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Abstract
Spleen tyrosine kinase (SYK) is a nonreceptor tyrosine kinase 
which associates directly with extracellular receptors, and is 
critically involved in signal transduction pathways in a vari-
ety of cell types for the regulation of cellular responses. SYK 
is expressed ubiquitously in immune and nonimmune cells, 
and has a much wider biological role than previously recog-
nized. Several studies have highlighted SYK as a key player 
in the pathogenesis of a multitude of diseases. Pseudomonas 
aeruginosa is an opportunistic gram-negative pathogen, 
which is responsible for systemic infections in immunocom-
promised individuals, accounting for a major cause of severe 
chronic lung infection in cystic fibrosis patients and subse-
quently resulting in a progressive deterioration of lung func-
tion. Inhibition of SYK activity has been explored as a thera-
peutic option in several allergic disorders, autoimmune dis-
eases, and hematological malignancies. This review focuses 
on SYK as a therapeutic target, and describes the possibility 
of how current knowledge could be translated for therapeu-
tic purposes to regulate the immune response to the oppor-
tunistic pathogen P. aeruginosa. © 2018 S. Karger AG, Basel

Introduction 

Spleen tyrosine kinase (SYK) is a nonreceptor tyrosine 
kinase involved in signal transduction in a variety of cell 
types; it associates with different receptors on the surface 
of various cells such as B cells, mast cells, monocytes, 
macrophages, and neutrophils, and even osteoclasts and 
breast cancer cells. Following the engagement of these re-
ceptors with their ligands, SYK is activated and orches-
trates diverse cellular responses, including cytokine pro-
duction (in T cells and monocytes) and phagocytosis (in 
macrophages) [1, 2]. SYK is expressed ubiquitously in 
both hematopoietic [3–14] and nonhematopoietic cells 
[15–20]. Notably, this widespread expression of SYK in 
human tissues implies that it plays important roles in dif-
ferent organs. Importantly, SYK is expressed in lung epi-
thelial cells [21, 22], which are the major components of 
the airway lining and the site of infection by Pseudomonas 
aeruginosa. The role of SYK in these structural cells is 
puzzling, but recent studies have shed some light on it. 
For these reasons, it may represent an attractive target for 
a new therapeutic strategy for treating P. aeruginosa in-
fection using the inhibition of SYK. In this review, we 
discuss the role of SYK and the effect of SYK inhibitors in 
the treatment of P. aeruginosa infection.
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Structural Basis of SYK Activation

SYK, a 72-kDa protein, is composed of 2 SRC homol-
ogy (SH2) and 1 kinase domains, with interdomain A lo-
cated between the 2 SH2 domains and interdomain B be-
tween the SH2 and kinase domains; these interdomains 
contain linker tyrosines, which can undergo phosphory-
lation (Fig. 1) [22–25]. SYK contains at least 10 tyrosine 
residues that can be autophosphorylated, and thus pro-
vide binding sites for other molecules bearing SH2 do-
mains [26]. Due to its catalytic activity and the ability to 
bind other proteins via the interaction between phos-
phorylated tyrosines and SH2 domains, SYK has both ki-
nase and adaptor protein properties. 

There are 3 states of SYK: inhibition of the kinase, ac-
tivated kinase via phosphorylation of immunoreceptor 
tyrosine-based activation motifs (ITAMs), and activated 
kinase via phosphorylation of linker tyrosines. In the in-
hibited kinase state, the binding occurs between interdo-
main A, interdomain B, and the kinase domain, produc-
ing the stable configuration of SYK; breaking apart this 
arrangement allows for the activation of the protein ki-
nase to occur [24]. ITAM tyrosine residues are rapidly 
phosphorylated following the engagement of classical im-
munoreceptors, i.e., B cell receptors (BCRs), T cell recep-
tors (TCRs), and Fc receptors (FcRs), and leading to the 
recruitment and activation of SYK. The other state of SYK 
is the activation of the kinase through autophosphoryla-
tion of the linker tyrosines in the interdomains; this pro-
cess does not involve dependence on the phosphorylated 
ITAMs for activation [22–25]. SYK can sustain activation 
following the temporary interaction with phosphorylated 
ITAMs by means of autophosphorylation of the linker 
tyrosines [24]. 

