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Abstract

Background & Aims: The intestinal microbiome might affect development and severity of 

nonalcoholic fatty liver disease (NAFLD). We analyzed microbiomes of children with and without 

NAFLD.

Methods: We performed a prospective, observational, cross-sectional study of 87 children (8–17 

years old) with biopsy-proven NAFLD and 37 children with obesity without NAFLD (controls). 

Fecal samples were collected and microbiome composition and functions were assessed using 16S 

rRNA amplicon sequencing and metagenomic shotgun sequencing. Microbial taxa were identified 

using zero-inflated negative binomial modeling. Genes contributing to bacterial pathways were 

identified using gene set enrichment analysis.

Results: Fecal microbiomes of children with NAFLD had lower α-diversity than controls (3.32 

vs 3.52; P=.016). Fecal microbiomes from children with nonalcoholic steatohepatitis (NASH) had 

lowest α-diversity (controls, 3.52; NAFLD, 3.36; borderline NASH, 3.37; NASH 2.97; P=.001). 

High abundance of Prevotella copri was associated with more severe fibrosis (P=.036). Genes for 

lipopolysaccharide biosynthesis were enriched in microbiomes from children NASH (P<.001). 

Classification and regression tree model with level of alanine aminotransferase and relative 

abundance of the lipopolysaccharide pathway gene encoding 3-deoxy-D-manno-octulosonate 8-

phosphate-phosphatase identified patients with NASH with an area under the receiver operating 

characteristic curve value of 0.92. Genes involved in flagellar assembly were enriched in fecal 

microbiomes of patients with moderate to severe fibrosis (P<.001). Classification and regression 

tree models based on level of alanine aminotransferase and abundance of genes encoding flagellar 

biosynthesis protein had good accuracy for identifying cases with moderate to severe fibrosis (area 

under the receiver operating characteristic curve, 0.87).

Conclusions: In an analysis of fecal microbiomes of children with NAFLD, we associated 

NAFLD and NASH with intestinal dysbiosis. NAFLD and its severity were associated with greater 

abundance of genes encoding inflammatory bacterial products. Alterations to the intestinal 

microbiome might contribute to pathogenesis of NAFLD and be used as markers of disease or 

severity.

Lay summary:

The intestinal microbiota of children with nonalcoholic liver disease is altered compared to that of 

children without this chronic liver disease, with increased levels of bacterial proteins that promote 

inflammation. These microbial features were associated with liver disease severity.
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INTRODUCTION

Nonalcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease 

in American children.1 The diagnosis of NAFLD requires that 5% or more hepatocytes 

exhibit macrovesicular steatosis, and the exclusion of other identifiable liver diseases and/or 

clinical conditions, which may cause steatosis. A comprehensive understanding of why 

certain children develop NAFLD is lacking. Although obesity is a risk factor for NAFLD, 

most children with obesity do not develop NAFLD. A subset of children with NAFLD has a 

progressive sub-phenotype known as nonalcoholic steatohepatitis (NASH), characterized by 

hepatic inflammation and cell injury. Moreover, some children with NASH develop cirrhosis 

and end-stage liver disease. Thus, NAFLD is not a singular diagnosis, but a broad clinical-

pathological spectrum of liver disease.2 Factors that explain the severity of disease are 

poorly characterized. Emerging evidence suggests that the intestinal microbiome may 

influence the development and severity of NAFLD.

The intestinal microbiome is a complex ecosystem composed of trillions of microbes, 

mainly in the large bowel, living in a predominantly symbiotic relationship with the host and 

broadly impacting host physiology, immune development and function, nutrition, and 

mucosal protection.3–5 However, it may also impact human pathophysiology, including 

inflammatory bowel disease, and obesity6 by influencing local and systemic inflammation7,8 

and the host capacity for energy harvest.9,10 Additionally, animal models suggest that it may 

influence several of the putative processes involved in the development and progression of 

NAFLD,11 including choline metabolism, endotoxemia, obesity, liver inflammation and 

fibrosis.12–16

While mouse models have implicated intestinal bacteria in the pathophysiology of NAFLD,
17 evidence in humans is more limited, especially in children. Although some human studies 

have evaluated the fecal microbiota in children with NAFLD, they have been small and in 

some cases, limited by the lack of optimally characterized cases and controls.18,19 

Therefore, we evaluated the fecal microbiome of children with NAFLD, and age and Body 

Mass Index (BMI)-matched control children without NAFLD, characterizing the bacterial 

composition and functional capacity that discriminate between cases and controls and those 

that associate with greater disease severity.

METHODS

Study subjects

This was a prospective, observational, cross-sectional ancillary study to the NASH CRN 

performed at its UC San Diego Clinical Center. Participants were age 8-17 years. Cases were 

children with NAFLD diagnosed within 90 days using standard clinical history, laboratory, 

and liver histology criteria.20 Controls were overweight or obese children recruited from 
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primary care clinics without evidence of liver disease based on clinical history, labs and liver 

Magnetic Resonance Spectroscopy (MRS). Use of probiotics or recent (past 90 days) 

antibiotics exposure was exclusionary. Institutional Review Boards at each participating 

center approved the study. Parents provided written informed consent and children provided 

written assent.

