
Brain connectivity measures improve modeling of functional 
outcome after acute ischemic stroke

Sofia Ira Ktena, PhD1,2,*, Markus D. Schirmer, PhD1,3,4,*, Mark R. Etherton, MD, PhD1, Anne-
Katrin Giese, MD1, Carissa Tuozzo, BA1, Brittany B Mills, BSc1, Daniel Rueckert, PhD2, Ona 
Wu, PhD5, Natalia S. Rost, MD, MPH, FAAN1

1Stroke Division & Massachusetts General Hospital, J. Philip Kistler Stroke Research Center, 
Harvard Medical School, Boston, USA

2Biomedical Image Analysis Group, Imperial College London, London, UK

3Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, Boston, 
USA

4Department of Population Health Sciences, German Centre for Neurodegenerative Diseases 
(DZNE), Germany

5Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts 
General Hospital, Charlestown, MA, USA

Abstract

Background and Purpose: The ability to model long-term functional outcomes after acute 

ischemic stroke (AIS) represents a major clinical challenge. One approach to potentially improve 

prediction modeling involves the analysis of connectomics. The field of connectomics represents 

the brain’s connectivity as a graph, whose topological properties have helped uncover underlying 

mechanisms of brain function in health and disease. Specifically, we assessed the impact of stroke 

lesions on rich club (RC) organization, a high capacity backbone system of brain function.

Methods: In a hospital-based cohort of 41 AIS patients, we investigated the effect of acute 

infarcts on the brain’s pre-stroke RC backbone and post-stroke functional connectomes with 

respect to post-stroke outcome. Functional connectomes were created utilizing three anatomical 

atlases and characteristic path-length (L) was calculated for each connectome. The number of RC 

regions (NRC) affected were manually determined using each patient’s diffusion weighted image 

(DWI). We investigated differences in L with respect to outcome (modified Rankin Scale score 

(mRS); 90-days) and the National Institutes of Health Stroke Scale (NIHSS; early: 2–5 days; late: 

90-day follow-up). Furthermore, we assessed the effect of including NRC and L in ‘outcome’ 

models, using linear regression and assessing the explained variance (R2).

Results: Of 41 patients (mean age (range): 70 (45–89) years), 61% were male. Lower L was 

generally associated with better outcome. Including NRC in the backward selection models of 
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outcome, R2 increased between 1.3- and 2.6-fold beyond that of traditional markers (age and acute 

lesion volume) for NIHSS and mRS.

Conclusions: In this proof-of-concept study, we showed that information on network topology 

can be leveraged to improve modeling of post-stroke functional outcome. Future studies are 

warranted to validate this approach in larger prospective studies of outcome prediction in stroke.
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Introduction

Stroke is a leading cause of long-term adult disability1 with significant public health 

burden2. Importantly, the ability to individually prognosticate stroke outcomes in the acute 

setting remains challenging3, due to the complex mechanisms of post-stroke recovery4.

Magnetic resonance imaging (MRI) allows the mapping of anatomical regions and their 

interconnection through diffusion weighted imaging (DWI) or functional co-activation (e.g. 

resting state functional MRI (rsfMRI)). Connectomics describes the brain as a graph and 

allows the exploration of brain connectivity with network theoretical measures5. This has led 

to fundamental insights into the brain’s organization6–8, resilience to injury9, and alterations 

due to disease10. Associations between structural features and functional post-stroke 

outcome have recently been established11. However, the effect of premorbid structural 

and/or functional brain connectivity organization on recovery after stroke and its role in 

resilience to damage is yet to be fully elucidated.

A so-called rich club (RC) organization has been described in the human connectome6,8, 

comprising a set of regions which are thought to form an information backbone, crucial for 

brain function, and susceptible to disease12. Van den Heuvel and Sporns6 identified six 

bilateral regions belonging to the RC, mediating long-distance connections between brain 

modules13, and demonstrating their critical role for cognition14 and behavior15. Localized 

damage to their connections significantly impacts global network efficiency6 and have been 

shown to lead to functional deficits in disorders like Alzheimer’s disease16. Stroke location 

has also been identified as an independent determinant of outcome17, in addition to clinical 

factors, such as age18 and lesion size19. Furthermore, a strong coupling between brain hubs 

and regional blood flow has been unveiled during rest and in response to task demands20. 