SYK activation is not restricted to the 2 mechanisms 
stated above; studies have also shown that SYK mediates 

signaling via classes of receptors including integrin, G 
protein-coupled, and C-type lectins that do not contain 
conventional ITAMs [22, 27]. During an inflammatory 
response of the immune cells via a result of a variety of 
different signaling pathways, cytokines are produced as 
well; studies have shown that cytokines such as tumor ne-
crosis factor (TNF)-α and interleukin (IL)-1β, produced 
during inflammation also have the ability to activate SYK 
by means of cytokine signaling [27]. Collectively, these 
studies have dramatically changed our view of SYK. 

SYK and Innate Immunity

The innate immune system plays a leading role, 
through the cooperation of different germline-encoded 
pattern recognition receptors (PRRs), in detecting both 
pathogen- and damage-associated molecular patterns 
(PAMPs and DAMPs, respectively) and triggering im-
mune responses. Studies have shown that many PPRs 
participate in the immune response to P. aeruginosa in-
fection, such as Toll-like receptors (TLRs), NOD-like re-
ceptors (NLRs), C-type lectin receptors (CLRs), etc. [28, 
29]. Recently, SYK has been found to be a vital compo-
nent of these pathways, which play a crucial role in the 
innate immune response including pathogen recogni-
tion, inflammasome activation, and even antifungal de-
fense [24, 30, 31]. Following the activation of the kinase, 
SYK-mediated downstream signaling occurs as a result. 
SYK can bind directly to 4 binding partners: Vav, phos-
pholipase Cγ (PLCγ), phosphoinositide 3-kinase (PI3K), 
and the SH2 domain of leukocyte proteins 76 or 65 (SLP76 
or SLP65, respectively). These 4 binding partners will fur-
ther activate downstream signaling components and lead 
to an eventual change in cellular response. Such cellular 
responses include reactive oxygen species (ROS) produc-
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Fig. 1. Structure of SYK protein: a schematic diagram of the linear structure of SYK with the tyrosines marked 
that are phosphorylated after activation.
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tion, cell proliferation, cytokine release, and inflamma-
tory responses (Fig. 2) [24]. Presently, there is little re-
search on the involvement of SYK in cellular responses to 
P. aeruginosa infection or targeting SYK for protecting 
infected human cells against the deleterious effects asso-
ciated with this infection. However, it has been demon-
strated in several allergic disorders, autoimmune diseas-
es, hematological malignancies, and innate antifungal 
immunity. 

It is well established that SYK activation in leukocytes 
is essential for phagocytosis and the development of B- 
and T-lymphocytes [24]. Studies have shown that many 
CLRs, such as Dectin-1 (also known as CleC7A) and Min-
cle (also known as CleC4e), can resist fungi, mainly by 
activating the downstream SYK/caspase recruitment  
domain-containing protein 9 (CARD9)/nuclear factor 
(NF)-κB signaling pathway [32–36]. Recent studies have 
revealed the importance of SYK during fungal infection 
by Aspergillus fumigatus [37]. Researchers have proved 
that SYK associates with invasive breast cancer [38] and 
is closely related to the occurrence and development of 
digestive tract tumors [39]. 

