. The video covers a total of 75ms, thus yielding a reconstruc-
tion with 750 ls per frame, i.e., a 1.33 kHz effective frame rate. The
first 20 and last 5 reconstructed frames, zoomed in to highlight the
region of interest, are shown in Fig. 3(c). We deliberately delayed the
onset of the laser to frame 7, in order to establish the initial state and
to test for possible “negative time” artifacts during the CS reconstruc-
tion (i.e., sample evolution appearing to start before the sample drive
laser fires, which would be indicative of an incorrect reconstruction).
This test verified that the reconstruction produced no such artifacts;
the first 6 reconstructed frames are essentially identical. The laser,
once activated, remained on until the end of the 75ms effective expo-
sure time. After a short (roughly 2–3 ms) incubation time, the sample
was hot enough to initiate sintering. Most of the sintering was com-
plete within another 3–4 ms; we can see that the aggregate has con-
tracted slightly and the interstitial spaces between the nanoparticles
have been mostly filled in. Little evolution occurs after this time, as is
evident in comparison between the frames at 14.25 and 74.25ms.

We provide a final example, again involving laser-driven modifi-
cation of nanostructured gold, but this time in the form of grain coars-
ening of a 50-nm-thick nanocrystalline thin film (Figs. 4 and S4 and
Videos S6 and S7). Grain coarsening, one of the fundamental processes
of metallurgy, is a process, whereby crystallographic grain boundaries
move, causing some grains to grow at the expense of others, and the
average grain size increases as the smallest grains are consumed.
Knowing this to be potentially a very fast process, we reduced the expo-
sure time to 10ms while keeping the number of reconstructed frames
at 100; thus, the reconstructed video has a frame rate of 10 kHz, i.e.,
100 ls per frame. This was a deliberate attempt to identify the perfor-
mance limits of temporal compressive sensing, with the study of a rela-
tively low-contrast very-fast-evolving sample at extreme frame rates.
Again, we started the sample drive laser in frame 7 and, again, we veri-
fied the lack of negative-time artifacts in the first 6 frames.
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While the signal-to-noise ratio in the 10 kHz reconstruction is
low, we can focus on the most persistent, high-contrast features such
as the small dark grain circled in red in Fig. 4. Before the laser pulses
arrive, this grain appears roughly equiaxed with a diameter of approxi-
mately 30 nm. At the end of the experiment, after the sample has
cooled [Fig. 4(d)], this grain has roughly doubled in diameter while
taking on an elongated, faceted shape. The reconstructed video reveals
that this grain had very nearly its initial size and shape in frame 10
(near the end of the 500 ls drive laser ramp-up) and very nearly its
final size and shape by frame 14, a mere 400 ls later. It continues to
evolve, its contrast darkening and its edge sharpening, over the next
several frames but shows relatively little further change after roughly
frame 20. Similarly, the large �100-nm-diameter grain visible to its
left (highlighted with yellow dashed ellipses) appears to grow from a
roughly 50-nm-diameter precursor to very nearly its final size over
essentially the same span of time. In fact, apart from gross thermal
sample motion and a general increase in contrast and edge sharpness,
the great majority of evolution is confined to a 1-ms span starting near
the end of the laser ramp-up in frame 11. This is remarkable, consider-
ing that the sample-drive laser continued to strike the sample at its
maximum intensity for the balance of the 10-ms exposure time. We
return to this observation in the Discussion section.

The postshot static image [Fig. 4(d)] in this experiment illustrates
one final operating mode for the ES system: alignment, noise-weighted
averaging, and optional denoising of multiple short-exposure dose-
fractionated images. This mode is appropriate for radiation-damage-
tolerant imaging of damage-sensitive materials, an extremely impor-
tant topic in modern TEM. The raw image [Fig. 4(b)] was captured
immediately after the 10 kHz time-resolved video, with the system
parameters unchanged except for deactivation of the sample drive

laser trigger/gate signal. Thus, the total exposure time was again 10ms,
but the sample was static. Exactly the same analysis procedure was
performed, except we instructed the software to merge all 100 time sli-
ces into a single binned time slice, i.e., we asked it to reconstruct a sin-
gle frame optimally combining information from all 15 subframes.
The formalism automatically accounted for the different exposure
times, shifts/distortions, and noise levels in the 15 frames and pro-
duced the appropriate TV-denoised weighted average.

DISCUSSION

Three aspects of the results must be discussed: (1) the features of
the ES method, its various operating modes, and the reconstruction
software; (2) the scientific interpretation of the experiments, compar-
ing and contrasting the three very different processes under study in
laser-driven nanostructured gold; and (3) potential future develop-
ment of ES and its applications to in situ TEM and multidimensional
TEM in general.

Features of the ES method revealed by the results

We have shown how ES can resolve millisecond-level or faster
details in in situ TEM experimentation, using conventional TEM cam-
eras normally limited to subhertz operation. The 4 k � 4 k camera
used on the I3TEM, for example, takes multiple seconds to read out a
full frame in low-noise mode and thus is not even capable of 1Hz
operation at maximum image quality; yet, it produced video record-
ings up to 10 kHz. All the tests produced results that could not have
otherwise been obtained with the available camera. The system can be
precisely synchronized with both the TEM camera and external in situ
sample drive capabilities such as pulsed lasers, electrical biasing, and
mechanical loading and indenting. We have demonstrated three

FIG. 3. 1.33 kHz 100-frame CS video
reconstruction from a single TEM camera
exposure of laser sintering of Au nanopar-
ticle aggregates. (a) Initial state; a single
isolated cluster of Au nanoparticles on
SiNx. (b) Raw image on the camera, with
contrast set to accentuate the 15 nonsa-
crificial frames at the cost of the upper-left
sacrificial frame and overlap regions. (c)
100-frame video reconstructed from the
single measurement in (b).
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distinct operating modes: 1-to-1 mode with an optional overlap reso-
lution, pseudorandom compressive sensing mode, and single-frame
reconstruction of a static sample. All modes allow dose fractionation
and time resolution on time scales inaccessible to most TEM cameras.
Further, the system decouples the time resolution from the camera
properties, allowing continuous adjustment of frame rates from sub-
hertz to multikilohertz rates through simple software settings.