Clinical assessment

Demographic and clinical data for each participant was obtained at a single intake visit at the 

UCSD Altman Clinical and Translational Research Institute. Height and weight were 

measured, and fasting blood samples were obtained for glucose, insulin and, liver and lipid 

panels. Fresh fecal samples were collected.

Liver histology

Liver biopsy specimens were stained with hematoxylin-eosin and Masson’s trichrome stains, 

and reviewed centrally by the NASH CRN Pathology Committee according to the published 

NASH CRN histological scoring system scoring system.21 The diagnosis of nonalcoholic 

steatohepatitis (NASH), borderline NASH, or NAFLD not NASH was made based on the 

aggregate presence and degree of the individual features of nonalcoholic fatty liver disease. 

Fibrosis was staged based on the following: stage 0 (no fibrosis), stage 1a (mild 

perisinusoidal), stage 1b (moderate perisinusoidal), stage 1c (portal fibrosis), stage 2 

(perisinusoidal and periportal), stage 3 (bridging fibrosis), and stage 4 (cirrhosis).

Liver MRS

Proton Density Fat Fraction (PDFF) was estimated using MRS by a long-TR, multi-TE 

stimulated echo acquisition mode (STEAM) sequence using established methodology (see 

supplement for full details).22,23

Fecal sample collection and processing

Fresh fecal samples were placed in RNAlater™ and rocked overnight at 4°C and stored at 

−80°C until isolation. Genomic DNA was isolated from fecal samples using the MO BIO 

PowerFecal DNA Isolation Kit™ (MO BIO) with following modification: after addition of 

solution C1 and heating at 65°C for 10 minutes, sample was subjected toheating at 95°C for 

10 minutes followed by bead beating using the PowerLyzer™ (MO BIO).

16S rRNA gene amplicon sequencing

Polymerase chain reaction (PCR) amplification was performed using primers targeting V1-

V3 region of the bacterial 16S rRNA gene. PCR products were purified using 1.8x volume 

Agencourt AMPure XP™ beads (Beckman Coulter) and quantified using the Qubit® 

dsDNA BR assay or dsDNA HS assay (Life Technologies). Samples were multiplexed and 

sequenced on the Illumina MiSeq™ platform to generate 300bp, paired-end reads. (see 

supplement for full details).
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Metagenomic whole genome shotgun (mWGS) sequencing

mWGS libraries were constructed with 100-250 ng of sample DNA, using KAPA HTP 

library preparation kits™ (KAPA Biosystems), with 8 (for 250 ng) or 10 (for 100 ng) PCR 

amplification cycles. Library concentrations were determined using the KAPA qPCR kit™ 

(KAPA Biosystems). Libraries were multiplexed and run on Illumina HiSeq 2000™ 

platform to generate 100bp paired-end reads.

Bioinformatic Processing of Sequence Data

Paired-end 16S reads were assembled into contiguous sequences and clustered at a 97% 

sequence similarity threshold using USEARCH 24 to generate set of 1136 Operational 

Taxonomic Units (OTUs). These were filtered to retain 712 OTUs, which were either present 

in >5% of samples, or constituted >1% of the reads in one or more sample.

To quantify relative gene abundance in the intestinal metagenome, mWGS sequences were 

mapped to curated reference gene database using HUMAnN2.25 The function of detected 

genes was determined by aligning them to the Kyoto Encyclopedia of Genes and Genomes 

(KEGG) reference database (see supplement for full details).26

Data Analysis

Patients’ characteristics were summarized as median and interquartile range or n (%). A 

non-parametric Mann-Whitney-Wilcoxon test was used to compare cases and controls while 

a Kruskal-Wallis test was used to compare Prevotella copri low, medium, and high 

abundance (see supplementary methods) in continuous variables. A Chi-square or Fisher’s 

exact test was performed for categorical variables. To compare continuous variables between 

groups, a t test or Analysis of Variance (ANOVA) was performed. If parametric assumptions 

were not met even after transformation (typically log), then a non-parametric method was 

used. Individuals were classified as low, medium, or high based on relative abundance of P. 
copri (see results and supplementary methods), and distribution of these categories by 

fibrosis, NASH, or steatosis was examined using a linear-by-linear association exact test. 

Fibrosis stage was dichotomized into none to mild (stages 0 to 1) or moderate to severe.

Due to the sparseness of the microbiome data, a zero-inflated negative binomial model 27 

was applied to test the differential effect of NAFLD or fibrosis on the relative abundance of 

bacteria at different taxonomic levels. For those that did not converge, a negative binomial or 

Poisson model was used instead. To account for the potential confounding factor of 

ethnicity, ethnicity (Hispanic vs Non-Hispanic) was included as a covariate for those genera 

or OTUs that were significant at p<0.05.

Comparisons of microbiome community between individuals (β-diversity) were based on a 

Bray-Curtis distance matrix of normalized OTU counts and evaluated using principal 

coordinates analysis in conjunction with analysis of similarity (ANOSIM) tests.28

Classification and regression trees (CART) were used to explore relationships between 

fibrosis, α-diversity and microbial taxon abundance. Fibrosis (absent/mild vs moderate/

severe) was treated as the target variable and the following were predictors: Bacteroides 
vulgatus abundance, P. copri abundance, and Shannon α-diversity index. The options for 
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parent node and terminal node were 10 and 5, respectively. Ten percent leave-out samples 

were used for cross-validation. Optimization was performed using a Gini function.

