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Abstract

Empirical knowledge of diversity–stability relationships is mostly based on the analysis of 

temporal variability. Variability, however, often depends on external factors that act as 

disturbances, which makes comparisons across systems difficult to interpret. Here, we show how 

variability can reveal inherent stability properties of ecological communities. This requires that we 

abandon one-dimensional representations, in which a single variability measurement is taken as a 

proxy for how stable a system is, and instead consider the whole set of variability values generated 

by all possible stochastic perturbations. Despite this complexity, in species-rich systems, a generic 

pattern emerges from community assembly, relating variability to the abundance of perturbed 

species. Strikingly, the contrasting contributions of different species abundance classes to 

variability, driven by different types of perturbations, can lead to opposite diversity–stability 

patterns. We conclude that a multidimensional perspective on variability helps reveal the 

dynamical richness of ecological systems and the underlying meaning of their stability patterns.
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Introduction

Ecological stability is a notoriously elusive and multifaceted concept (Pimm 1984; Donohue 

et al. 2016). At the same time, understanding its drivers and relationship with biodiversity is 

a fundamental, pressing, yet enduring challenge for ecology (Elton 1946; MacArthur 1955; 
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May 1973a; McCann 2000). The temporal variability of populations or ecosystem functions, 

where lower variability is interpreted as higher stability, is an attractive facet of ecological 

stability, for several reasons. First, variability is empirically accessible using simple time-

series statistics (Tilman et al. 1996). Second, variability – or its inverse, invariability – is a 

flexible notion that can be applied across levels of biological organisation (Haegeman et al. 
2016) and spatial scales (Wang & Loreau 2014; Wang et al. 2017). Third, variability can be 

indicative of the risk that an ecological system might go extinct, collapse or experience a 

regime shift (Scheffer et al. 2009). During the last decade, the relationship between 

biodiversity and ecological stability has thus been extensively studied empirically using 

invariability as a measure of stability (Tilman et al. 2006; Jiang & Pu 2009; Hector et al. 
2010; Campbell et al. 2011; Gross et al. 2014; Pennekamp et al. 2018).

In a literal sense, stability is the property of what tends to remain unchanged (Pimm 1991). 

Variability denotes the tendency of a variable to change in time, so that its inverse fits this 

intuitive definition. However, variability is not necessarily an inherent property of the system 

that is observed (e.g. a community of interacting species), as it typically also depends on 

external factors that act as perturbations. Thus, the variability of a community is not a 

property of that community alone. It may be caused by a particular perturbation regime so 

that a different regime could lead to a different value of variability. All else being equal, 

stronger perturbations will generate larger fluctuations, and the way a perturbation’s 

intensity is distributed and correlated across species is also critical. In other words, a 

variability measurement reflects the response of a system to the specific environmental 

context in which it is embedded.

Despite this complexity, quantifying the fluctuations of an ecosystem property (e.g. primary 

production) can be of foremost practical interest as it provides a measure of predictability in 

a given environmental context (Griffin et al. 2009). However, to generalise results beyond 

the specific context in which variability is measured, use variability to compare the stability 

of different systems, establish links between different stability notions, or reconcile the 

conflicting diversity–stability patterns and predictions reported in the empirical and 

theoretical literature (Ives & Carpenter 2007), one needs to know how variability 

measurements can reflect a system’s inherent dynamical features.

Here, we adopt an approach in which stability is viewed as the inherent ability of a 

dynamical system to endure perturbations (Fig. 1a). For simplicity, we will restrict to 

systems near equilibrium, by opposition to, for example limit cycles or chaotic attractors. 

We propose that a measure of stability should reflect, not a particular perturbation (as in Fig. 

1b), but a system’s propensity to withstand a whole class of perturbations. We therefore 

consider a vast perturbation set, and study the corresponding range of community responses 

(Fig. 1c). Even from a theoretical perspective, considering all possible perturbations that an 

ecosystem can face is a daunting task. We will thus restrict our attention to weak stochastic 

perturbations, and derive analytical formulas for two complementary features of a 

community’s variability values: the average and maximum, corresponding to the mean- and 

worst-case perturbation scenarios respectively.
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After having developed a general theory of variability that can be applied to any system near 

equilibrium, we turn our attention to species-rich communities assembled from random 

Lotka–Volterra models. We show that a simple variability–abundance pattern emerges from 

community assembly. We argue that this pattern is a generic expectation for diverse 

communities when interspecific interactions are strong enough, and will hold beyond 

random models (Barbier et al. 2018). This pattern, in conjunction with the type of 

perturbations considered (e.g. environmental or demographic stochasticity), determines the 

specific species abundance class that governs the variability distribution. In particular, we 

establish a fundamental link between species abundance, worst-case variability and 

asymptotic resilience – the long-term rate of return to equilibrium following a pulse 

perturbation. We finally illustrate that the contrasting contributions of various species 

abundance classes can be responsible for opposite diversity–invariability patterns.