The same CS reconstruction software is used with all three modes
(see Materials and Methods). It features automatic compensation for
distortion, calibrated camera noise allowing a true v2 per pixel target
to be specified (thus avoiding both overfitting and oversmoothing of
the data in a statistically justifiable way), overlap resolution, iterative
sample-drift correction, and adjustable anisotropic TV denoising of
the result.

The overlap resolution in 1-to-1/OR mode is apparent in Fig. 2.
Two large aggregates are clearly visible in subframe-overlap regions in
the raw data (red circles). A human observer can easily see that these
aggregates are in the upper parts of the frame, not the lower parts,
even in the case of the upper-right-hand aggregate (the image of which
is almost entirely confined to the subframe-overlap regions on the
camera). The TV-minimizing algorithm had no difficulty correctly
assigning these features to the correct frames; these aggregates appear
only in the upper parts of the 15 reconstructed frames and not the
lower parts.

Note that the upper-right aggregate only appears clearly in a
few subframes of the raw measurement; it moves out of frame due
to the large-scale motion of the sample caused by the localized
heating of the sample drive laser. Yet, it appears in all 15 frames of
the reconstruction. This is implicit in the three-dimensional TV
regularization. Lacking information to the contrary, the algorithm
will populate unobserved space-time voxels in the reconstructed
video with intensities from the nearby observed voxels. In effect,
when a part of the aggregate moves out of frame, the algorithm
remembers what it last looked like and makes the simplest assump-
tion—namely, that it did not change since then. The algorithm is
thus doing exactly what we asked it to do: Make its best guess of
the “simplest” (least-TV) video consistent with the measurement,
using all available data. Something similar happens near the bot-
tom of the frame, where the algorithm tries (with limited success)
to make sense of the imperfectly corrected subframe-edge artifacts.
If a user is uncomfortable with these extrapolations, it is very easy
to remove them at the end. The supplementary material includes
reconstructed videos with and without this optional postprocess-
ing; this is why the videos all have “All Voxels” and “Measured
Voxels” versions (Figs. S2–S4 and Videos S2–S7). For most scien-
tific applications, this restriction to measured voxels is likely to be
the more appropriate choice, but in the present article, introducing
the method, we have elected to present both of them.

FIG. 4. 10 kHz CS video of laser-driven
coarsening of nanocrystalline Au. (a) Raw
measurement of time-resolved video.
Contrast range set to saturate the upper-
left sacrificial frame and thus accentuate
contrast in the remaining 15 frames, total-
ing 10ms. (b) Similar raw measurement
of the postlaser-shot static coarsened
sample. (c) Selected frames of the 100-
frame CS video reconstruction derived
from (a). Notable features accentuated
with red circles and yellow dashed ellip-
ses. (d) Single-frame static reconstruction
derived from (b), representing an aligned,
denoised combination of 15 subframes
with a total exposure time of 10 ms.
Circles (red in online version) and dashed
ellipses (yellow in online version) denote
the same features as in (c).
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All the videos have residual artifacts derived from the imperfect
correction of the subframe edge effects as well as slight background-
intensity variations especially near the edges of the frames. The sub-
frame edges yield obvious thin nearly straight lines near the periphery
of the reconstruction, varying discontinuously from one frame to the
next. However, a human viewer can easily recognize and discount
these, paying attention to the persistent nonartifact features, and this
raises hopes that future algorithms may be able to eliminate them
entirely. The background-intensity variation effect appears to come
from nonideal behavior in the camera itself; the normalized-residual
images associated with the diagnostic plots (Fig. S6, for example) very
often are biased slightly positively in the columns containing the
(heavily exposed) sacrificial subframe and slightly negatively in the col-
umns far from this subframe. This may be a CCD-bleeding or similar
artifact that causes nonlocal difficult-to-correct slight background
shifts. In our judgment, given the apparent quality of the reconstructed
videos, these artifacts are insufficient to invalidate the scientific inter-
pretation of the results.

The reconstruction algorithms implicitly include denoising with
quantitative consideration of the known noise in the system. This is
illustrated in Fig. 5, a close-up of one of the frames of video from the
1-to-1/OR measurement in Fig. 2. The raw and reconstructed images
are shown, alongside the normalized residual image (i.e., the difference
between the two, in standard deviation units). We chose a subframe
showing motion blur in the raw image in order to demonstrate how
the algorithm can also correct for this. Random-looking speckle in
both the features and the smooth-substrate background is greatly
reduced in the denoised image. The nanoparticle edges are hardly
touched apart from some reduction of intraframe motion blur visible
as a weak ghost image superposed on the measured image, shifted
slightly down and to the left. The sample drift correction allows for
small rigid translations of each reconstructed frame to optimally align
it to its neighbors. The reconstruction can then use the immediately
preceding and following frames to help determine whether, for exam-
ple, a blur artifact is likely to represent a real, persistent object. Users
uncomfortable with this feature can turn it off by setting the temporal
TV coefficient kt to zero (see Materials and Methods). This allows the
user to maximize the effective time resolution at the cost of increasing
the noise in the result.