Differential abundance of microbial gene pathways was tested by gene set enrichment 

analysis (GSEA). Microbial genes were represented as KEGG Orthologs (KOs, see 

supplementary methods), and a p-value was generated for each KO using a gamma model or 

a mixture model. KOs were ranked by p-value and the relative enrichment of KEGG 

pathways within KO rankings was calculated using the R package piano.29 Direction of the 

change in relative abundance of each KO was determined based on the direction (positive vs. 

negative) of the normalized Wilcoxon signed-rank test statistic. Significantly enriched 

pathways were identified at p<0.05 following False Discovery Rate (FDR) correction. In 

comparisons of none/mild vs. moderate/severe fibrosis GSEA was carried out separately for 

high and low P. copri individuals. Pathways were reported as significant if they had an FDR-

adjusted p-value<0.05 for both groups (for justification of this approach see supplementary 

methods). CART were also performed to determine important factors in predicting case vs 

control, NASH vs NAFLD but not NASH, Moderate-to-severe fibrosis vs. absent-to-mild 

fibrosis using ALT and abundance of KOs from the LPS biosynthetic pathway or the 

flagellar assembly pathway as predictor variables. Area Under the Receiver Operating 

Characteristics curve (AUROC) was calculated to evaluate the performance.

The relative contribution of different bacterial genera to microbial gene pathways of interest 

was assessed using indicator values,30 which were generated and tested using the R package 

labdsv (see supplementary methods).31

Unless otherwise stated, statistical significance was assigned at p<0.05. FDR-adjusted p<0.2 

was considered significant for comparisons of taxa at different levels. Statistical analyses 

were performed using SAS 9.4 (SAS Institute, Cary, NC), StatXact (Cytel Studio version 

8.0.0. Cytel Inc.), R (version 3.3.2 or 3.4.2, Vienna, Austria), and Salford Predictive Modeler 

(SPM) software suite CART (Salford Systems, San Diego, CA). R package phyloseq 32 was 

used and microbial community analysis was performed using the R package Vegan.33

RESULTS

Study population

There were 124 children studied, with a median age of 12 years. Demographics and clinical 

features are shown in Table 1 (Supplementary Fig. 1). Cases (n=87) and controls (n=37) did 

not differ by age or race. Children with NAFLD were more likely to be male, 71% versus 

46% (p=0.0073). Cases and controls were well-matched for BMI and percent body fat.

Taxonomic composition of the intestinal microbiome (full study cohort)

Using 16S rRNA gene sequencing, an average of 67,852 gene sequences were generated per 

individual and 712 discrete bacterial taxa (OTUs) identified. At the phylum level, dominant 

taxa consisted of the Firmicutes, Bacteroidetes, Actinobacteria, and Proteobacteria. At the 

genus level, dominant taxa were Bacteroides, Faecalibacterium, and Blautia, as well as a 

number of unclassified members of the family Lachnospiraceae (Supplementary Fig. 2).
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Differences in the composition of the intestinal microbiome between cases and controls

The phyla Bacteroidetes and Proteobacteria were higher in cases (zero-inflated negative 

binomial model: fold change (FC): 1.34, FDR-adjusted p=0.051 and FC: 1.57, FDR-adjusted 

p=0.025, respectively), whereas the phylum Firmicutes was higher in controls (FC: 0.84, 

FDR-adjusted p=0.025). Genus-level comparisons revealed statistically significant 

differences in the relative abundance of multiple sparse genera, but few differences in 

dominant taxa (Fig. 1A, Supplementary Table 1). After adjusting for ethnicity, the majority 

(14/19) of the genera remained significant. In some cases multiple OTUs assigned to the 

same genus showed opposite trends of increased/decreased relative abundance between 

cases and controls (Supplementary Fig. 3, Supplementary Table 1), indicating the potential 

for differences between distinct taxa belonging to a single genus.

At the community level, cases had significantly lower α-diversity than controls (3.32 vs 

3.52, t-test: p=0.016, Fig. 1B). Microbiome composition (β-diversity) did not differ between 

cases and controls (ANOSIM test, p=0.71); however, principal coordinates analysis (PCoA) 

demonstrated greater person-to-person microbiome variability among cases (Fig. 1C, 

multivariate homogeneity groups dispersion test: p=0.061). Person-to-person variability in 

microbiome composition was correlated with relative abundance of OTUs for two genera - 

Bacteroides and Prevotella. Species represented by these OTUs were inferred by 

reconstructing their sequence-based phylogeny (Supplementary Fig. 4, Supplementary 

Methods) indicating that dominant OTUs likely represented the species P. copri and B. 
vulgatus.

Individuals clustered into three discrete groups based on relative abundance of P. copri 
(Supplementary Fig. 5, Supplementary Methods), but did not cluster by B. vulgatus relative 

abundance. The dominance of B. vulgatus or P. copri within the microbiome appeared 

mutually exclusive (Supplementary Fig. 5C); however, this trend may not indicate 

competitive exclusion as suggested previously,19 but may reflect that with finite sequencing 

abundance estimates are relative, not absolute. Similarly, greater relative abundance of both 

B. vulgatus and P. copri correlated with lower α-diversity (Supplementary Fig. 6). In 

addition, high P. copri abundance was significantly associated with Hispanic ethnicity 

(p=0.025, Supplementary Table 2).