Conceptual Framework

Perturbed communities

Let Ni(t) represent the abundance (or biomass) of species i at time t, and xi(t) = Ni(t) – Ni its 

displacement from an equilibrium value Ni, with i running over S coexisting species that 

form an ecological community. We model variability as a response to stochastic forcing. We 

focus on stationary fluctuations caused by weak perturbations with zero mean, governed by 

the following dynamical system, written from the perspective of species i as

d
dt xi t

fluctuations
= ∑

j = 1

S
Ai jx j t

interactions

+ σi Ni
αξi t

perturbation
. (1)

The coefficients Aij represent the effect that a small change in abundance of species j has on 

the abundance of species i. Organised in the community matrix A = (Aij), they encode the 

linearisation of the nonlinear system of which (Ni) is an equilibrium. In the perturbation 

term, ξi(t) denotes a standard white-noise source (Arnold 1974; Van Kampen 1997). In 

discrete time, ξi(t) would be a normally distributed random variable with zero mean and unit 

variance, drawn independently at each time step (see Appendix S1 in Supporting 

Information).

Such models were studied by Ives et al. (2003) to analyse ecological time series. In their 

approach, stability properties are inferred from the system’s response to specific 

perturbations. Here, we build on a similar formalism, but explicitly explore a vast set of 

possible perturbations. Although environmental fluctuations often follow temporal patterns 

(Vasseur & Yodzis 2004; Ruokolainen et al. 2009; Fowler & Ruokolainen 2013), we will not 

consider autocorrelated perturbations. What we will explicitly consider, however, are 

temporal correlations between ξi(t) and ξj(t), a situation in which individuals of species i 
and j are similar in their perception of a given perturbation, a property known to have 

potentially strong, and unintuitive effects on species dynamics (Ripa & Ives 2003).
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For the fluctuations of species abundance in eqn 1 to be stationary, the equilibrium state (Ni) 

must be stable. More technically, the eigenvalues of the community matrix A must have 

negative real part (May 1973a; Gurney & Nisbet 1998). The maximal real part determines 

the slowest long-term rate of return to equilibrium following a pulse perturbation. This rate 

is a commonly used stability measure in theoretical studies; we call it asymptotic resilience 
and denote it by ℛ∞ (Arnoldi et al. 2016). To showcase links between stability concepts, we 

will compare asymptotic resilience to measures of community-wide variability.

Perturbation type

The perturbation term in eqn 1 represents the direct effect that a perturbation has on the 

abundance of species i. It consists of two terms: some power α of Ni and a species-specific 

term σiξi(t). The latter is a function of the perturbation itself, and of traits of species i that 

determine how individuals of that species perceive the perturbation. The former defines a 

statistical relationship between a perturbation’s direct effects and the mean abundance of 

perturbed species. It allows us to consider ecologically distinct sources of variability (Fig. 

2).

When individuals of a given species respond in synchrony to a perturbation, the direct effect 

of the perturbation will be proportional to the abundance of the perturbed species, thus a 

value of α close to 2 (Lande et al. 2003). We call this type of perturbation environmental as 

fluctuations of environmental variables typically affect all individuals of a given species 

(Turelli 1981) leading, for example to changes in the population growth rate (May 1973b).

If individuals respond incoherently, for example some negatively and some positively, the 

direct effect of the perturbation will scale sublinearly with species abundance. For instance, 

demographic stochasticity can be seen as a perturbation resulting from the inherent 

stochasticity of birth and death events, which are typically assumed independent between 

individuals. In this case α = 1, and we thus call such type demographic (Lande et al. 2003).

Finally, setting α = 0 represents purely exogenous disturbances such as the random removal 

or addition of individuals. We call such perturbations immigration type. We stress, however, 

that actual immigration events could depend on population size, and that because we focus 

on zero-mean perturbations, perturbations of this type contain as much emigration than 

immigration. The reasoning behind this nomenclature is that, in an open system, fluctuations 

of an otherwise constant influx of individuals would correspond to an immigration-type 

perturbation.