The drift-corrected TV-minimizing algorithm does this sort of
denoising and deblurring implicitly, while also tending to sharpen the
noisy edges of real features. In essence, we are telling the algorithm: If
it is possible to make subtle adjustments to the pixel intensities, on the
order of 6jr (where j is typically set to �1 but is adjustable, includ-
ing to a low enough level that the denoising is essentially shut off), to
eliminate local single- or few-pixel intensity maxima and/or minima,

then do so. But if eliminating a local feature incurs a substantial v2

penalty, then the feature should be retained. Note that we are using a
3D TV penalty, and if the same borderline-significant feature appears
in multiple frames, it is more likely to be retained. Thus, neighboring-
frame information is used to inform the decision in a statistically rea-
sonable way. This adjustable high-performance statistically justifiable
denoising is a feature for users who want it, and it can be essentially
shut off for users who do not. Had we not calibrated the camera noise,
it would be much more difficult to objectively justify the level of
denoising; it would have to be adjusted according to a user’s subjective
judgment. But because we included the absolute noise calibration in
the reconstruction algorithm, we achieve this calibrated denoising
capability at essentially zero additional computational cost. The same
calibrated denoising capability can also be used for non-ES conven-
tional TEM measurements as well as in dose-fractionated static ES
images such as in Fig. 4(d), derived from Fig. 4(c).

The drift and distortion corrections worked as intended, as is evi-
dent especially in Video S3, showing only the measured voxels in the
1-to-1/OR acquisition. The locations of the features of interest remain
steady across the field of view (FOV) throughout the measurement,
with residual uncorrected motion typically on the order of one pixel,
as the outer edge of the field of view substantially distorts and shifts in
every single frame. This frees the viewer to focus on the elements of
scientific interest: The evolution of the sample itself, in its own rest
frame. The distortion correction is robust, precise, and built into the
reconstruction algorithm. The drift correction is similarly effective but,
as with many features of the analysis, optional.

Scientific interpretation of the measurements

We have briefly described the principle observations under
Results. Here, we delve into the details in order to understand what
the various ES operating modes can tell us about these three very dif-
ferent physical processes: melting/dewetting, sintering, and grain
coarsening, all in laser-driven nanostructured gold.

We start with a discussion of time and length scales, especially
those associated with diffusive thermal transport. These experiments
incorporate multiple time scales covering a very large range, summa-
rized in Table I. The thermal diffusive transport time scales are calcu-
lated for various characteristic size scales in each experiment, using
thermal diffusivities D of 1.5� 10�6 m2/s for silicon nitride thin
films36 and 1.1� 10�4 m2/s for gold.37 The melting/dewetting and sin-
tering experiments were performed using isolated clusters of nano-
structured gold on silicon nitride substrates, and thus, the diffusivity of
gold is relevant for smaller scales and that of silicon nitride for larger
scales. By field of view (FOV), we mean a region relevant to the

FIG. 5. Details from Fig. 2, exemplifying
the denoising/deblurring process. (a)
Selected region from the measured
image. (b) Corresponding region from the
reconstruction, with denoising and motion-
blur correction. (c) Normalized residuals
[i.e., difference between (a) and (b) in
units of RMS noise, after correction for
distortion].
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experiment. For melting/dewetting and coarsening, this was the entire
region visible in the video, while for the sintering experiment, we focus
just on the nanoparticle cluster.

Table I clarifies several important facts. The thermal diffusivity of
gold is so high that transport across a single nanoparticle, a crystalline
grain, or even the entire field of view (for the sintering and coarsening
experiments) is nearly instantaneous for our purposes. Thermal diffu-
sion through the thickness of the 50nm SiNx support layers in the
melting/dewetting and sintering experiments has a characteristic time
scale of 0.8 ns, much shorter than the 36ns laser pulse duration. The
sample drive laser fires at 33 kHz at an intensity sufficient to raise gold
to its melting point on a time scale on the order of a few milliseconds,
depending on the experiment, and thus, each pulse raises the tempera-
ture by perhaps 20K or less. Each laser pulse lasts 36 ns but is nonuni-
form in time such that the peak heating rate should be on the order of
a few Kelvin per nanosecond, again depending on the experiment.
Thermal diffusion (from Table I) and electron-phonon equilibration
times within the gold are on the picosecond scale. All of this is consis-
tent with peak local temperature-variation excursions on the order of
a few Kelvin at most.

For the melting/dewetting experiment, we expect the laser
absorption to be rather strong in the nanostructured gold relative to
the silicon nitride support, and the absorption per volume in gold
nanoparticles is strongly dependent on the size, surface curvature, and
sizes and shapes of any gaps between nanoparticles which can form
plasmonic “hot spots.”38,39 Thus, different nanoparticle clusters may
be at different temperatures at the end of each laser pulse, but thermal
conduction through the support should essentially erase this tempera-
ture difference on a time scale of 1.9 ls across the FOV used in the
experiment, which is much less than the 30 ls gap before the next laser
pulse and very much less than the 3.47ms frame time and the �7ms
lag between the start of the laser pulse and the start of the motion.
After this lag, the motion initiated on all nanoparticles in the field of
view simultaneously and proceeded throughout the measurement at a
nearly constant rate. The obvious interpretation is that it took the
accumulated absorbed heat from roughly 200 laser pulses to melt the
gold and that the thermal transport time scales are fast enough that, at
the 288Hz frame rate, the melting was effectively simultaneous across
the field of view. Note that the �3ms time scale for thermal diffusion
across the diameter of the laser spot is matched closely to the frame
time, and thus, we expect the temperature rise to rapidly level off after
the first few frames as continued laser-heating of the FOV is balanced
by conductive heat loss to the environment. This consideration of
thermal diffusion time scales accounts for the sharp temporal

threshold (as rapid dewetting cannot occur until after melting), the
spatial uniformity of the threshold, and the temporal uniformity of the
motion after the threshold.

