Skip to main content
. 2019 Jun 27;33(7):e22953. doi: 10.1002/jcla.22953

Table 6.

Univariate logistic analysis of factors predicting clinical response

Parameters Univariate logistic regression model
P value OR 95% CI
Lower Higher
miR‐192‐5p 0.143 0.755 0.518 1.100
miR‐146a‐5p 0.006 1.508 1.127 2.018
miR‐19b‐3p 0.204 0.724 0.439 1.192
miR‐320c 0.111 0.768 0.555 1.063
miR‐335‐5p 0.220 1.198 0.898 1.598
miR‐149‐3p 0.139 1.199 0.943 1.525
miR‐766‐3p 0.775 1.027 0.856 1.231
let‐7a‐5p 0.003 0.677 0.521 0.879
miR‐24‐3p 0.216 0.806 0.573 1.134
miR‐1226‐5p 0.064 1.321 1.022 1.708
Age 0.242 0.983 0.954 1.012
Gender, female 0.328 0.619 0.237 1.617
Disease duration 0.166 0.992 0.980 1.003
ESR 0.154 1.018 0.993 1.042
CRP 0.003 1.060 1.020 1.102
DAS28 score 0.115 1.469 0.910 2.370
RF positive 0.189 1.894 0.730 4.914
ACPA positive 0.154 1.971 0.776 5.011
Biologics history 0.076 0.325 0.094 1.123
Concomitant medications (MTX vs LEF) 0.662 1.211 0.513 2.861

Univariate logistic regression model was used to analyze the factors at baseline in predicting clinical response in RA patients treated with TNF inhibitors. P value < 0.05 was considered significant.

Abbreviations: ACPA, anti‐citrullinated protein antibody; CI, confidence interval; CRP, C‐reactive protein; DAS28, disease activity score in 28 joints; ESR, erythrocyte sedimentation rate; MTX, methotrexate; LEF, leflunomide; OR, odds ratio; RF, rheumatoid factor.