More generally, varying α describes a continuum of perturbation types. Although not 

unrelated, the statistical relationship that defines perturbation type is not equivalent to 

Taylor’s law (Taylor 1961). The latter is an empirically observed power law relationship 

between the variance and mean of population fluctuations. In contrast to the perturbation 

type α, the exponent of Taylor’s law depends on community dynamics, for example on 

species interactions (Kilpatrick & Ives 2003). We will come back to this point below and in 

the Discussion.
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Perturbation intensity

For a given community, and all else being equal, a more intense perturbation will lead to a 

more intense response. A disproportionate increase of the response with perturbation 

intensity would signal nonlinear dynamics (Zelnik et al. 2019). Near equilibrium, however, 

response intensity depends linearly on perturbation intensity (Ives et al. 2003). We now 

illustrate how to remove this trivial dependency, leading to our definition of community-

wide variability.

Fluctuations induced by white-noise forcing are normally distributed, thus fully 

characterised by their variance and covariance. We thus construct a measure of community-

wide variability based on the variance of species time series. To compare the variability of 

systems with different species richness, we use a community’s average variance:

σout
2 = 1

S ∑
i

Var Ni t . (2)

Furthermore, in Appendix S2, we explain how this measure is related to the variance of 

ecosystem functions. In eqn 1, the perturbation intensity on species i is encoded in the term 

σi. We define perturbation intensity at the community level as the average intensity per 

species that is using the species-specific intensities σi
2:

σin
2 = 1

S ∑
i

σi
2 . (3)

When increasing all species-specific perturbation intensities by a factor c, both σin
2 and σout

2

increase by the same factor (see Appendix S2). To remove this linear dependence, we define 

variability  as

𝒱 =
σout

2

σin
2 , (4)

that is, the average species variance relative to perturbation intensity (see Ives et al. 2003 for 

a similar definition). Following previous work (Arnoldi et al. 2016; Arnoldi & Haegeman 

2016; see Appendix S4), we construct invariability ℐ as

ℐ = 1
2𝒱 . (5)

The factor 1/2 allows ℐ to coincide, for simple systems, with asymptotic resilience ℛ∞ 
(Arnoldi et al. 2016, and Appendix S2).
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Perturbation direction

At fixed intensity, perturbations can still differ in how their intensity is distributed and 

temporally correlated across species. Species with similar physiological traits will be 

affected in similar ways by, say, temperature fluctuations, whereas individuals from 

dissimilar species may react in unrelated, or even opposite, ways (Ripa & Ives 2003). We 

thus study the effect of the covariance structure of the perturbation terms that is the effect of 

the direction of perturbations.

Spanning the set of all perturbation directions defines a whole range of community 

responses. Assuming some probability distribution leads to a probability distribution over 

the set of responses that is a variability distribution (see Fig. 2). Spanning the set of 

perturbation types reveals a continuous family of variability distributions. In Fig. 2, we show 

three archetypal elements of this family, corresponding to α = 0 (blue distribution), α = 1 

(green) and α = 2 (red).

For each distribution, we consider two complementary statistics: mean- and worst-case 

responses. In Appendices S3 and S4, we prove that the worst-case response is always 

achieved by perturbations with maximal interspecific correlations. We derive explicit 

formulas to compute the worst-case variability from the community matrix and species 

equilibrium abundances, given by eqns S18 and S24.

The mean-case scenario is defined as the average response over all perturbation directions. 

We prove in Appendices S3 and S4 that it is realised by a perturbation affecting all species 

independently and with equal intensity. This provides a simple way to compute this mean 

response from the community matrix and species abundances, given by eqns S19 and S25.

Results

Variability patterns for two-species community

We illustrate our variability framework on the following elementary example, in the form of 

a 2 × 2 community matrix

A = −1 0.1
−4 −1 . (6)

This matrix defines a linear dynamical system that could represent a predator–prey 

community with the first species benefiting from the second at the latter’s expense. Its 

asymptotic resilience is ℛ∞ = 1. Let us suppose that the prey, N2 (second row/column of A) 

is 7.5 times more abundant than its predator, N1 (first row/column of A) and consider 

stochastic perturbations of this community, as formalised in eqn 1.