A great deal of information is present in the reconstructed video
(Figs. 2 and S2 and Videos S2 and S3). The nanoparticle aggregates
had already been sintered during previous similar exposures, such that
the smallest ones had nearly reached their final nearly circular states,
while the largest aggregates still had localized high-curvature regions
that clearly evolved during the exposure. The general trend is the rapid
motion of high-curvature regions in such a way as to reduce the curva-
ture, and so the entire aggregate becomes more circular with time, as
expected by a process driven by surface tension. The motion is decid-
edly liquidlike in visual appearance, with no coalescence of these
already-sintered nanoparticles. This indicates that the process captured
in this particular measurement truly is melting and dewetting rather
than sintering.

The 100-frame 1.33-kHz CS reconstructed video of laser-driven
sintering (Fig. 3) reveals a different physical process entirely. This time
we consider a single isolated aggregate that had not been treated with
previous laser pulses [Fig. 3(a)] and thus retained its initial
nanometer-scale features including 33 20-nm-diameter irregular
spheres and the gaps between them. Each of these gaps is a potential
absorption hot spot, and we should expect the laser absorption per vol-
ume of such an aggregate to be considerably higher than that of a
nearly fully dense single gold structure of comparable size38—as the
nanoparticle aggregate has become clearly by roughly t¼ 12ms. Thus,
in addition to the easily computed time scales in Table I (which plausi-
bly account for the few-millisecond incubation time between the start
of the laser pulses and the start of the sample motion), this process
includes a new time scale emerging from the dynamics under study.
Once the sintering has proceeded far enough to fill in the interstitial
regions and eliminate most of the hot spots, the laser absorption
should drop precipitously. Given the time scales in Table I and the
expected higher absorption in the aggregate relative to the substrate,
the temperature should rapidly drop as well as heat is lost to the cooler
substrate, until the aggregate is too cold to support further sintering.
The process is therefore inherently self-limiting under the tested con-
ditions. The laser intensity in this experiment was sufficient to initiate
sintering in the nanoparticle aggregate but insufficient to melt the sin-
tered cluster.

The reconstructed video is easy to understand with this interpre-
tation in mind. Note the distinct contrast between and within nano-
particles in the bright-field TEM image. This is in part caused by
diffraction contrast, indicative of variations of crystal orientation, local

TABLE I. Time scales for the three example experiments. Time scales include both scales under direct experimental control (laser repetition rate, laser pulse duration, and
reconstruction time slice, i.e., time for one reconstructed frame) and scales associated with thermal diffusion across typical features, fields of view (FOV), and the size of the
laser-drive spot on the sample. Size scales are converted to time scales using t � L2

2D with D being the thermal diffusivity. Note that the laser ramp-up time is �500 ls in all
cases, i.e., the laser takes approximately 15 pulses to reach its steady-state peak power.

Experiment Laser rep. Laser pulse Frame

Size scales Time scales

Feature FOV Laser Feature FOV Laser

Melting/dewetting 30 ls 36 ns 3.47 ms �100 nm Au 2.4 lm SiNx �100 lm SiNx 45 ps 1.9 ls 3 ms
Sintering 30 ls 36 ns 0.75 ms �20 nm Au 180 nm Au �100 lm SiNx 1.8 ps 150 ps 3 ms
Coarsening 30 ls 36 ns 0.10 ms �10 nm Au 300 nm Au �100 lm Au 0.45 ps 410 ps 45 ls
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thickness, and strain. This contrast is distinct from mass-thickness
contrast responsible for a lightening of the edge of each nanoparticle
relative to its interior and is specifically indicative of crystalline solid
material as opposed to liquid. After a short �2ms incubation time
during which the aggregate is gradually heating, the temperature of
the aggregate apparently reaches a threshold in frames 10–11, with a
very rapid, single motion of several nanometers occurring simulta-
neously about most of the perimeter of the aggregate, combined with
the simultaneous densification and nearly complete infilling of the
gaps that initially separated the nanoparticles. Yet, the distinct diffrac-
tion contrast between and within the individual nanoparticles remains
throughout the video, indicating that most (perhaps all) of the original
nanoparticles never fully melted. Thus, the process is truly laser-driven
sintering as opposed to melting, possibly enabled by enhanced surface
mobility at temperatures that are elevated but still below the melting
point. While we have no way of observing whether the fast-moving
gold surface regions are liquid or solid, we can still affirm that most of
the volume of most of the nanoparticles remained solid throughout
the process, due to the persistence of the diffraction contrast in each
grain. The evolution was essentially complete within 10ms after the
laser began firing, even though the laser continued to strike the sample
through to the end of the 75ms span. In fact, there is almost no sample
evolution in the video after roughly t¼ 12ms. As the infilling of
potential hot spots is visibly nearly complete by roughly t¼ 9ms and
the time scale for heat diffusion out of the laser spot is roughly 3ms,
this is entirely consistent with the self-limiting interpretation.

The coarsening experiment is different in that the sample is a
contiguous gold film, and thus, the relevant diffusivity for all scales is
that of gold. This means that the thermal equilibration time scale
across the drive-laser spot diameter is comparable to the laser repeti-
tion period and roughly 3 times shorter than the 100 ls reconstruction
frame time. Thus, despite the 10 kHz frame rate, this experiment is still
in the regime in which the temperature in the field of view should
reach nearly the steady state (with the incoming heat balanced by heat
thermally diffusing away from the laser spot) in just a few frames of
video. Note that the laser takes roughly 5 frames to ramp up to its
steady-state power as well. Thus, we expect a rapid temperature tran-
sient roughly from t¼ 600 ls (frame 7, the onset of the laser drive) to
t¼ 1200 ls (frame 13, allowing for the 500 ls ramp-up and roughly 5
times the time scale for thermal diffusion across the laser spot), after
which the temperature should level off and be roughly constant as a
function of both time and space.