The effect of focal injury on brain networks has been recently explored21, however, without 

a clear mapping between lesion location and its topological network characteristics. 

Functional connectivity has been investigated in longitudinal studies of motor recovery after 

stroke22 and significant correlations between interhemispheric resting-state connections and 

functional performance have been identified23,24. Nevertheless, the effect of focal ischemic 

stroke lesions on whole-brain functional organization estimated before and after stroke have 

not been investigated.
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In this study, we examine the functional network organization in AIS patients and the lesion 

location in relation to network topology with respect to functional outcome. Here, we 

assessed the impact of ischemic insults on brain regions that constitute the RC backbone, as 

well as functional network topology at a global level, in a prospective, hospital-based cohort. 

We hypothesize that models incorporating connectivity information, specifically 

characteristic path length in the acute phase and the number of RC regions affected by the 

stroke lesion, will improve AIS outcome models. Using multivariate linear regression, we 

investigated, if connectivity metrics obtained early in the course of AIS, and with the 

potential to be acquired at time of admission, can improve understanding of the mechanisms 

underlying variability in post-stroke functional outcomes.

Materials and Methods

The authors agree to make available to any researcher the data, methods used in the analysis, 

and materials used to conduct the research for the express purposes of reproducing the 

results and with the explicit permission for data sharing by the local institutional review 

board.

Patient population

AIS patients were enrolled in the SALVO (Statins augment small vessel function and 

improve stroke outcomes) study after admission to the Emergency Department at 

Massachusetts General Hospital. The study was approved by the Institutional Review Board 

and all participants, or their surrogates, gave written informed consent at the time of 

enrolment. AIS was defined as: (a) acute onset of focal neurological symptoms consistent 

with cerebrovascular syndrome, (b) MRI findings consistent with acute cerebral ischemia, 

and (c) no evidence of other neurological disorders to explain the symptoms. Subjects with 

moderate to severe white matter hyperintensity (WMH) burden (Fazekas grade ≥2) were 

eligible for enrolment and participants with medical contraindications to gadolinium-based 

contrast agents were excluded from this study.

Clinical assessment

Upon admission to the hospital, the National Institutes of Health Stroke Scale score (NIHSS; 

0 (no symptoms) - 42) was recorded for each patient by a trained neurologist. Utilizing 

NIHSS as a pseudo outcome score, post-stroke functional outcome was assessed during two 

follow-up assessments: (1) within 2–5 days after admission (average 2.6 days, “early” in-

hospital follow-up) and (2) at 90 days (“late” follow-up). Additionally, the modified Rankin 

Scale score (mRS; 0 (no symptoms) - 6 (death)) was recorded at late follow-up. For each 

patient, mRS was determined in an interview with the patient or health care proxy, including 

pre-stroke mRS.

Data acquisition

Patients enrolled in the SALVO study underwent a research protocol MRI, including 

structural, diffusion and functional imaging, in the hospital at 2–5 days after admission. A 

T1-weighted image (in-plane resolution, 0.430 mm; slice thickness, 6mm; matrix size, 

480×512; number of slices, 28), and gradient-echo echoplanar imaging (EPI) data depicting 
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blood oxygen level-dependent contrast at rest were acquired at 3.0T in Massachusetts 

General Hospital (Boston, USA). The rsfMRI data (N=33) consisted of 150 volumes 

(number of slices, 42 (interleaved); slice thickness, 3.51 mm; matrix size, 64×64; flip angle, 

90°; repetition time (TR), 2400 ms; in-plane resolution, 3.437 mm). In the majority of 

subjects, DWI was performed using a 3T (Siemens Skyra; numbers of slices, 28; slice 

thickness, 5mm; TR, 5500 ms; TE, 99ms; in-plane resolution, 1.375mm). For five of the 

patients in this cohort 1.5T MRI was used due to medical contraindications for 3T, such as 

the presence of a pacemaker.

Image processing

Structural and functional images were preprocessed using the Configurable Pipeline for the 

Analysis of Connectomes25, including bias field correction26, brain extraction27, non-linear 

registration28 to the MNI (Montreal Neurological Institute) anatomical template. 

Cerebrospinal fluid (CSF), grey and white matter masks were generated using FSL FAST29.