In Fig. 3, we represent the set of perturbation directions as a disc, in which every point is a 

unique perturbation direction (see Appendix S5 for details). The effect of a perturbation on a 

community is represented as a colour; darker tones imply larger responses, with the baseline 

colour (blue, green or red) recalling the perturbation type (α = 0, 1, 2 respectively). Points at 
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the boundary of the disc correspond to perturbations with maximal interspecific correlations, 

which have the potential to generate the largest (and the smallest) variability. This is why the 

colour maps of Fig. 3 take their extreme values at the boundary. We see that variability 

strongly depends on the perturbation direction, and that this dependence is strongly affected 

by the perturbation type. For immigration-type perturbations (in blue), variability is largest 

when perturbing the predator species most strongly (the least abundant species in this 

example). For demographic-type perturbations (in green), perturbations that equally affect 

the two species but in opposite ways achieve the largest variability. For environmental-type 

perturbations (in red), variability is largest when perturbing the prey species (the most 

abundant species in this example). For all types, we see that positive correlations between 

the components of the perturbation (i.e. moving upwards on the disc) reduce variability (see 

Ripa & Ives 2003 for related results).

Thus, in general, a given community cannot be associated to a single value of variability. 

Depending on the type of perturbations causing variability, different species can have 

completely different contributions. This stands in sharp contrast with asymptotic resilience 

ℛ∞, which associates a single stability value to the community. We know from previous 

work (Arnoldi et al. 2016) that the smallest invariability value in response to immigration-

type perturbations will always be smaller than ℛ∞ (and larger than the slowest initial return 

rate, which determines a system’s reactivity (Neubert & Caswell 1997)). For any 

perturbation type and/or any perturbation direction there is, however, no reason to expect a 

relationship between invariability, asymptotic resilience, and reactivity.

Variability patterns in complex communities

The dimensionality of variability will be larger in communities comprised of many species, 

as their sheer number, S, increases the dimension of the perturbation set quadratically. Yet, 

when species interact, a generic structure can emerge from ecological assembly, revealing a 

simple relationship between variability and the abundance of perturbed species. To show 

this, we study communities assembled from Lotka–Volterra dynamics. We start from a large 

pool of species with randomly drawn dynamical parameters, and let the system settle to an 

equilibrium. During assembly species would go extinct, but by considering relatively small 

interspecific interaction strengths, we ensured that the dynamics were never cyclic nor 

chaotic. A complete description of the model is given in Appendix S6 and Matlab simulation 

code is available as supplementary material. We then applied our general variability 

framework to those communities. This enabled us to assess the community-wide impact of 

weak stochastic perturbations that do not cause extinctions.

In Fig. 4, we show the corresponding variability patterns for a single community, but the 

results hold more generally (see below). The species pool consists of Spool = 50 species, 

with species interaction strengths one order of magnitude weaker than species self-

regulation. After the assembly process, S = 40 species coexist in the community. In this 

species-rich context, the perturbation set cannot be represented exhaustively. We therefore 

plot the variability induced by weak species-specific perturbations (of various types) against 

the abundance of perturbed species. That is, we focus on the effect of a specific subset of 

perturbations, those affecting a single species. All perturbations without interspecific 
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temporal correlations can be constructed by linear combination of species-specific 

perturbations. Linear combinations of species-specific perturbations will thus span all 

scenarios in which species are affected independently, but exclude scenarios in which they 

are perturbed in systematically correlated or anticorrelated way (in terms of the geometrical 

representation of Fig. 3, this amounts to restricting to the equator of the coloured discs).

The leftmost panel shows a negative unit slope on log scales: when caused by immigration-

type perturbations, variability is inversely proportional to the abundance of perturbed 

species. The worst-case scenario thus corresponds to a perturbation of the rarest species. 

Worst-case invariability is close to asymptotic resilience, which corroborates previous 

findings showing that the long-term rate of return to equilibrium is often associated with rare 

species (Haegeman et al. 2016; Arnoldi et al. 2018). In contrast, the middle panel of Fig. 4 

shows that, for demographic-type perturbations, the induced community-wide variability 

does not depend on the abundance of the perturbed species. Finally, the rightmost panel 

shows a positive unit slope on log scales: when caused by environmental stochasticity, 

variability is proportional to the abundance of perturbed species. The worst case is thus 

attained by perturbing the most abundant one. Despite being intrinsically more stable than 

rare ones – in the sense that they buffer exogenous (immigration-type) perturbations more 

efficiently – common species are more strongly affected by environmental perturbations, and 

can thus generate the most variability.