Association of microbiome composition with disease severity

The phyla Proteobacteria and TM7 were higher in patients with NASH (FC: 1.97, p=0.027), 

while the phyla Fusobacteria, Verrucomicrobia, and Lentisphaerae were higher in patients 

with NAFLD but not NASH (FC: 0.0006, FDR-adjusted p=0.0033, FC: 0.013, FDR-adjusted 

p<0.001, FC: 0.084, and FDR-adjusted p=0.15, respectively). At genus level, Lactobacillus 
and Oribacterium were higher in patients with NASH, while Oscillibacter, Lactonifactor, 
Akkermansia, and Enterococcus were higher in patients with NAFLD but not NASH (FDR-

adjusted p<0.2 Fig. 2A). The genera Akkermansia, Lactobacillus, Oscillibacter, and 

Parabacteroides remained significant after adjusting for ethnicity. At OTU level, multiple 

taxa belonging to the same genus showed opposite trends in abundance (Supplementary Fig. 

7).
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Community-level changes accompanying NASH were characterized by a significant 

difference in α-diversity across the spectrum of NAFLD (ANOVA test: p=0.012, Fig. 2B). 

Patients with NASH had lower α-diversity compared to controls (2.97 vs 3.52, p=0.001), 

patients with NAFLD but not NASH (2.97 vs 3.36, p=0.017), or patients with borderline 

NASH (2.97 vs 3.37, p=0.016).

When classified by fibrosis stage (≤1 vs ≥2), the phyla Bacteroidetes (FC: 1.43, FDR-

adjusted p=0.091), Proteobacteria (FC: 1.72, FDR-adjusted p=0.062) and TM7 (FC: 3.41, 

FDR-adjusted p=0.062) were more abundant in patients with moderate-to-severe fibrosis. 

Fusobacteria (FC: 0.0007, FDR-adjusted p=0.0022), Verrucomicrobia (FC: 0.027, FDR-

adjusted p<0.0001), Firmicutes (FC: 0.85, FDR-adjusted p=0.16) were more abundant in 

patients with absent-to-mild fibrosis. At genus level, the most abundant taxa identified as 

differentially abundant were Lactobacillus (higher in moderate-to-severe fibrosis), 

Akkermansia (higher in absent-to-mild fibrosis, Fig. 3A). Slackia, Akkermansia, Gemella, 
Granulicatella, Lactobacillus, and Turicibacter remained significant after adjusting ethnicity. 

Also, in several cases multiple OTUs assigned to the same genus showed conflicting trends 

with fibrosis severity (Supplementary Fig. 8).

Comparison across the range from control to NAFLD without or with severe fibrosis showed 

lower α-diversity (p=0.009, Fig. 3B) and higher frequency of high P. copri abundance 

(p=0.036, Fig. 3C) among those with greater fibrosis. Because P. copri abundance was 

associated with both lower α-diversity and Hispanic ethnicity, CART analysis was 

performed and showed that BMI and P. copri abundance were the best predictors of fibrosis 

severity (Supplementary Fig. 9) and that ethnicity did not add to the models ability to 

identify fibrosis severity.

Association of microbiome gene pathways with case status and severity

Differences in the composition of the microbiome (Fig. 1C) correlated strongly with 

functional differences, as reflected by variation in microbial gene diversity (Mantel R=0.86, 

p (perm) <0.001, Supplementary Fig. 10A). However, the total number of genes in the 

metagenome did not vary with presence of NAFLD, or disease severity (Supplementary 

Figs. 10–11).

Using GSEA, 30 pathways were differentially abundant in one or more pairwise 

comparisons (Table 2). No evidence was found for variation in abundance of gene pathways 

associated with alcohol metabolism and this negative result was subsequently corroborated 

using serum alcohol assays (see supplementary methods). There was significantly greater 

prevalence of pathways associated with carbohydrate metabolism in the milder disease state 

for each pairwise comparison (Case vs. control, NASH vs NAFLD but not NASH, 

Moderate-to-severe fibrosis vs. absent-to-mild fibrosis), while there was significantly greater 

prevalence of pathways whose products stimulate host inflammation in the more severe 

disease state for each pairwise comparison.

Lipopolysaccharide (LPS) biosynthesis was significantly enriched in cases (FDR-adjusted 

p<0.0001, Table 2, Fig. 4A) and further enriched in those with NASH (FDR-adjusted 

p=0.0135, Table 2, Fig. 4E). CART models using ALT and the abundance of KOs within the 
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LPS biosynthesis pathway as predictors had good diagnostic accuracy for discriminating 

NAFLD cases (AUROC=0.95) and for discriminating cases with NAFLD but not NASH 

from those with definite NASH (AUROC=0.92). Measuring the abundance of a single KO 

from the LPS pathway was sufficient in each CART model: the relative abundance of genes 

encoding for 3-deoxy-D-manno-octulosonate 8-phosphate phosphatase (kdsC) provided the 

best prediction for NAFLD (Fig. 4B,C); while the relative abundance of genes encoding for 

UDP-3-O-acyl-N-acetylglucosamine deacetylase (lpxC) provided the best prediction for 

NASH (Fig. 4F,G). Examination of the taxonomic origin of shotgun-sequenced reads 

indicated that 32 bacterial genera contributed to LPS biosynthesis. Indicator values were 

used as a concise metric to represent the extent to which the contribution of different genera 

to this pathway was characteristic of either cases vs. controls, or NAFLD vs. NASH (Fig. 