As SYK is positioned upstream in the cell-signaling 
pathway, therapies targeting SYK might be more advan-
tageous than inhibiting a single downstream event [40]. 
These make SYK a therapeutic target for an array of in-

flammatory diseases. For this reason, many pharmaceuti-
cal companies and academic institutions have been in-
volved in the development of small molecule SYK inhibi-
tors. Recent studies have demonstrated the ability of SYK 
to regulate the production of proinflammatory molecules 
by bronchial epithelial and monocytic cells, which are 
stimulated with TNF-α, rhinovirus, or P. aeruginosa [25, 
27, 30, 31, 41]. For these reasons, SYK may represent an 
attractive target for a new therapeutic strategy of treating 
P. aeruginosa infection by inhibiting SYK kinase. Indeed, 
several studies have highlighted SYK as a key player in the 
pathogenesis of a multitude of diseases [2, 42–51]. Sev-
eral pathologies can be treated through the inhibition of 
SYK activity. Indeed, there is great interest in the field of 
more selective commercially available small molecule 
SYK inhibitors [52].

SYK and Cystic Fibrosis 

Cystic fibrosis (CF) is an autosomal recessive disease, 
mainly occurring in the Caucasian population. The con-
dition is the manifestation of mutations in a transmem-
brane protein called cystic fibrosis transmembrane con-
ductance regulator (CFTR), which commonly results in a 
loss of the protein or deficiency of its function [53, 54]. 
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Mostly, CFTR functions as a chloride ion (Cl–) channel at 
the apical surface of secretory epithelia. CFTR is a mem-
ber of the ATP-binding cassette transporter family, which 
hydrolyzes ATP to pump substrates, such as ions, vita-
mins, drugs, toxins, and peptides across biological mem-
branes (Fig. 3) [55]. CF is therefore considered as a dis-
ease of ion transport across the epithelium that affects ion 
balance in the epithelium of the respiratory tract [56]. The 
most significant effect of CFTR mutation is the defect of 
ciliary clearance that results in the accumulation of mu-
cus in the lung, creating an optimal environment for bac-
teria. Moreover, the elevated levels of sodium chloride in 
airway secretions severely weaken the host pulmonary in-
nate defenses [57, 58]. 

Since the discovery of CFTR in 1989, many mutations 
in the gene have been identified; approximately 127 have 

been confirmed as causing the disease CF [59]. Among 
these mutations, a phenylalanine (3-bp) deletion at posi-
tion 508 in the polypeptide chain (ΔF508) results in a pro-
tein that fails to mature properly and becomes degraded 
[55, 60]. ΔF508 is present in nearly 85% of CF patients in 
at least 1 allele. A connection has been made between mu-
tant or missing CFTR in human lung epithelial cell mem-
branes and the failure of innate immunity, which can lead 
to the initiation of P. aeruginosa infection. One study indi-
cated that human cells use CFTR as a receptor for the in-
ternalization of P. aeruginosa via endocytosis, and the sub-
sequent removal of bacteria from the airway that does not 
occur in the absence of functional CFTR, resulting in an 
increased bacterial load in the lungs [61]. Conversely, data 
from another study showed that peripheral blood mono-
nuclear cells (PBMCs) derived from CF individuals display 
preserved inflammatory responses in response to P. aeru-
ginosa infection versus PBMCs from healthy control indi-
viduals [62]. The study also showed that CFTR dysfunction 
did not alter IL-1β production when it compared the re-
lease of this cytokine from THP-1 human monocytic cells 
and PBMCs from CF and healthy control subjects follow-
ing a prior treatment with a CFTR inhibitor. The static mu-
cosal environment is presumed to render individuals sus-
ceptible to opportunistic infections. CF patients become 
infected (to some extent in an age-related pattern) by mul-
tiple microorganisms, specifically Haemophilus influenzae, 
Staphylococcus aureus, the Burkholderia cepacia complex, 
and a high proportion (as many as 80% of adult CF pa-
tients) are infected with P. aeruginosa [63]. As a result of its 
physiological properties, pattern of gene expression, and 
antibiotic resistance, which cause it to grow in biofilms that 
are significantly different from planktonic cultures, P. ae-
ruginosa is challenging to treat [64, 65]. This persistent bac-
terial infection underlies the chronic lung inflammation 
that CF patients experience. Understanding the changes in 
the innate immune mechanisms in the lungs, a result of 
dysfunctional CFTR and persistent P. aeruginosa infection, 
is paramount to changing the natural course of CF disease.