Functional data underwent slice timing correction and geometrical displacements due to 

head movement were corrected (rigid registration; AFNI software (https://

afni.nimh.nih.gov/)). Brain extraction was performed using FSL BET30. Each patient’s 150 

functional images were affinely registered to the T1 image in MNI space, and underwent 

mean intensity normalization. Finally, nuisance signal regression was performed for white 

matter, CSF and global mean, and the functional time series were band-pass filtered (0.01–

0.1Hz) and scrubbed for extreme frame displacement (>3mm). Preprocessing steps are 

summarized in Figure 1.

Rich club region characterization

Rich-club regions can either be determined by directly calculating it from connectivity 

matrices (see Appendix AI), or by utilizing prior regions. Van den Heuvel and Sporns6 

identified a set of RC regions, characterized by high connection strength, high centrality and 

efficient information transmission. This set comprises 6 bilateral regions, including the 

precuneus, superior frontal and parietal cortex, putamen, hippocampus and thalamus (see 

Figure 2A). In our study, an expert neurologist (M.R.E.), blinded to outcomes, manually 

identified the number of RC regions affected by the lesion (NRC) and outlined the acute 

infarct lesions on the DWI image.

Network analysis of functional connectivity

Three anatomical atlases (Destrieux31 (Des), Harvard-Oxford32 (HO), and AAL atlas33) 

were used to define brain regions, allowing us to explore reproducibility of the findings 

across different brain parcellations. For each set of regions, mean time series were calculated 

and strengths of the connections were estimated using partial correlations34. Global network 

efficiency was estimated via characteristic path length5, Latlas
weight, for each atlas and 

connectivity weight. L describes the average ‘distance’ between regions and is inversely 

related to the observed functional correlations in the data. In this study, we retain positive, 

negative and absolute weights of the estimated networks, as there is no consensus on which 

of these is most discriminative.
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Functional topology and outcome models

We investigated associations between NRC and outcome using the Spearman’s correlation 

coefficient (⍴), as well as differences in L with respect to NIHSS using Pearson’s correlation 

coefficient (r).

Subsequently, we modeled outcome using linear regressions based on age, lesion volume 

(DWIv), NIHSS at admission (NIHSSadm), pre-stroke mRS (mRSpre), L and NRC. First, we 

performed a univariate analysis. For multivariate analysis, we defined the baseline model 
based on age, DWIv, and early outcome measures (NIHSSadm or mRSpre, for outcome 

models based on NIHSS and mRS, respectively). In the initial model, we further included 

NRC and L, with interactions between NRC and DWIv (larger lesions are likely to affect 

more RC regions), as well as NRC and L (damage to RC regions leads to larger disturbance 

in network efficiency, and therefore L). To reduce the statistical burden of the model, we 

performed backward elimination, iteratively removing variables with the highest p-value 

above 0.05. This reduced model is referred to as outcome model. Models incorporate 

information related to both structural and functional connectivity, however, as L is only 

available for patients with available fMRI data, we remove it after backward elimination to 

test the model in the larger cohort. The baseline and initial models are given as

Outcome Age + DWIv + early outcome measure

and

Outcome Age + DWIv + NRC+L + DWIv:NRC +NRC :L + early outcome measure,

respectively, where interaction terms are indicated by ‘:’.

Models are evaluated using explained variance (with (R2
adj) and without (R2) adjustment for 

the number of independent variables), as well as the Akaike (AIC) and Bayes information 

criterion (BIC), where smaller values correspond to better model fit. Differences in the 

information criterion greater than 10 furthermore suggest strong support of the model with 

the lower value over the model with the higher value35,36. All analyses were performed 

using the computing environment R37.

Results

Forty-four AIS patients were enrolled in this study. Three patients were subsequently 

excluded because the MRI was not obtained. Of the remaining 41 patients (summarized in 

Table 1), all had NIHSSadm, NIHSSearly, and mRS recorded. For 28 patients 90-day NIHSS 

score was also obtained and fMRI data was collected for 33 patients.