4D,H).

Flagellar assembly was also enriched in cases (FDR-adjusted p<0.0001, Table 2, Fig. 5A), 

and in those with moderate-to-severe fibrosis (FDR-adjusted p<0.0001, Fig. 5A, E). CART 

models based on ALT and the abundance of KOs within the flagellar assembly pathway had 

good diagnostic accuracy for discriminating NAFLD cases (Fig. 5B,C, AUROC=0.97) and 

for discriminating cases with absent-to-mild from those with moderate-to-severe fibrosis 

(Fig. 5F,G, AUROC=0.87). KOs selected for inclusion in CART models predicting NAFLD 

represented genes encoding motility protein B (MotB), flagellar hook-basal body complex 

protein (FliE), flagellar basal body P-ring formation protein (FlgA, Fig. 5A,B). The single 

KO included in CART models for fibrosis represented genes encoding Flagellar biosynthesis 

protein (FlhA, Fig. 5E,F). There were 16 bacterial genera that contributed to flagellar 

assembly and the relative contribution of specific taxa to this pathway varied across 

conditions (Fig. 5D, H). In particular, the genus Lactobacillus made a significantly greater 

contribution to flagellar assembly in cases vs control (FDR-adjusted p=0.187) and in 

moderate/severe fibrosis (FDR-adjusted p=0.03).

Examination of the genera contributing to pro-inflammatory gene pathways was additionally 

carried out on an individual-by-individual basis (Supplementary Figs 12–15). This indicated 

that a substantial contribution from the genus Lactobacillus to flagellar assembly was only 

observed in a subset of individuals (Supplementary Figs. 14–15). Furthermore, other 

bacterial taxa appeared to make substantial contributions to these pathways in only one, or 

few, individuals. This indicated that, while the overall abundance of these pathways 

associated with the presence and severity of NAFLD, the taxa responsible for each pathway 

was likely to vary between individuals.

DISCUSSION

We studied the association of intestinal microbiota with NAFLD in well-characterized 

children with obesity with and without NAFLD. Lower α-diversity of the intestinal 

microbiome was associated with both the condition of having NAFLD and the severity of 

NAFLD. High P. copri abundance was associated with lower α-diversity and greater fibrosis. 

Genes for lipopolysaccharide biosynthesis were enriched with NASH and genes for flagellar 

assembly were enriched with moderate-to-severe fibrosis. Microbial genes were associated 
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with disease severity and provided for prediction models for NASH and for moderate-to-

severe fibrosis with good accuracy.

NAFLD is associated with dysbiosis of the intestinal microbiome

In this study, we demonstrated that pediatric NAFLD was associated with two community-

level changes in the intestinal microbiome. The first of these was a decline in α-diversity, 

which may reflect a reduction in the number of different microbial taxa (i.e. richness), and a 

bias towards overrepresentation of a smaller number of these taxa. Interestingly, declines in 

α-diversity were not associated with fewer microbial genes detected, meaning there was no 

evidence of lower metabolic potential despite lower diversity. This differs from previous 

studies of adult obesity where loss of diversity6 was linked to a reduction in metabolic 

potential.34

The second community-level change associated with NAFLD was greater person-to-person 

variability in composition of the microbiome. While this trend was relatively minor, a 

reanalysis of microbiome data originating from obese vs. lean twins showed similar 

increases in variability within obese individuals.35 This trend is also consistent with recent 

observations that increased heterogeneity is associated with a variety of stressors in many 

microbiome-related disorders.35,36 In contrast to α-diversity, person-to-person variability 

correlated strongly with the composition of the intestinal metagenome, suggesting that 

greater heterogeneity within cases was accompanied by differences in microbial metabolic 

potential.

The influence of Bacteroides, Prevotella, and diversity on NAFLD

The genera Bacteroides and Prevotella are dominant members of the healthy human 

intestinal microbiome.4 We classified patients into discrete groups based on a bimodal 

distribution in the relative abundance of P. copri, which was the dominant species belonging 

to the genus Prevotella.

When considering the relative abundance of Bacteroides and Prevotella, previous studies 

have found conflicting results. Zhu et al.37 reported no difference in Bacteroides and a 

significant difference in Prevotella relative abundance when comparing children with 

healthy-weight, obesity, or NASH from Buffalo, NY; Prevotella was more abundant in 

children with NASH or obesity and less abundant in healthy controls.38 However, this trend 

was driven by greater Prevotella relative abundance between healthy-weight vs. obese/

NASH individuals. In a study of 61 Italian children with obesity or NAFLD matched to 54 

controls, there was no association between liver disease and Bacteroides or the Prevotella 
genus.18 However, an examination of publically available data suggests that few children 

with NAFLD in Italy would have been classified as having high Prevotella relative 

abundance. In adults in France, Boursier et al. reported significantly higher Bacteroides 
relative abundance, and lower Prevotella relative abundance in patients with NASH.19 These 

differences may be attributed in part to both diet and geography, with high Prevotella 
abundance linked to fiber-rich diets and high Bacteroides abundance linked to a high protein, 

Western diet.39–41 Perhaps varying conclusions in studies from different geographic regions 
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are due to host factors in that race/ethnicity, genetics, and diet may play a larger role in the 

relationship between disease and microbiome than is currently known.