The number of CFTR protein copies on the plasma 
membrane results from a balance between anterograde 
trafficking (i.e., CFTR is delivered from the endoplasmic 
reticulum to the plasma membrane), endocytosis (a pro-
cess through which CFTR is retrieved from the mem-
brane into vesicles), and recycling (with the return of the 
internalized CFTR to the plasma membrane). Remark-
ably, 1 of the protein kinases involved in CFTR trafficking 
is SYK. This nonreceptor tyrosine kinase has been report-
ed to phosphorylate CFTR, leading to decreased levels of 
CFTR in the plasma membrane [66, 67]. This role of SYK 
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in regulating protein trafficking has been reported previ-
ously for other substrates, e.g., trafficking a resident of the 
trans-Golgi network (TGN) 38 [68], the engaged high-
affinity IgE receptor (FcεRI) [69], and the small GTPase 
Rac1 [70] (shown to play a role in CFTR trafficking and 
membrane anchoring [71]). Recent findings have shown 
that phosphorylation of CFTR by SYK results in reducing 
the abundance of CFTR in the plasma membrane [72]. 
Importantly, SYK-associated CFTR phosphorylation 
might not be a major determinant in CF patients. CF in-
dividuals have a defective CFTR as a result of misfolding, 
consequent degradation, altered expression, or prevent-
ing the translation of this specific protein, all of which 
lead to very low levels of CFTR [73–76]. SYK knockdown 
in airway epithelial cells downregulates proinflammatory 
mediators, such as IL-6 and intercellular adhesion mole-
cule (ICAM)-1 [22], both elevated in CF patients [77]. 
Recent studies expanded our understanding to recognize 
SYK as a potential target to attenuate the proinflamma-
tory mediators in P. aeruginosa-infected CF patients.

Innate Immune Response to P. aeruginosa Infection 

P. aeruginosa causes systemic life-threating infection 
in immunocompromised individuals and chronic lung 
infection in CF patients. The major determinant of mor-
bidity and mortality in CF patients can be attributed to 
the progressive deterioration of lung function resulting 
from chronic infection by such a ubiquitous opportunis-
tic pathogen as P. aeruginosa [30, 78]. During the infec-
tious process, P. aeruginosa provokes a potent inflamma-
tory response of infected tissue characterized by the acti-
vation of transcription factors, NF-κB, and activator 
protein 1 (AP-1). This results in the release of proinflam-
matory mediators, i.e., cytokines (TNF-α, IL-1β, and IL-
6), chemokines (IL-8 and regulated on activation normal 
T cell-expressed and secreted [RANTES]), an increase in 
the expression of adhesion molecules (ICAM-1), the re-
lease of ROS, the recruitment of activated neutrophils, 
and severe damage to the tissues, eventually causing lung 
failure [79]. The infection of the airways by P. aeruginosa 
is accompanied by the activation of proinflammatory in-
tracellular signaling pathways [80]. The activation of in-
tracellular protein kinases has a significant role in the 
pathogenesis of P. aeruginosa lung infection. It has been 
demonstrated that the bacterial invasion and cytotoxic 
effect of P. aeruginosa, as well as the hyperproduction of 
IL-8 and mucin by infected lung epithelial cells, depend 
on the activation of the p38 and ERK1/2 mitogen-activat-

ed protein kinase (MAPK) signaling cascade and the Src-
like tyrosine kinases p60Src, p59Fyn, and Lyn [81–84].

Airway inflammation is a dominant pathophysiologi-
cal characteristic of P. aeruginosa infection, influencing 
both the severity of the disease and its outcomes. In addi-
tion, P. aeruginosa is intrinsically resistant to many anti-
biotics, making treatment difficult and often unsuccessful 
[85]. Based on the rapidly growing understanding of in-
tracellular signaling pathways involved in the pathogen-
esis of bacterial inflammation, targeting the inhibition of 
specific signaling pathways/molecules is a potential treat-
ment strategy for P. aeruginosa lung infection. 