Associations between functional outcome and network topology

Figure 2B characterizes outcomes in our cohort. We observed a positive correlation between 

all outcome measures and NRC (⍴=0.54, 0.58, and 0.58 for NIHSSearly, NIHSSlate, and mRS, 

respectively (all p<0.001); see Figure 2B/C).
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We explored L for positive weights (see Table 1 and Table I). Additionally, we found a 

positive correlation between NIHSSearly and L, as well as mRS and L, for all atlases 

(NIHSSearly: rHO=0.42 (p=0.01), rAAL=0.38 (p=0.03), and rDes=0.41 (p=0.02); mRS: 

rHO=0.49 (p<0.01), rAAL=0.44 (p=0.01), and rDes=0.47 (p<0.01); see Figure I).

Outcome model based on connectivity measures

Univariate analysis showed that all factors were significant for all outcome measures, except 

for mRSpre in case of the 90-day NIHSS score (see Table II). Utilizing the initial model in 

the multivariate analysis, we compared each outcome to its corresponding baseline model 

(Table 2) after backward elimination (Table III).

Models including connectivity information showed the highest R2 (both unadjusted and 

adjusted) and lowest AIC and BIC with differences greater than 10, compared to the baseline 

models. Specifically, including both NRC and L resulted in a 1.3-, 2.6-, and 1.3-fold increase 

in explained variance over the baseline model for NIHSSearly, NIHSSlate, and mRS, 

respectively. Importantly, models after removing L, and thereby extending it to the bigger 

cohort where no fMRI data was available, perform similarly or outperform their 

corresponding baseline models. Including treatment as a ‘nuisance’ variable in the models 

did not change model performance (p>0.2).

Discussion

Functional outcomes vary significantly in the early and late phases of stroke recovery and 

are difficult to model at AIS onset. Using the acute stroke lesions visible on the admission 

DWI, we demonstrated the importance of the integrity of the RC backbone on functional 

outcomes after AIS, by means of NRC, and its association with early and late functional 

outcome. Additionally, we showed that the topology of functional networks significantly 

augments outcome models.

Our results align with findings in the literature. Munsch et al.38 identified stroke location as 

an independent determinant of cognitive outcome measured at 3 months post-stroke. Similar 

results were demonstrated by Wu et al.17, highlighting the importance of joint modelling of 

DWI volume and topography for stroke outcomes, while our approach also takes network 

topology into account. Other studies have indicated correlations between network topology 

and stroke recovery. Wang et al.39 showed that stroke patients exhibit higher network 

segregation compared to healthy controls and demonstrated an association with restoration 

of function. Cheng et al.40 investigated whole-brain functional network organization in a 

cohort of 12 stroke patients with motor deficits from 10 days to 3 months post-stroke and 

showed decreased network integration (higher L) for patients with right-hemispheric stroke 

during an ipsilateral finger tapping task. This further agrees with our results, where patients 

with worse outcome showed higher values of L.

Rich club regions comprise brain areas responsible for distributing a large fraction of the 

brain’s neural communications, underpinning their importance for recovery. The underlying 

physiological causes of this phenomenon can be explained by (1) the disproportionate 

impact of pathological attacks on brain hubs on the global efficiency of information 
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processing41, (2) the increased vulnerability of these regions to pathogenic factors, due to 

their topological centrality and high biological cost manifested by their long-distance 

neuronal connections, and/or (3) the brain’s inability to compensate for damage or loss of 

these regions. The outcome model was further improved after introducing a measure of 

functional network efficiency (L), which directly describes how focal lesions affect the brain 

network at a global level. After backward elimination in two of the three models only the 

interaction term between L and NRC remained. This suggests that the importance of these 

regions for functional outcome increases, as efficiency of the brain network decreases (larger 

L). In this case, L after stroke might serve as a surrogate measure of L before the stroke and 

future studies are required to disentangle a causal relationship. However, information on L 
before stroke are difficult to obtain. Regardless, comparing the associations between L and 

outcome highlights that a more intact and/or efficient network communication in the acute 

phase of stroke is associated with better outcome. While the mechanisms through which the 

brain’s functional reorganization facilitates recovery after stroke and the causal relationship 

between the two variables are yet to be explored, our findings indicate that L, estimated from 

rsfMRI in the acute stroke phase, may be utilized as a determinant of functional recovery.