Despite the low contrast and signal-to-noise ratio in the 10 kHz
reconstructed video, the results still tell a clear story that can be inter-
preted in terms of the classical theory of normal grain growth in thin
films (as reviewed, for example, by Thompson40). The as-deposited
structure [initial frames in Fig. 4(c)] is dominated by small
(�20–30nm diameter) features with very weak image contrast. The
coarsened structure [Fig. 4(d) and final frames in Fig. 4(c)] produce
much stronger contrast under the same imaging conditions, with most
grains having clearly defined sharp edges. Knowing the film to be
50 nm thick and knowing that these are bright-field diffraction TEM
images that can be interpreted as projections through the 50nm thick-
ness, the difference has an obvious interpretation: the initial structure
likely has a great many nearly equiaxed grains that overlap in the
through-thickness projection, while the final structure is much more
columnar, with most grains spanning the entire thickness of the film

and most grain boundaries oriented nearly perpendicular to the film
surfaces. The classical theory then predicts exactly what we observe: an
initial burst of rapid grain growth followed by stagnation as the typical
grain sizes reach roughly 100–150nm (i.e., 2–3 times the film thick-
ness) and the grain boundary network transitions from three-
dimensional to two-dimensional.40,41 As was long ago noted,42 this
dimensionality transition is insufficient to explain the suddenness of
the onset of grain growth stagnation, and additional mechanisms must
be involved such as the formation of stable grooves where columnar
grain boundaries meet the thin film surface. The onset of stagnation in
terms of the sizes of visible grains is remarkably quick and global
across the field of view. The set of grains visible in frame 16 bears a
clear resemblance to the set of grains in the final structure. Yet, the
sample continues to evolve, more subtly, throughout the 10ms span of
the reconstructed video. Most notably, the contrast continues to
increase and the features become sharper. This change in contrast may
be due to several factors such as reduced motion blur as the grain
growth stagnates, reduced thermal diffuse scattering (which would
imply an unexpected reduction in temperature despite the ongoing
laser illumination), elimination of remaining defects and extremely
small grains, solidification of transient thin liquid layers at grain
boundaries, and/or a gradual alignment of the grain boundaries to be
tangent to the electron beam as the material evolves toward a well-
annealed columnar structure with mostly vertical boundaries. The
shapes of the grains continue to evolve slightly in the last 8ms of the
laser-driven process. In any case, the results suggest that stagnation in
terms of producing nearly the final grain size distribution and stagna-
tion in terms of producing a stable, well-annealed, fully solidified
columnar structure are two entirely different things taking place on
two quite different time scales.

Potential future developments of ES

In summary, we have shown how electrostatic subframing, in its
various operating modes, can reveal the details of millisecond-scale
processes at the core of nanoscale materials science. While conven-
tional TEM studies can explore the initial and final states, the flexible
multikilohertz capability enabled by ES allows the crucial in-between
states to be captured, over a wide range of parameters that can be tai-
lored to each experiment. Each of these three test cases—melting/dew-
etting, sintering, and grain coarsening—is meant as an example of
what such a study could look like.

The ES technique is still very new, and a great many possibilities
exist for its future development beyond these proof-of-principle
results. The tests demonstrated so far focus on in situ experimentation,
but this is only one of many potential application areas. 4D-STEM is a
compelling application, given the need for very fast frame rates, low
single-frame pixel counts, and very high timing precision.

We have provided a proof-of-principle example of distortion cor-
rection, superposition, and optimal denoising of dose-fractionated
images [Fig. 4(d)] of nominally static materials. Such images can be
corrected for rigid full-field drift with existing reconstruction algo-
rithms, and relatively modest development should allow generalization
to include nonrigid dewarping of each individual subframe into a
common reference frame. ES allows precise and flexible dose fraction-
ation down to the submicrosecond regime.

Of course, compressive sensing can only use the information
available to it, and it can actually perform quite poor if high
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compression ratios are attempted on measurements with a great deal
of Poisson noise.29,43 Ultimately, beam current, beam brightness, and
intrinsic sample contrast limit the spatiotemporal resolution in any
time-resolved TEM investigation,44 and there comes a point where an
experiment requires a much brighter source than is available. But the
system we have described, with its wide range of operating modes and
parameters (1-to-1 mode with and without the overlap resolution, full
CS mode at varying time slice counts, aligning and denoising dose-
fractionated images, and subframe modes from 2 � 2 to 16 � 16),
provides new ways to make better use of all available information, tai-
lored to the needs and challenges of each experiment.

MATERIALS AND METHODS
Hardware

To implement the temporal measurement matrixM in hardware,
we require the deflection system to be fast, precise, highly programma-
ble, and free of blur, hysteresis, and overshoot. The deflector needs to
be able to change states multiple times per time slice to distribute the
time among the subframes as dictated byM.

Our solution is a two-dimensional electrostatic deflector derived
from the design for the movie mode dynamic transmission electron
microscope (MM-DTEM).4 Here, we describe the implementation on
the SNL I3TEM, a heavily modified JEOL 2100.31 Four deflector plates
are placed below the projector lens, in two pairs acting as parallel-plate
deflectors in the X and Y directions. Each plate is individually con-
trolled with its own driving circuit. Each of the four circuits includes
its own four programmable DC voltage supplies with variable output
ranges spanning �420V toþ420V. Each output stage allows any one
of its four DC supplies to be connected to its output at any time. The
switching times among the four voltage-on states are dominated by
the RLC time constants of the output stage and the load, and the cir-
cuit is tuned to essentially eliminate overshoot. Based on oscilloscope
measurements, we estimate the transition to be essentially complete
within �20ns. Thus, for millisecond-scale experiments, we can
approximate the deflector as switching states instantaneously; the
“blur” electrons are so few that we may take them to be part of the
background noise. In practice, we observe no evidence of drift, blur,
overshoot, or hysteresis on the TEM camera, even when switching at
an average rate of�100 kHz.