Effect of SYK Inhibitor in P. aeruginosa Infection 

The potent signaling abilities of SYK are due to both its 
molecular structure and its strategic localization in the 
proximal part of intracellular signaling cascades. Consid-
ering the vital role of inflammation in the pathogenesis of 
P. aeruginosa lung infection, the downregulation of pro-
inflammatory signaling pathways via an SYK inhibitor 
may be a beneficial addition to the antibacterial therapy of 
such conditions. Studies have found that the natural SYK 
inhibitor piceatannol can inhibit the essential mecha-
nisms of P. aeruginosa pathogenesis, i.e., bacterial inter-
nalization, production of proinflammatory mediators, ox-
idative stress, and apoptosis of infected human airway ep-
ithelial cells [30], all of which indicate that SYK is involved 
in the regulation of inflammatory responses caused by P. 
aeruginosa. Other studies, using a model of human mono-
cytic cells, found that a small molecule inhibitor, R406, 
decreased both the inflammatory responses and the apop-
tosis induced by P. aeruginosa infection [31].

SYK has been recently identified as a crucial mediator 
of NLRP3 inflammasome activation and IL-1β secretion 
in macrophages stimulated with fungi and crystals [86]. 
Although the underlying molecular mechanisms are still 
being defined, SYK is known to regulate ROS production 
and lysosomal activity, 2 significant signals for NLRP3 
inflammasome activation in macrophages [24]. It was re-
cently found that inhibition of SYK reduced the release of 
bioactive IL-1β by macrophage cells infected by P. aeru-
ginosa [31]. This suggests that SYK may regulate innate 
immune responses to P. aeruginosa via its involvement in 
inflammasome activation. Other studies have shown that 
the inhibition of SYK activity might be effective to modu-
late NLRP3 activation [87].

The release of the proinflammatory cytokine IL-1β  
results in the recruitment of effector cell populations of 



AlhazmiJ Innate Immun 2018;10:255–263260
DOI: 10.1159/000489863

the immune response and tissue repair for host defense 
against infected pathogens [88]. Moreover, uncontrolled, 
excessive, or prolonged production of IL-1β may cause 
tissue damage, which can eventually interfere with patho-
gen clearance. Excessive IL-1β production is causally as-
sociated with the activation of a variety of inflamma-
somes, e.g., NLRP3 which receives a lot of biomedical at-
tention [88], which are discussed elsewhere [89]. In 
addition, SYK and the NLRP3 inflammasome are key reg-
ulators of fungus-induced IL-1β production [90–93]. As 
it has been demonstrated that fungal infection stimulates 
NLRP3 through a pathway requiring SYK activation, in-
hibiting SYK may potentially be beneficial in cases of po-
tent inflammatory responses. Indeed, the identification 
of this cross-talk between SYK and inflammasomes might 
also be involved in P. aeruginosa infection [31].

The role of SYK in the regulation of inflammasome 
activation and ROS production induced by P. aeruginosa 
infection of human cells needs to be addressed to clarify 
the mechanisms behind the involvement of SYK-mediat-
ed signaling in the regulation of innate immune respons-
es to P. aeruginosa infection. Based on the literature, stud-
ies suggest an association of SYK and the regulation of 
innate immune and inflammatory responses to P. aerugi-
nosa, endorsing that SYK mediates inflammasome acti-
vation and promotes enhanced production of proinflam-
matory mediators by infected cells. Indeed, a significant 
decrease in the release of proinflammatory mediators by 
both P. aeruginosa-infected human macrophages (IL-1β 
and TNF-α) and lung epithelial cells (TNF-α) following 
SYK inhibition by R406 has been reported recently [31].