Those patterns are not coincidental, but emerge from species interactions, as we illustrate in 

Fig. 5. In their absence, other patterns can be envisioned. Without interactions, the response 

to a species-specific perturbation involves the perturbed species only. The variability–

abundance relationship is then  = Nα/2r, with N = K. If r and K are statistically 

independent in the community (top-left panel in Fig. 5); this yields a different scaling than 

the one seen in Fig. 4. In the case of an r–K trade-off (i.e. species with larger carrying 

capacities have slower growth rate), abundant species would be the least stable species 

(bottom-left panel in Fig. 5, in blue) which is the opposite of what the leftmost panel of Fig. 

4 shows. However, as interaction strength increases (from left to right in Fig. 5; the ratios of 

inter- to intraspecific interaction strength are 0, 0.02 and 0.1 approximately), we see 

emerging the relationship between abundance and variability of Fig. 4, regardless of the 

choice made for species growth rates and carrying capacities. The plotted results are 

generated assuming random interaction strengths, but we explain in Appendix S7 that those 

results reflects a generic limit-case behaviour that need not be specific to random 

interactions. The described variability–abundance patterns occur when species abundances 

are only faintly determined by their carrying capacities, but mostly by their many direct and 

indirect interactions with the rest of the community (see Appendix S7 for the precise 

statement).

Although we considered a specific section of the perturbation set, the response to single-

species perturbations can still span the whole variability distribution. In particular, for 

immigration-type and environmental perturbations, single-species perturbations realise the 

worst-case (perturbation of the rarest and most abundant species, respectively), the mean-

case and the best-case scenarios (perturbation of the most abundant and rarest species 

respectively). For demographic-type perturbations, the situation is more subtle. Variability 
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can be independent of species abundance, and, in general, extreme scenarios will be 

associated to temporally correlated perturbations affecting multiple species.

The variability–abundance patterns shown in Figs 4 and 5 should not be confused with 

Taylor’s law (Taylor 1961), a power law relationship between a species’ variance and its 

mean abundance. In fact, the variability–abundance pattern is dual to Taylor’s law: it 

represents the community response to single-species perturbations instead of that of 

individual species to a community-wide perturbation.

Diversity–invariability relationships

To illustrate implications of the generic variability–abundance pattern, we revisit the 

diversity–stability relationship, with stability quantified as invariability ℐ. We assembled 

communities of increasing species richness S, each associated with an invariability 

distribution generated from random perturbations, predictions for the mean- and worst-case 

scenarios, and a value of asymptotic resilience ℛ∞.

The leftmost panel of Fig. 6 shows a negative relationship between invariability in the face 

of immigration-type perturbations, and species richness. Asymptotic resilience and worst-

case invariability mostly coincide, with a decreasing rate roughly twice as large as that of the 

mean case. The middle panel suggests a different story. Mean-case demographic-type 

invariability stays more or less constant, whereas the worst case diminishes with species 

richness, although much more slowly than ℛ∞. The relationship between diversity and 

stability is thus ambiguous. In the rightmost panel we see an increase in all realised 

environmental-type invariability values with species richness, showcasing a positive 

diversity–stability relationship.

The diversity stability relationships can be explained by the generic variability–abundance 

patterns of Figs 4 and 5 (see Appendix S8). In the case of immigration-type perturbations, 

species contributions to variability are proportional to the inverse of their abundance (first 

panel of Fig. 4). The worst-case scenario follows the abundance of the rarest species, which 

rapidly declines with species richness. As detailed in Appendix S8, mean-case invariability 

scales as the average species abundance, which also typically decreases with S.

The responses to demographic perturbations, in contrast, are not determined by any specific 

species abundance class (second panel of Fig. 4), so that no simple expectations based on 

typical trends of abundance distributions can be deduced.

We recover a simpler behaviour when looking at the response to environmental-type 

perturbation: abundant species now drive variability (rightmost panel of Fig. 4). As 

explained in Appendix S8, mean-case invariability now scales as the inverse of the average 

species abundance. The latter typically declines with S explaining the observed increase of 

mean-case invariability.

There is an analogy to be made between stability and diversity. As has been said about 

diversity metrics (e.g. species richness, Shannon entropy or Simpson index), different 

invariability measures ‘differ in their propensity to include or to exclude the relatively rarer 
species’ (Hill 1973). In this sense, different invariability measures can probe different 
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dynamical aspects of a same community, with potentially opposite dependencies on a given 

ecological parameter of interest.