A common theme is that lower microbial α-diversity is associated with NAFLD.18,37,42 As 

microbial abundance estimates are relative,43 changes in α-diversity are closely linked to the 

relative abundance of all taxa. Accordingly, we show that the relative abundance of dominant 

OTUs from both Bacteroides and Prevotella correlated inversely with α-diversity. Given this 

observation, we hypothesize that previously reported increases in the relative abundance of 

either taxon may be explained by a loss of diversity accompanying NAFLD-associated 

dysbiosis. The specific dominant taxon showing increased relative abundance because of 

such dysbiosis may thus depend on whether Bacteroides or Prevotella dominate the 

background of the individual in question. Under this hypothesis, it also follows that it may 

be the loss of diversity, not the increased relative abundance of dominant taxa that is 

affecting NAFLD.

Alternatively, the setting of decreased diversity may increase the potential for the dominant 

organisms themselves to impart negative consequences. In our study we report evidence for 

an association between the genus Prevotella and aspects of the NAFLD phenotype. In 

particular we observed that individuals classified as high P. copri were more frequently cases 

with moderate-to-severe fibrosis. We also demonstrated that it was P. copri relative 

abundance, not α-diversity, which best predicted liver fibrosis. These findings along with the 

known biology of P. copri suggest a potential link between high levels of P. copri and 

fibrosis progression. Previous studies have reported that increased P. copri relative 

abundance may exacerbate arthritis,44 possibly via TH17 cell-mediated inflammation.45 

Moreover, in contrast to other bacteria present in the intestinal microbiome (e.g. 

Bacteroides), P. copri produces superoxide reductase and phosphoadenosine 

phosphosulphate reductase. Together, these enzymes grant P. copri a higher tolerance to 

host-derived reactive oxygen species through the conversion of highly toxic superoxide to 

less toxic hydrogen peroxide, and the production of thioredoxin, thus providing P. copri a 

competitive advantage by allowing it not only to thrive in a proinflammatory environment, 

but also perhaps increase intestinal inflammation for its own advantage.46 Such pro-

inflammatory effects may therefore exacerbate liver damage during NAFLD progression and 

are worthy of further investigation.

Therefore, we hypothesize both that a loss in diversity and an increase in the abundance of P. 
copri may be causal factors influencing NAFLD. While these hypotheses are inevitably 

confounded, they need not be mutually exclusive. Indeed they may each independently be 

exerting influence on different aspects of the NAFLD disease spectrum.

Pro-inflammatory pathways associated with disease severity

In addition to taxonomic differences, we identified two pro-inflammatory pathways, 

containing genes encoding for LPS biosynthesis and flagellar assembly, which were present 

at greater relative abundance in the NAFLD metagenome. LPS biosynthesis genes had 

greater relative abundance in the metagenome of cases vs. controls and individuals with 

NASH vs. NAFLD, while flagellar assembly genes had greater relative abundance in the 
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metagenome of cases vs. controls and individuals with moderate-to-severe fibrosis vs. 

absent-to-mild fibrosis.

LPS is a potent activator of innate immunity via toll-like receptor TLR4 stimulation in 

macrophages, neutrophils, and dendritic cells.47 It is a component of the cell walls of 

gramnegative bacteria, including the phylum Proteobacteria as well as the genera 

Bacteroides and Prevotella. Critically, TLR4 activation has also been shown to stimulate the 

production of Th17 cells from naïve CD4 T cells,47 and a Th17 driven pro-inflammatory 

state is involved in NAFLD pathogenesis. Th17 subsets are elevated in patients with NAFLD 

and obesity and the Th17 response has been linked with progression to NASH.48 TLR4 

signaling plays a critical role in NAFLD progression as well. TLR4 expression is increased 

in wild-type mice with steatohepatitis in response to high-fat diet,15 and TLR4-mutant mice 

are resistant to NAFLD.49,50

Bacterial flagellin is also a potent activator of the innate immune system, both via the toll-

like receptor TLR551 and via NOD-like receptor-mediated inflammasome activation.52 

TLR5 is expressed in the intestinal epithelium where it plays an important role in 

exacerbating the symptoms of inflammatory bowel disease. While LPS is a ubiquitous 

feature of gram-negative bacteria, only a subset of bacteria express flagella. Furthermore, 

only certain taxa are known to stimulate TLR5.51 The taxonomic origin of genes detected in 

this pathway is therefore of interest. However, we caution that overlap between genes 

encoding for flagellar assembly and type III secretion systems mean further investigation is 

warranted in order to validate the true function of genes identified as contributing to this 

pathway.

Multiple bacteria were found to contribute to these pro-inflammatory pathways. Most 

notably, the genus Lactobacillus made a significantly greater relative contribution to flagellar 

assembly in cases and in individuals with moderate-to-severe fibrosis. This genus also 

showed the largest increase in relative abundance of any taxon identified as significant in 

comparisons of both NAFLD vs. NASH and absent-to-mild vs. moderate-to-severe fibrosis. 