Potential Complications Associated with SYK 
Inhibition

In this review, SYK as an anti-inflammatory therapy in 
combination with antibiotics has been considered for the 
treatment of diseases associated with P. aeruginosa infec-
tions, which are characterized by strong inflammation of 
infected tissues. Despite the encouraging results of SYK 
inhibition as a valuable therapy, some potential obstacles 
are still associated with the use of SYK inhibitors. SYK is 
required for Fc-receptor-mediated phagocytosis, antigen 
presentation, and the maturation and survival of dendrit-
ic cells and B- and T-lymphocyte lineages [94, 95].

Blocking SYK signaling could therefore be particularly 
problematic in the context of immune cells. Studies 
showed that neutrophils lacking SYK reduce the host de-
fense against bacterial infection [96]. The macrophages 

and neutrophils from CF patients, in particular, are al-
ready quite dysfunctional and have many abnormal sig-
naling pathways; this impairs phagocytes, intracellular 
killing, and cellular migration [97]. Thus, there is a very 
fine balance to be maintained between damping the pro-
inflammatory response and preserving the host defense 
against infected pathogens. It should be noted that a clin-
ical trial of BILL 284 BS, an LTB4 receptor antagonist, was 
terminated due to an increase in serious adverse pulmo-
nary-related events and P. aeruginosa bacteremia [98, 99]. 
More small molecule SYK inhibitors, along with their 
side effects, are discussed elsewhere [100–104].

A number of alternative approaches to reducing the 
inflammatory responses associated with pulmonary exac-
erbation in CF patients have been studied [105]. Several 
therapies targeting general inflammatory pathways in CF 
have not been successful. The use of SYK as a targeted 
anti-inflammatory could progress to immune suppres-
sion. It is noteworthy that CF patients are quite suscep-
tible to fungal infections and so SYK inhibition could be 
detrimental to their health. Moreover, no long-term 
treatment with SYK inhibitors has yet been demonstrat-
ed. Addressing these possibilities of SYK-associated com-
plications will be interesting as an anti-inflammatory ap-
proach. More studies are needed to understand the con-
sequences of SYK inhibition, especially with persistent 
infection by P. aeruginosa in CF patients which leads to 
irreversible lung destruction [106].

Concluding Remarks

P. aeruginosa can cause chronic lung infection and sys-
temic life-threating diseases in CF patients and immuno-
compromised individuals. Based on the literature, SYK 
mediates innate the immune response to P. aeruginosa 
infection. SYK is already considered a potential target of 
anti-inflammatory therapy for various clinical condi-
tions. Indeed, SYK is what mostly controls the inflamma-
tory process, and so the inhibition of SYK activity might 
prove to be a valuable strategic therapy against P. aerugi-
nosa infection. While many small molecules have been 
synthesized and tested as SYK inhibitors, it has been re-
ported that some unwanted side effects are associated 
with its application along with a number of cautionary 
signs. The therapeutic action of some SYK inhibitors has 
already been demonstrated in clinical trials, which are 
currently in the advanced phase.

However, blocking the inflammatory pathway in CF 
might affect host defense mechanisms, which can be det-
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rimental for CF patients. Moreover, it is unknown how 
SYK is regulated in CF cells, both epithelial and immune 
cells; this is a key question that needs to be addressed. In-
deed, studies on breast cancer patients have reported a 
significant presence of different variations of the SYK 
gene which are associated with breast cancer pathogene-
sis [38]. The role of SYK in cellular responses to P. aeru-
ginosa in infected animal models with a CFTR deficiency 
is completely unknown. Regarding host protection 
against P. aeruginosa, there are no published data assess-
ing the effect of SYK inhibitors on the bactericidal activ-
ity of macrophages and neutrophils against P. aeruginosa. 
Further research is required to discover the capability of 
inhibition of SYK in animal models. This will demon-
strate its effect on P. aeruginosa infection and the associ-

ated inflammatory responses which contribute signifi-
cantly to the pathogenesis of P. aeruginosa pulmonary 
infections. 
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