Discussion

Because it is empirically accessible using simple time-series statistics, temporal variability is 

an attractive facet of ecological stability. But there are many ways to define variability in 

models and empirical data, a proliferation of definitions reminiscent of the proliferation of 

definitions of stability itself (Grimm & Wissel 1997). Variability measurements often 

depend, not only on the system of interest, but also on external factors that act as 

disturbances, which makes it difficult to relate variability to other stability concepts. These 

caveats constitute important obstacles towards a synthetic understanding of ecological 

stability, and its potential drivers (Ives & Carpenter 2007).

We proposed to consider variability as a way to probe and measure an ecosystem’s response 

to perturbations, thus revealing inherent dynamical properties of the perturbed system. We 

did not seek for an optimal, single measure of variability but, on the contrary, we accounted 

for a vast set of perturbations, leading to a whole distribution of responses. We focused on 

the worst- and mean-case values of this distribution as functions of species abundance, their 

interactions and the type of perturbations that generates variability.

A perturbation-type characterises a statistical relationship between its direct effect on a 

population and the latter’s abundance. We distinguished between environmental 

perturbations, whose direct effects scale proportionally with population abundance; whose 

direct effects scale sublinearly with population abundance; and immigration-type 

perturbations, representing purely exogenous events such as the random addition and 

removal of individuals. Controlling for perturbation type and intensity, we considered all the 

ways this intensity can be distributed and correlated across species.

After having described a general (linear) theory for variability, which emphasises its highly 

multidimensional nature, we turned our attention towards species-rich communities 

assembled by random (nonlinear) Lotka–Volterra dynamics, seen as a generic limit of 

complex communities (Barbier & Arnoldi 2017). Because of the sheer number of species 

contained in such communities, we could have expected the dimensionality of perturbations 

and responses to be so large that variability distributions would be too complex to describe. 

However, the process of assembly allowed for a simple behaviour to emerge: a relationship 

between variability and the abundance of individually perturbed species. In essence, this 

pattern predicts that a species’ ability to buffer purely exogenous (immigration-type) 

perturbations is proportional to that species abundance. This pattern is not a universal feature 

of all communities, but will occur in diverse communities with relatively strong interactions 

and no community-wide structuring of the species interaction network (Appendix S7; see 

also Barbier et al. 2018). In conjunction to this simple pattern, the perturbation type 

determines species-specific contributions to the variability distribution, in a way that allows 

both common and rare species to drive community-wide variability patterns. This is 

reminiscent of diversity measures (Hill 1973), some of which (e.g. species richness) are 
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sensitive to the presence of rare species, while others are mostly indicative of the distribution 

of abundant species (e.g. Simpson diversity index).

These connections with different diversity metrics can explain contrasting trends in stability 

(sensu invariability) as a function of species richness. That the response to immigration-type 

perturbations is driven by the least abundant species leads to a negative diversity–

invariability relationship. Indeed, mean-case invariability is driven by the trend of species 

average abundance (cf. Appendix S8), which generally decreases with species richness. In 

contrast, in response to demographic perturbations, species contributions to variability can 

be independent of their abundance. In this case, variability is not expected to follow trends in 

abundance statistics, so that diversity–invariability patterns can be less predictable and 

harder to interpret. Finally, although common species buffer exogenous perturbations 

efficiently, they are also the most affected by environmental-type perturbations. This leads to 

a proportional relationship between average abundance and mean-case variability. Since 

mean abundance typically decreases with species richness, we get a positive diversity–

invariability relationship.

Implications for empirical patterns

We showed that species abundances greatly affect variability distributions. This new insight 

has broad consequences. For example, it has been reported that ecosystem-level and 

population-level stability tend to increase and decrease, respectively, with increasing 

diversity (Jiang & Pu 2009; Campbell et al. 2011). Ecosystem-level stability is often 

quantified based on the variability of total biomass, which gives, by construction, a 

predominant weight to abundant species. In contrast, averages of single-species variabilities 

have been used to measure population-level stability (Tilman 1996). These averages are 

strongly affected, and can even be fully determined, by rare, highly variable species 

(Haegeman et al. 2016). Thus, here as well as in our theoretical results (Fig. 6), stability 

metrics governed by common, or rare, species tend to generate, respectively, positive and 

negative diversity–stability relationships. It would be interesting to test whether this 

observation holds more generally, for example if it can explain the results of Pennekamp et 
al. (2018), who found that a stability metric based on community-level variability increases 

with diversity, while a stability metric related to community-level resistance decreases.