These results underscore the importance of efficient brain connectivity in functional 

recovery and resilience to brain damage after ischemic stroke. Our model accounts for some 

of the most commonly reported confounding factors that are available in the acute setting, 

i.e. age and lesion volume. We found that, although NRC is correlated with DWIv, the 

volume alone is not enough to explain the early and late outcomes as measured by the 

NIHSS score. Despite the positive correlation between these two measures (⍴=0.46), there 

are both large infarcts that do not affect any RC regions and small infarcts that involve one 

or two RC regions, demonstrating that a larger DWIv does not equal greater NRC. In future 

work, we aim to investigate whether the incorporation of structural connectivity measures 

could further improve modeling of long-term functional outcome. As suggested by Carter et 

al.23, each behavioral deficit and its variability across stroke patients will likely be explained 

by a combination of structural variables (e.g. DWIv) and their interaction with measures of 

structural (e.g. integrity of white matter pathways), and functional connectivity. This is 

supported by our resulting models after backward elimination, where the models of NIHSS 

incorporate age or DWIv, as well as measures of structural (NRC) and functional (L) 

connectivity.

Here, we observed an increase in R2 in the outcome model of early NIHSS, where the model 

using age and connectome information outperform a model using the same measure 

obtained 2–5 days earlier. While the connectome information remain in the model, age loses 

its significance and DWIv becomes more important in the late NIHSS assessment. This 

suggests that age plays an important role in compensating acute effects of stroke, whereas 

effects of structural damage (DWIv) become more important for long-term outcome and 

recovery. While rsfMRI data is often not available in the hyper-acute stage of stroke, we 

removed L from our models, demonstrating a clinically relevant and easy to assess model. 

Even without L, the presented models demonstrated an increase in R2 over their 

corresponding baseline models, except for mRS. However, mRS is the only model not 

containing either age or DWIv. Re-introducing age into the model, as it was the last 

parameter removed during backward elimination, results in both age and NRC being 
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significant with explained variance of R2=0.66, showing similar improvement to NIHSS 

models.

There are limitations that need to be taken into consideration when interpreting these results. 

First, regional delays have been identified in rsfMRI fluctuations in stroke patients 

(hemodynamic lag) due to vascular occlusion42. Approaches have been proposed to correct 

for such lags43, however, there is no consensus on how to address this challenge. 

Importantly, this effect may be an integral part of the observed differences between 

outcomes. Another limitation results from potential registration errors, due to relatively low 

through-plane resolution of and pathology within the anatomical scans. While registration 

errors increase noise in the analysis, it is unlikely that this will cause a systematic error in 

our cohort of patients with right- (N=22) and left-hemispheric (N=11) strokes. Moreover, by 

using three atlases to investigate functional network topology and demonstrating consistent 

trends, our results are less prone to systematic errors due to misalignment of boundaries 

between regions. In this study, a subset of patients (N=5) had contraindication for 3T MRI 

acquisition and subsequently underwent 1.5T imaging. However, studies suggest that there 

are no significant differences in the assessment of lesion volume between 1.5T and 3T 

systems in the hyperacute stage44. Generally, this study presents a proof-of-concept, due to 

the relatively small sample size. Specifically, only few subjects showed poor outcome, which 

can affect model fit, as these might be considered ‘outliers’. While the assumptions of the 

linear models were fulfilled, we observed a quantile-quantile plot corresponding to a heavy-

tailed distribution of the standardized residuals. However, after excluding subjects with 

‘extreme’ outcomes (NIHSSearly>15, NIHSSlate>9, and mRS of 5), thereby improving 

model fit, results remained consistent and demonstrated an increase in explained variance. 

Moreover, mRS is usually modeled using ordinal regressions, requiring larger datasets than 

was available in this study. Considering the agreement with outcome models using NIHSS in 

terms of retained factors, however, we do not expect a significant change in retained factors, 

as using linear regression is more likely to introduce more noise in the data. Future studies 

with larger cohorts, may explore more complex models, utilizing additional phenotypic 

information, and investigate the potential for creating appropriate prediction models.

Among the strengths of this study was the thoroughly ascertained and well-characterized 

hospital-based dataset of patients with AIS and consecutive assessments of functional post-

stroke outcomes. These included consecutive outcome measurements of NIHSS, which is a 

fine-grained measure of impairment after stroke. Importantly, in combining NRC and 

topological information from functional connectivity, we were able to interrogate effects on 

both the structural (NRC) and functional (L) brain networks, combining them into a single, 

intuitive outcome model.