Because each of the four deflector plates can be switched among
its own set of four voltages, the system can produce arbitrary sequences
selected from 44¼ 256 distinct deflector-on states, in addition to the
deflector-off standby state. We use a subset of these states for a given
experimental configuration. Each of the 16 voltages (4 DC supplies on
each of the 4 channels) can be individually programmed, allowing the
deflector driver circuit to be configured to subdivide the camera into
subframe arrays ranging from 2 � 2 to 16 � 16. We performed most
of the tests in 4� 4 mode, which allowed the subframes to cover nearly
all of the camera with a relatively little overlap [Fig. 1(d)].

The deflector driver is controlled by a 16-bit 125MHz digital
pattern generator (Spectrum M2i-7010-exp) operated using cus-
tom control software written in the commercial software
MATLAB. The software allows the user to select the deflector
mode (e.g., 4 � 4-subframe mode), the measurement matrix gener-
ation algorithm and parameters (e.g., 1-to-1 mode or Bernoulli
random for CS mode), and timing parameters such as exposure
times, trigger delays, and sacrificial-frame settings. The pattern

generator is triggered by the camera controller, thus synchronizing
the deflection to the exposure. 8 of the pattern generator channels
are dedicated to selecting among the 256 deflector states, while the
remaining 8 can be used for synchronizing external equipment,
such as a pulsed laser directed at the sample or a triggerable in situ
sample holder system. The external triggers may be programmed
arbitrarily on the 8 ns sample clock, thus providing precise and
detailed synchronization of the TEM data acquisition with external
hardware.

Because the TEM’s built-in beam blanker can take �5–15ms to
restore the full beam current and because the electron beam is signifi-
cantly aberrated during the several milliseconds that the beam blanker
is partially on, the software provides an option to use the electrostatic
deflector as an auxiliary, high-precision, postsample beam blanker.
One of the 256 deflector states is designated as the beam blanker state.
Ideally, the beam blanker state deflects the beam entirely off the cam-
era. However, for large cameras, the maximum deflector driving vol-
tages may not suffice, and we choose one of the subframes (usually the
upper-left) to be a sacrificial beam-blanker subframe [Fig. 1(d)]. The
deflector is set to this subframe position and held there, while the
TEM’s built-in beam blanker is partially on. This is done at both the
beginning and the end of the camera’s exposure time, and the pixels
covered by that subframe are automatically dropped from the analysis.
When using the deflector as a beam blanker, the effective exposure
time—the sum of the temporal measurement matrix elements—is
therefore somewhat less than the exposure time specified in the cam-
era control software. In tests on a static sample [Fig. 1(d)], we can see
the sacrificial image and the 12-ms individual subframes simulta-
neously, and it is clear that aberrations from the TEM’s built-in beam
blanker are major limitations for conventional millisecond-scale expo-
sures. The sacrificial image suffers from anisotropic blurring, while the
other subframes are sharp, high-contrast, and feature-rich. These 15
subframes indicate what 12-ms exposures of nanocrystalline material
should look like in a standard thermionic TEM, if the limitations of
the beam blanker can be bypassed.

The deflector distorts the image somewhat, as close inspection of
Fig. 1(d) will reveal. Each subframe has slightly different anisotropic
magnifications, varying by typically a few percent and varying slightly
with the position within a subframe. This effect is a distortion, not a
blur, and thus, it can be calibrated and corrected. We calibrate the dis-
tortion by performing what we call an “alignment series,” which con-
sists of a series of images with only one subframe in each image,
including a final image with the deflector turned off. Using standard
image segmentation methods (threshold, choose the largest region, fill
holes, and optionally dilate and/or erode), we determine which pixels
are exposed in each subframe while rejecting noise. We perform fea-
ture matching to align unique features in the deflected and undeflected
images.

Specifically, we use Akaze45 to detect and describe local features.
We then follow standard computer vision techniques including esti-
mating candidate matches among deflected and undeflected images,
model fitting for a random subset of matches, and use of RANSAC to
identify and discard outliers among detected matches46 to find a final
model describing a smooth quadratic warping function between the
deflected and undeflected images. This requires an appropriate choice
of sample region, with multiple unique high-contrast features across
the field of view, but in practice, we have found this easy to achieve
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with a variety of samples. The typical RMS fit residual is less than 1
pixel. This is repeated for each subframe.

The results from segmentation and alignment are stored in what
we term an “alignment solution,” which is used in the reconstruction
analysis as described below. The alignment solution specifies, for each
subframe, (1) which camera pixels are included in the subframe, (2)
which pixel each camera pixel corresponds to in a single common
undistorted reference frame, and (3) the Jacobian determinant at each
pixel, needed for enforcement of local intensity conservation.

Data analysis: General

CS reconstruction algorithms require us to process our measure-
ments and experimental parameters into particular mathematical
forms. In our case, we will be solving the following equations:

x̂ ¼ argmin
x�0

Wxj j1;

s:t: Ax � bj j2 � �: (1)

In these equations, x is a candidate reconstruction (a vector collapsed
from a 3D hypermatrix with spatial indices i and j and time slice t), x̂
is the final reconstruction,W is the matrix representation of the sparsi-
fying transform, A is a scaled measurement matrix to be described
below, b is a vector related to the measured intensity y at each pixel on
the camera, � is a specified positive constant, j�j1 represents the l1
norm (the sum of the absolute values of the vector elements), and j�j2
represents the l2 norm (the usual Pythagorean length of a vector). This
formalism, including the optional non-negativity constraint on each
element of x, is directly implemented in the freely available software
package TFOCS,47 and this is exactly what we used for most of the
results in this article. In short, the optimization problem is looking for
the reconstruction that is (1) non-negative everywhere, (2) consistent
(within calibrated error) with the scaled measurement b and our
understanding of the measurement process encoded in A, and (3)
maximally sparse in the representation specified by theWmatrix.