Motility in Lactobacillus appears restricted to a small number of species.53 While some of 

these species possess adaptations that limit their pro-inflammatory effects,54 broad 

conservation of the TLR5 interaction motif suggests that many are capable of triggering a 

TLR5-mediated immune response.53

Implication of Lactobacillus via both 16S and shotgun approaches makes this genus of 

particular interest. However, another prominent feature of our analysis was that a variety of 

taxa made substantial contributions to pro-inflammatory pathways in a small number of 

individuals. These taxa may therefore also be relevant to the etiology of NAFLD; however, 

their taxonomic diversity, sparse occurrence, and low global abundance of may have 

prevented their detection in this, and other, 16S based studies. Many of these taxa belong to 

the phylum Proteobacteria, which we observed at greater abundance in NAFLD cases. 

Similarly, Zhu et al. reported greater abundance of Proteobacteria in patients with NASH.37 

This phylum may be particularly permissive for opportunistic pathogens that can influence 

NAFLD.
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There have been recent advances using bacterial taxonomy to predict NAFLD disease 

states55 however evidence of functional redundancy between different microbial taxa linked 

to pro-inflammatory pathways suggests that genes, rather than taxa are likely to prove better 

biomarkers for the identification and characterization of NAFLD. Accordingly, we found 

that genus abundance measurements were inadequate for predicting disease using CART. In 

contrast, accounting for the abundance of genes within the LPS biosynthesis and flagellar 

assembly pathways resulted in a significant improvement over predictive models based on 

ALT alone.

The current study was notable for the large sample size of well-characterized children with 

NAFLD including liver histology evaluated in a standardized fashion by expert liver 

pathologists blinded to the clinical and laboratory details. In addition, the study design 

maximized the ability of the controls to serve as a proper comparison group. These children 

were recruited from the same local communities as the cases and absence of liver disease 

was proven with history, physical, labs, and MRS-PDFF. However, factors that can influence 

the microbiome such as diet were not evaluated. Notably, our study population was 

predominantly of Hispanic ethnicity and this was controlled for in our analyses. We 

encourage further elucidation of the relationship between ethnicity and the microbiome in 

the context of NAFLD and this will require studies that consider both cultural and biological 

factors. Finally, the cross-sectional design allowed for association but not causation. 

Mechanistic links could be evaluated through longitudinal studies in patients, and in targeted 

translational studies in gnotobiotic and/or genetically modified animal models.

Conclusions

We examined the intestinal microbiome in a well-characterized pediatric cohort with and 

without NAFLD. We identified significant differences in the NAFLD intestinal microbial 

community characterized by lower α-diversity and greater variation in β-diversity. 

Collectively, we refer to these changes as NAFLD-associated dysbiosis. We further conclude 

that NAFLD-associated dysbiosis is characterized by changes in the functional capacity of 

the intestinal microbiome, including greater abundance of genes encoding for the pro-

inflammatory bacterial products LPS and flagellin. CART models using microbial gene 

abundance as predictors support the potential for the microbiome to be a clinically useful 

biomarker. Multiple bacteria were found to contribute to these pro-inflammatory pathways, 

with distinct groups of contributing taxa in each individual. These findings may explain the 

conflicting findings of prior studies, while suggesting essential biological roles for the 

microbiome in NAFLD pathophysiology.
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Abbreviations

NAFLD Nonalcoholic Fatty Liver Disease

NASH Nonalcoholic Steatohepatitis

NASH CRN NASH Clinical Research Network

BMI Body Mass Index

MRI Magnetic Resonance Imaging

MRS Magnetic Resonance Spectroscopy

HDL High Density Lipoprotein

ALT Alanine Aminotransferase

AST Aspartate Aminotransferase

GGT Gamma Glutamyl Transpeptidase

STEAM Stimulated Echo Acquisition Mode

PDFF Proton Density Fat Fraction

AMARES Advanced Method for Accurate, Robust and Efficient Spectral

PCR Polymerase Chain Reaction

ANOVA Analysis of Variance

ANOSIM Analysis of Similarity

KEGG Kyoto Encyclopedia of Genes and Genomes

KO KEGG Orthologs

OTU Operational Taxonomic Unit

FDR False Discovery Rate

CART Classification and Regression Tree

PCoA Principal Coordinate Analysis

GSEA Gene Set Enrichment Analysis

LPS Lipopolysaccharide

TLR Toll-Like Receptor

mWGS Whole Metagenome Shotgun
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UniProt Universal Protein Resource

SPM Salford Predictive Modeler
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What you need to know:

BACKGROUND AND CONTEXT:

Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in 

children in the United States. Alterations to the intestinal microbiome might affect 

development or severity of NAFLD.

NEW FINDINGS:

We found fecal microbiomes of children with NAFLD to be disrupted compared to 

children without NAFLD. Increased levels of bacterial genes that regulate synthesis of 

lipopolysaccharide assembly of flagella were associated with disease severity and 

identified children with steatohepatitis or moderate to severe fibrosis.

LIMITATIONS:

This was a cross-sectional study of associations; the findings should be replicated in other 

cohorts. The mechanisms proposed should be assessed in animal models.