Summary

In conclusion, this is the first study exploring functional network and RC topology of brain 

connectivity in AIS patients, as well as their association with early and late post-stroke 

outcomes. Our findings highlight the impact of stroke location on functional recovery, as 

well as the importance of structural connectivity hubs and functional integration for efficient 

information transmission. The proposed model yields a 1.3–2.6-fold improvement in 

Ktena et al. Page 8

Stroke. Author manuscript; available in PMC 2020 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



explained variance over the baseline model, improving our understanding of how stroke 

affects functional brain organization in the acute setting.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Overview of the processing pipeline. Each patient’s imaging data underwent (a) anatomical 

processing, (b) functional processing, (c) spatial normalization each of the three atlases, and 

(d) functional connectome creation.
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Figure 2: 
(A) Visualization of cortical (left) and subcortical (right) RC brain. NIHSS (B) and mRS (C) 

distributions for all AIS patients, stacked and color-coded by NRC.

Ktena et al. Page 13

Stroke. Author manuscript; available in PMC 2020 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Ktena et al. Page 14

Table 1:

Study cohort characterization. Treatment included intravenous tPA or endovascular thrombectomy. There was 

no difference in patients with and without fMRI data (p>0.2). (sd: standard deviation; IQR: interquartile range)

SALVO Patients with fMRI data

n 41 33

NRC (mean (sd)) 0.59 (0.81) 0.52 (0.80)

DWIv (cc; mean (sd)) 9.13 (12.52) 9.54 (13.49)

Age (years; mean (sd)) 69.79 (9.70) 70.03 (10.21)

Sex (male; %) 25 (61.0) 20 (60.6)

mRSpre (mean (sd)) 0.29 (0.75) 0.36 (0.82)

mRS (median (IQR); 1 N/A) 1 (2) 1 (2.25)

NIHSSadm (mean (sd); 1 N/A) 8.03 (5.54) 8.28 (5.85)

NIHSSearly (mean (sd)) 4.85 (4.95) 5.12 (5.34)

NIHSSlate (mean (sd); 13 N/A) 1.32 (2.25) 1.29 (2.47)

Stroke location (left; %) 16 (39.0) 11 (33.3)

Treatment (%) 18 (43.9) 13 (39.4)

LHO
+

 (mean (sd)) 17.66 (1.01)

LHO
−

 (mean (sd)) 20.91 (1.61)

LHO
abs

 (mean (sd)) 15.21 (0.92)

LAAL
+

 (mean (sd)) 17.57 (1.14)

LAAL
−

 (mean (sd)) 20.39 (1.62)

LAAL
abs

 (mean (sd)) 14.98 (0.98)

LDes
+

 (mean (sd)) 20.12 (1.20)

LDes
−

 (mean (sd)) 24.13 (1.95)

LDes
abs

 (mean (sd)) 17.62 (1.12)
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Table 2:

Summary of outcome models for NIHSSearly (top), NIHSSlate (middle), and mRS (bottom) with available 

fMRI data (N=33 and N=21, respectively). Results in parentheses correspond to all available subjects (N=41 

and N=28, respectively). For each outcome measure, baseline (top), outcome model (middle), and outcome 

model without L (bottom) are reported. Models that describes the data best are shown in bold.

Model R2 R2
adj AIC BIC

NIHSSearly

NIHSSadm

0.64 0.62 190.51 193.44

(0.62) (0.61) (233.98) (237.36)

Age+ NRC + L:NRC 0.81 0.79 173.55 179.42

Age + NRC 0.76 0.74 179.84 184.24

 

NIHSSlate

DWIv
0.29 0.25 98.78 100.87

(0.25) (0.22) (128.45) (131.11)

DWIv + NRC + L:NRC 0.76 0.72 80.06 84.24

DWIv + NRC 0.66 0.62 85.26 88.39

 

mRS

Age
0.56 0.54 117.44 120.37

(0.57) (0.56) (143.75) (147.13)

NRC + L + L:NRC 0.75 0.73 102.91 108.77

NRC 0.56 0.55 144.23 147.61
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