It takes significant decision-making, preprocessing, and calibra-
tion to get our real-world data in the form of Eq. (1). We will start
with the sparsifying transformation W. The literature reveals that, for
a great deal of image and video data, surprisingly good denoising and
CS reconstruction performance is achieved using some version of a
“total variation” (TV) penalty.33,34 In the present work, which is con-
cerned with reconstruction of video data, we will use an anisotropic
TV penalty defined as

TV xð Þ ¼ ksrixj j1 þ ksrjx
�� ��

1
þ ktrtxj j1; (2)

where r(i,j,t) is the discrete gradient in the specified direction and the
positive scalar coefficients ks and kt govern the strength of the penalty
in the space and time directions, respectively. This is implemented by
defining the W matrix as a concatenation of the discrete gradient
operators,

W ¼ ksri ksrj ktrt
� �

: (3)

The question remains of how to assign ks and kt. We can, without loss
of generality, set ks¼ 1 since in the original equation (1), a rescaling
of W has no effect on the problem definition (it also has no effect on
the numerics since TFOCS includes automatic preprocessing that

compensates for the norm ofW47). Thus, we set ks¼ 1 and we vary kt.
We have not yet found a robust, objective way to set kt (though
theoretical work suggests some possible approaches48), and we adjust
it freely so as to optimize the subjective appearance of the result.
However, we have found that for a given reconstruction, there is typi-
cally a broad range of kt values that produce substantially indistin-
guishable results. Intuitively, this makes sense: the purpose of
minimizing the l1 norm is primarily to induce sparsity in Wx and not
to penalize the magnitudes of its nonzero elements, and much of the
theory of CS is based on the insight that the l1 norm generally fills this
purpose quite well (with some interesting exceptions48). We also note
that the optimal kt may depend on the purpose of the experiment.
This parameter governs a contribution to denoising that uses the
immediately preceding and following frames to determine whether a
feature in a single frame is likely to be real. This denoising effect sub-
stantially reduces the apparent noise level but can come at the cost of
reduced time resolution, as information can thereby bleed from one
temporal frame into its neighbors. For applications demanding the
absolute highest time resolution regardless of the signal-to-noise ratio
cost, one should set kt to zero. For the results presented herein, we did
not do this; we adjusted kt to achieve a subjective compromise of
denoising and unambiguous reconstruction while ensuring that we
saw no negative-time artifacts (i.e., apparent sample motion before the
sample drive laser started hitting the sample), accepting that this may
imply a loss of some very fast-changing details.

Statistical analysis

Next, we need to interpret the jAx-bj2 � � constraint in a way
that makes sense given how the measurement works. Naively, we
would set b equal to the image y on the camera and construct the lin-
ear operator A that models the camera image, given a reconstruction
estimate. We can do this given our temporal measurement matrix M
(showing how the set of time slices, i.e., reconstructed frames, gets
superposed into the set of measured frames) and the alignment solu-
tion (showing how the set of measured frames gets mapped to the
camera, including overlaps). Taking the appropriate tensor inner
product of these two entities produces a matrix A0, such that A0x is an
estimate of what would be measured on the camera and which needs
to be compared with the actual measurement y.

However, this ignores the noise characteristics of the camera,
such that the error in the signal is strongly correlated with its magni-
tude. This needs to be calibrated, yielding an estimated noise vector r,
the same size as y. This allows us to construct a fully calibrated v2

goodness-of-fit metric, following a standard error-scaling approach to
allow least squares algorithms to properly account for different errors
in each data point,

v2 ¼
X
i

P
j A

0
ijxj � yi
ri

 !2

: (4)

We can then define A to be the result of dividing each row of A0 by
the corresponding element of r (i.e., Aij ¼ A0

ij=ri, with no implied
summation) and similarly bi¼ yi/ri. With this ansatz, we immediately
get v2¼jAx-bj2� �2.

Because we performed an absolute noise calibration, this gives us
a way to objectively set the value of �, at least to within a factor j of
order unity (introduced previously). Let v2¼ �2¼ jNvalid, where Nvalid
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is the number of valid camera pixels (1.5 � 107 for the tested 4096
� 4096 pixel camera with one sacrificial subframe out of 16). A “valid”
pixel is one that is covered by at least one subframe but is not part of
any sacrificial subframe. The error r for invalid pixels is set to infinity
so that they do not take part in the v2 sum. Setting j¼ 1 therefore
specifies that we are looking for a solution where the rms error in the
fit is exactly what you would expect from measurement noise (an
approach closely related to the approach in the study by van den Broek
et al.,29 though the formalism superficially looks entirely different).
Indeed, in our reconstructions, the subjectively best-looking results
were obtained near j¼ 0.25–1, with the lower values tending to give
better results at lower signal-to-noise ratios. Increasing j increases the
denoising, but at the cost of possible loss of real features. Generally, we
found results with j� 2 or more to appear oversmoothed.