IMPACT:

Characterization of fecal microbiomes and genes expressed by intestinal microbes might 

provide insights into the pathogenesis of NAFLD in children and lead to discovery of 

therapeutic targets and diagnosis markers.
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Figure 1. Taxonomic and community-level changes between NAFLD versus controls.
(A) Bacterial genera identified as being differentially abundant when comparing cases to 

controls and accounting for ethnicity. The table shows percentage of individuals with non-

zero read counts for each genus and maximum number of reads detected in any single 

individual following normalization. (B) Difference in α-diversity between cases and controls 

(*p<0.05). (C) Principal coordinates analysis (PCoA) plot showing variation in β-diversity 

between cases and controls. Each point represents a single patient. Overlaid vectors indicate 

the direction of change in abundance for top five OTUs correlating with distribution of 

individuals within the plot.
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Figure 2. Taxonomic and community-level changes between NAFLD vs. NASH.
(A) Bacterial genera identified as differentially abundant comparing cases with NAFLD but 

not NASH vs. definite NASH when accounting for ethnicity. The table shows percentage of 

individuals with non-zero read counts for each genus and the maximum reads detected in 

any single individual following normalization. (B) Difference in α-diversity between 

controls and cases separated by severity (control, 0 = NAFLD but not NASH, 1 = borderline 

NASH, 2 = definite NASH). (C) Distribution of Prevotella abundance categories (low, 

intermediate, high,) by severity (control, 0 = NAFLD but not NASH, 1 = borderline NASH, 

2 = definite NASH); number per group shown in gray.low, intermediate, or high Prevotella 

Schwimmer et al. Page 20

Gastroenterology. Author manuscript; available in PMC 2020 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



intestinal microbiome by severity (control, 0 = NAFLD but not NASH, 1 = borderline 

NASH, 2 = definite NASH). Gray numbers above each bar indicate the number of 

individuals per group.
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Figure 3. Taxonomic and community-level changes between absent-to-mild vs. moderate-to-
severe-fibrosis.
(A) Bacterial genera differentially abundant by fibrosis stage ( ≤1 vs ≥2) when accounting 

for ethnicity. Table shows percentage of individuals with non-zero read counts for each 

genus and maximum reads detected in any single individual following normalization. (B) 

Difference in α-diversity across fibrosis stages (control, NAFLD with stages 1,2,3) (C) 

Distribution of Prevotella abundance categories (low, intermediate, high) across across 

fibrosis stages (control, NAFLD with stages 1,2,3); number per group shown in gray.
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Figure 4. Lipopolysaccharide biosynthesis (LPS) pathway association with NAFLD and NASH
(A) KEGG Orthologs (KOs) in LPS pathway shown on y-axis and the absolute difference 

(controls vs cases) in median relative abundance of each KO shown on the x-axis. Values to 

the left and right of the dashed line indicate KOs found at greater relative abundance in 

controls and cases, respectively. KOs in red are those appearing in panel B. (B) 
Classification and regression tree (CART) model for NAFLD based on ALT and the 

abundance of KOs from the LPS biosynthesis pathway . The corresponding ROC is shown in 

panel (C). (D) Bacterial genera contributing to LPS assembly in controls and cases are 
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shown on the y-axis. The x-axis depicts indicator values. A large indicator value indicates a 

genus with both high fidelity to a condition (i.e. the genus was detected as contributing to 

this pathway in a large proportion of individuals with that condition) and high specificity to 

a condition (i.e. the genus was found to contribute more to the condition in question than to 

the alternative condition in the contrast). Asterisks indicate genera present in Fig. 1A. (E) 
Difference in the median number of reads mapping to the LPS pathway in patients with 

NAFLD vs NASH. The x and y axis are as described for A. (F) CART model for detecting 

NASH based on ALT and the abundance of KOs from the LPS pathway as predictor 

variables. The corresponding ROC is shown in panel (G). (H) Bacterial genera contributing 

to LPS assembly in patients with NAFLD and patients with NASH. The x and y axis are as 

described for D. Asterisks indicate genera present in Fig. 2A.
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Figure 5. Flagellar assembly pathway associations with NAFLD and with fibrosis severity
(A) KEGG Orthologs (KOs) in the flagellar assembly pathway shown on y-axis and the 

absolute difference (controls vs cases) in median relative abundance of each KO shown on 

the x-axis. Values to the left and right of the dashed line indicate KOs found at greater 

relative abundance in controls and cases, respectively. KOs in red are those appearing in 

panel B. (B) CART model for NAFLD based on ALT and the abundance of KOs from the 

flagellar assembly pathway as predictor variables. The corresponding ROC is shown in panel 

(C). (D) Bacterial taxa genera contributing to flagellar assembly in controls and cases are 
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shown on the y-axis. The x-axis depicts indicator values. Asterisks indicate genera present in 

Fig. 1A. (E) difference in the median number of reads mapping to the flagellar assembly 

pathway in patients by fibrosis stage ( ≤1 vs ≥2) . The x and y axis are as described for A. 

(F) CART model for moderate-to-severe fibrosis based on ALT and abundance of KOs from 

the the flagellar assembly pathway as predictor variables. The corresponding ROC is shown 

in panel (G). (H) Bacterial genera contributing to flagellar assembly in patients by fibrosis 

stage ( ≤1 vs ≥2). The x and y axis are as described for D. Asterisks indicate genera present 

in Fig. 3A.
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