The type of perturbations affects which species abundance class contributes most to 

variability. In turn, the physical size of the system considered affects which perturbation type 

dominates. This is well known in population dynamics (Engen et al. 2008), but it also 

transposes to the community level. At small spatial scales, implying small populations, we 

may expect variability to be driven by demographic stochasticity. At larger scales, implying 

larger populations, demographic stochasticity will be negligible compared with 

environmental perturbations. Just as changing the perturbation type transforms the respective 

roles of common and rare species, patterns of variability at different scales should reflect 

different aspects of a community (Chalcraft 2013), associated to different species abundance 

classes (abundant species at large spatial scales, rare/rarer species at small spatial scales).

In empirical systems for which different perturbation types can be applied experimentally, 

our theoretical predictions could be directly tested. In general, however, empirically 
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determining the perturbation type might be a non-trivial task. To develop suitable methods, it 

might be helpful to first understand the link between the variability–abundance patterns (see 

Figs 4 and 5) and Taylor’s law (Taylor 1961). The latter is an empirically accessible pattern, 

relating the mean and variance of population sizes. We studied the behaviour of the 

community response to an individual species perturbation, while Taylor’s law focuses on the 

individual species response to a perturbation of the whole community. This duality also 

suggests that Taylor’s law is, at the community level, strongly affected by species 

interactions. This is known (Kilpatrick & Ives 2003), yet our approach could shed new light 

on the information regarding species interactions and other dynamical traits, actually 

contained in community-level Taylor’s laws.

On the dimensionality of stability

We noted a connection between variability and asymptotic resilience, the most popular 

notion in theoretical studies (Donohue et al. 2016). We showed that asymptotic resilience is 

comparable to the largest variability in response to a immigration-type perturbation, which is 

often a perturbation of the rarest species (first panel of Fig. 4). While asymptotic resilience 

is sometimes considered as a measure representative of collective recovery dynamics, we 

previously explained why that this is seldom the case (Arnoldi et al. 2018). The asymptotic 

rate of return to equilibrium generally reflects properties of rare ‘satellite’ species, pushed at 

the edge of local extinction by abundant ‘core’ species. In contrast, short-time return rates 

are typically controlled by abundant species and can exhibit qualitatively different 

properties.

The multiple dimensions of variability are related to the multiple dimensions of return times. 

Variability is an integral measure of the transient regime following pulse perturbations that is 

a superposition of responses to various pulses, some of which have just occurred and are 

thus hardly absorbed, while others occurred long ago and are largely resorbed. If abundant 

species are faster than rare ones (the case in complex communities, see Appendix S7), if 

they are also more strongly perturbed (e.g. by environmental perturbations), the bulk of the 

transient regime will be short: variability in response to environmental perturbations is 

associated with a short-term recovery. By contrast, if all species are, on average, equally 

displaced by perturbations (e.g. by immigration-type perturbations), rare species initially 

contribute to the overall community displacement as much as do abundant ones. Since their 

recovery is typically very slow, the transient regime will be long: variability in response to 

immigration-type perturbations is associated with a long-term recovery.

Ecologists have long acknowledged the multifaceted nature of ecological stability (Pimm 

1984; Grimm & Wissel 1997; Ives & Carpenter 2007; Donohue et al. 2016); but here, we 

show that a single facet (variability) is in itself inherently multidimensional, thus suggesting 

that links across facets can be subtle. Short-term return rates may be linked with 

environmental variability, but environmental variability may have nothing to do with 

immigration-type variability, the latter possibly related with long-term return rates and 

driven by rare species. Because measures can be determined by different species abundance 

classes, we should not expect general and simple connections to hold between facets of 

ecological stability.
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Conclusion

The multidimensional nature of variability can lead to conflicting predictions, but once this 

multidimensionality is acknowledged, it can be used to extensively probe the dynamical 

properties of a community. In particular, in species-rich systems, we revealed a generic 

pattern emerging from ecological assembly, relating species abundance to their variability 

contribution. This allowed connections to be drawn between variability and statistics of 

abundance distributions. We argued that similar patterns should underlie ecosystem 

responses to other families of perturbations (e.g. pulse perturbations). Therefore, we 

conclude that embracing the whole set of ecosystem responses can help provide a unifying 

view on ecological stability and shed new light on the meaning of empirical and theoretical 

stability patterns.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Variability vs. stability. (a) Stability quantifies the way a system responds to perturbations, 

seen as an inherent property of the system (indicated by the red framed box). (b) By 

contrast, temporal variability is typically a feature of both the system studied and external 

factors that act as perturbations. (c) For variability to be an inherent property of the system, 

one can consider a whole set of perturbations, thus integrating out the dependence on 