The camera noise calibration is done by collecting multiple
images of uniform illumination in a range of known exposure values, a
procedure very similar to the measurement procedure for the familiar
dark/gain calibration used in most TEM cameras. For the SNL I3TEM
data, we captured 72 repeats each at four different exposure times: 0,
50, 200, and 1000 ms. This allowed us to determine the means and
standard deviations, across the ensembles of 72 images each, for the
measured intensities at each pixel on the camera. An uncertainty
weighted linear fit produced the familiar dark count and gain calibra-
tion images, allowing us to convert measured intensities into corrected
intensities as is usually done for CCD TEM cameras. We then per-
formed a weighted linear fit of the statistical variance r2

y of intensity as
a function of the corrected intensity y,

r2
y yð Þ ¼ ay þ b:

In this equation, b is the variance of the dark noise, while a is a coeffi-
cient for a term that scales as Poisson noise. We found that the a term
dominated except at exposure levels of one electron per pixel or less,
and thus, a calibrated Poisson noise model is an excellent approxima-
tion throughout the useful exposure range. This is important, as it sig-
nificantly affects the compression-distortion bounds and optimal
measurement strategies for CS reconstructions.29,30,43 While our
rescaling allows the reconstruction to be performed using a model that
assumes additive Gaussian noise, the underlying data definitely do not
follow such a noise model, and practical evaluations of the value of CS
need to keep this in mind. r in Eq. (4) is thus ryðyÞ, evaluated from
the measured intensity y and not the modeled intensity A0x, which is
the appropriate choice for minimizing bias in the implicit approxima-
tion to the Poisson likelihood function.29

In the original formulation [Eq. (1)], we have now accounted for
x,W, b, �, r, the construction of the unscaled A0 measurement matrix,
and the uncertainty-rescaling that transforms the matrix A0 into the A
matrix used in the CS reconstruction. This fully defines the CS recon-
struction problem. In practice, we find that we obtain the best perfor-
mance when we first do a coarse reconstruction at a high binning level
(combining 8 � 8 blocks of pixels, for example), thus allowing rapid
determination of optimal algorithm parameters and permitting the
algorithm to coarsely sort out which features and events belong to
which frames. We can then software-unbin by a factor of 2 at a time
and refine the solution.

The error estimate r deriving purely from camera noise is insuffi-
cient at the edges of the subframes, largely because the edges of the
subframes on the camera can only be calibrated to finite precision.

Subtle changes in lens focus, alignment, and deflector positioning will
all slightly shift the projector lens crossover relative to the deflector,
and this can shift the subframe edges by several pixels on a large-pixel-
count camera. To compensate for this, we do three things: (1) soften
the subframe edges with an arctangent smoothing function derived
from curve fits to the edges of the alignment-series subframe images,
(2) determine a slight vector shift of each subframe on the camera
using maximum cross correlation methods, and (3) increase the esti-
mate of r for all camera pixels within a specified distance of the edge
of any subframe, thus expanding the definition of r to include this
source of systematic noise along with the random noise from the cam-
era detection process. This helps to flatten the normalized-residual
images and reduce the subframe-edge artifacts visible in the video
reconstructions. We are endeavoring to further reduce this problem by
(1) improving the mechanical stability and repeatability of the deflec-
tor positioning, (2) fine-adjusting the deflector geometry so that
exactly the same sample field of view is visible in all subframes, and (3)
simplifying and speeding up the alignment series measurement and
analysis, thus making it painless to quickly perform an alignment
series after any significant refocusing or realignment.

Data analysis: Final details

There is one more correction to the A matrix that, while not
strictly necessary, can improve the quality of the reconstruction,
namely, drift correction. In many in situ experiments, the sample
moves in the field of view during the process of interest. As the experi-
ments often involve rapid localized heat, stress, or chemical reactions,
this is nearly inevitable; it is part of the physics of the subject under
study. The anisotropic TV penalty, as formulated [Eq. (2)], does not
compensate for this; the temporal gradient ideally should be a local
convective time derivative (i.e., comoving with the sample) rather than
a partial derivative. A simple method to deal with this is to determine
the global displacement as a function of time and compensate for it.
This is easily accomplished in the construction of the A0 matrix from
the measurement matrix and the alignment solution; each pixel in the
undistorted source space simply needs to be shifted as a function of
time during the construction. We can determine the drift by perform-
ing a rough reconstruction and finding the vector displacement vs
time that keeps the features in the center of the field of view. We then
adjust A0 and repeat the calculation.

This method results in a center-of-mass-stabilized video that
helps to accentuate the actual dynamics of the material while suppress-
ing the much less interesting global drift. Of course, this means that
the edges of the visible field of view will shift throughout the recon-
structed video, and this is apparent in the subframe-edge artifacts in
our reconstructions. We elect to keep a larger-than-necessary output
video size to ensure that we do not lose any real information. This
means that some space-time voxels in the reconstruction are uncon-
strained by the measurement, and these can be removed at the end of
the process as mentioned previously.

The reconstruction calculation itself uses the smoothed, weighted
basis pursuit denoising algorithm implemented in TFOCS,47 with a
non-negativity constraint, using continuation to accelerate conver-
gence while minimizing the ultimate effect of the artificial smoothing
function so that the algorithm ultimately converges on the solution of
the original problem. As this is a standard use case for the well-
documented open-source TFOCS software, we refer the reader
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interested in the numerical reconstruction algorithms to the documen-
tation supplied with TFOCS. We first performed rough-draft recon-
structions with spatial binning of 8 � 8-pixel blocks. This allowed us
to quickly adjust the most important parameters (which turned out to
be kt, j, the subframe-edge error-estimate enhancement parameters,
the TFOCS artificial smoothing coefficient l, and the estimated
squared norm of theWmatrix, which needed to be increased typically
�10-fold from its actual value in order to keep the � constraint satis-
fied) and see the effects on the reconstruction. Evaluation of the recon-
struction performance is done by viewing diagnostic-tableau graphics
such as in supplementary material Fig. 6, as well as viewing the recon-
structed videos themselves.

SUPPLEMENTARY MATERIAL

See the supplementary material for the explanation of the first
proof of principle measurements at LLNL, all frames from all recon-
structed videos including both directly measured and interpolated/
extrapolated versions, photodiode measurements of the drive laser
temporal envelope, and an example diagnostic image. AVI format vid-
eos of all reconstructions are also available.
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