specific external factors.
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Figure 2. 
A theoretical framework for variability. Perturbations are characterised by their type, a 

statistical relationship between the direct effect of perturbations and the abundance of 

perturbed species. For a given type and fixed intensity, there remains a whole set of 

covariance structures of perturbations, that is various perturbation directions, that will be 

transformed by community dynamics into a whole set of community responses that is 

various covariance structures of species stationary time series. A sampling of those 

responses leads to a variability distribution, one for each perturbation type. Spanning all 

perturbation types leads to a family of variability distributions (in blue, green and red in the 

rightmost column).
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Figure 3. 
Variability patterns for a two-species community. Top panel: For a two-species community, 

the set of all perturbation directions can be represented graphically as a disc (shaded in 

grey), with the variance of the perturbation term ξ2(t) on the x-axis and the covariance 

between ξ1(t) and ξ2(t) on the y-axis. Some special perturbation directions are indicated 

(numbers 1–5, see also Appendix S5). Bottom panels: We consider a predator–prey system; 

the community matrix A is given by eqn 6 and the prey (species 2) is 7.5 more abundant 

than its predator (species 1). The induced variability depends on the perturbation directions 

(darker colours indicate larger variability), and this dependence in turn depends on the 

perturbation type α. For immigration-type perturbations (α = 0, in blue), variability is 

largest when perturbing species 1 most strongly. For demographic-type perturbations (α = 1, 

in green) perturbations that affect the two species equally strongly but in opposite ways 

achieve the largest variability. For environmental-type perturbations (α = 2, in red), 

variability is largest when perturbing species 2 most strongly. Notice that the worst case is 

always achieved by perturbations lying on the edge of the perturbation set. Such 

perturbations are perfectly correlated (see main text and Appendix S5).

Arnoldi et al. Page 18

Ecol Lett. Author manuscript; available in PMC 2019 October 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 4. 
Variability–abundance pattern in a complex community. We consider a community of S = 40 

species, and look at the variability induced by perturbing a single species, whose abundance 

is reported on the x-axis. Left: When caused by immigration-type perturbations (α = 0), 

variability is inversely proportional to the abundance of the perturbed species (notice the log 

scales on both axis). The worst case is achieved by perturbing the rarest species, and is 

determined by asymptotic resilience (more precisely, it is close to 1=2ℛ∞). Middle: For 

demographic-type perturbations (α = 1), variability is independent of the abundance of the 

perturbed species. The worst case is not necessarily achieved by focusing the perturbation on 

one particular species. Right: For environmental-type perturbations (α = 2), variability is 

directly proportional to the abundance of the perturbed species. The worst case is attained by 

perturbing the most abundant. The value β reported in each panel corresponds to the 

exponent of the fitted relationship V i α Ni
β for each perturbation type α.
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Figure 5. 
The emergence of the variability–abundance pattern (same procedure as in Fig. 4). Top row: 

intrinsic growth rates r and carrying capacities K are sampled independently. Bottom row: 

Species satisfy a r–K trade-off (r ~ 1/K). Colours correspond to the three perturbation types: 

α = 0 (blue), α = 1 (green) and α = 2 (red). The value β reported in each panel corresponds 

to the exponent of the fitted relationship V i α Ni
β for each perturbation type. As interaction 

strength increases (left to right), we see emerging the relationship between abundance and 

variability described in Fig. 4 that is β = α – 1. Thus, when species interactions are 

sufficiently strong, variability always ends up being: inversely proportional (α = 0, blue), 

independent (α = 1, green) and directly proportional (α = 2, red) to the abundance of the 

perturbed species. Recall that the exponent α characterises the perturbation, while the 

exponent β describes the system response to the perturbation.
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Figure 6. 
Different perturbation types yield contrasting diversity–stability relationships, with stability 

quantified as invariability ℐ. We generated random communities of increasing species 

richness S and computed their invariability distribution in response to random perturbations 

(1000 communities per species richness; 1000 perturbations per community). Full line: 

median invariability, dark-shaded region: 5–95th percentile, light-shaded region: minimum 

to maximum realised values. The ×-marks correspond to the analytical approximation for the 

median, the dots to the analytical formula for the worst-case. Dashed line is asymptotic 

resilience ℛ∞. For immigration-type perturbations (α = 0, blue), diversity begets instability, 

with ℛ∞ following worst-case invariability. For demographic-type perturbations (α = 1, 

green), the trend is ambiguous. For environmental-type perturbations (α = 2, red), all 

realised values of invariability increase with S.
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