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Abstract

Objective.—Deep brain stimulation (DBS) is a valuable tool for ameliorating drug resistant 

pathologies such as movement disorders and epilepsy. DBS is also being considered for complex 

neuro-psychiatric disorders, which are characterized by high variability in symptoms and slow 

responses that hinder DBS setting optimization. The objective of this work was to develop an in 
silico platform to examine the effects of electrical stimulation in regions neighboring a stimulated 

brain region.

Approach.—We used the Jansen–Rit neural mass model of single and coupled nodes to simulate 

the response to a train of electrical current pulses at different frequencies (10–160 Hz) of the local 

field potential recorded in the amygdala and cortical structures in human subjects and a non-

human primate.
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Results.—We found that using a single node model, the evoked responses could be accurately 

modeled following a narrow range of stimulation frequencies. Including a second coupled node 

increased the range of stimulation frequencies whose evoked responses could be efficiently 

modeled. Furthermore, in a chronic recording from a non-human primate, features of the in vivo 
evoked response remained consistent for several weeks, suggesting that model re-parameterization 

for chronic stimulation protocols would be infrequent.

Significance.—Using a model of neural population activity, we reproduced the evoked response 

to cortical and subcortical stimulation in human and non-human primate. This modeling 

framework provides an environment to explore, safely and rapidly, a wide range of stimulation 

settings not possible in human brain stimulation studies. The model can be trained on a limited 

dataset of stimulation responses to develop an optimal stimulation strategy for an individual 

patient.
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1. Introduction

Deep brain stimulation (DBS) is an established treatment for movement disorders and 

refractory epilepsy [1–3]. Clinical targeting of the stimulating electrodes is typically done by 

a combination of imaging and direct electrophysiological recordings with macrostimulation 

to evoke the desired symptom response. Final selection of stimulation parameters are done 

by clinical assessment on the effect of symptoms and is largely a trial and error procedure 

[4]. DBS is emerging as a potential treatment for psychiatric disorders, on the premise that 

DBS can potentially alter network dynamics between brain structures. Psychiatric disorders 

are a leading cause of disability, morbidity, and mortality and are often drug resistant and 

challenging to treat. Disorders such as depression, obsessive-compulsive disorder, and 

anxiety are believed to arise from dysfunctional communication among brain structures [5–

11]. To this point, DBS has had promising open-label results [12–16], although randomized 

clinical trials have shown inconsistent effects [17]. Part of the difficulty is the lack of a well-

established biomarker to assess the effective-ness of DBS. Therefore, the effect of 

stimulation is typically based upon qualitative assessments, including the patient’s 

immediate emotional response to stimulation changes and the long-term change in 

subjective self-reports.

A more quantitative, and potentially more effective approach, would be to design stimulation 

that changes a specific brain signature (biomarker) that in turn is associated with a disease 

relevant behavior. This raises a new challenge: finding a set of stimulation settings that could 

reliably change a given physiological correlate. Existing DBS systems have a complex 4D 

(frequency, amplitude, pulse width, electrode contact) programming space. Devices 

currently in development will add more channels, more potential waveforms, and thus even 

more dimensionality [18–21]. It is not feasible to explore the entire stimulation parameter 

space with a patient and characterize the behavioral response, given patients’ limited 

tolerance for extensive programming sessions during which a wide range of parameters 

could be tested. A better solution would be to develop computational models of the brain’s 
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response to electrical stimulation, such that the ideal sequence to achieve a given 

electrophysiological change could be predicted in advance. Similar approaches have had 

good success in modeling the anatomic spread of the DBS electric field in tissue [22, 23]. 

Optimal closed-loop DBS paradigms for Parkinson’s disease have been designed by 

modeling the Subthalamic nucleus—Globus Pallidus network using neural field models [24] 

and conductance based neural models [25].

The local field potential (LFP) is a good target for this modeling, given its success as a 

biomarker in movement disorders [26–29]. A wide range of models such as data-driven 

statistical models [30–32], neural mass models [33, 34], oscillator models [35] and detailed 

conductance based biophysical models [36–39] have been used to simulate aggregate neural 

activity. Mean field or neural mass models represent a balance between more abstract 

statistical models and more biophysically detailed single neuron models [40, 41]. While 

neural mass models incorporate some of the biophysics of neuronal activity, the parameter 

space of these models is much smaller than conductance-based single neuron models. Both 

types of models utilize a relatively simple representation of the main features of 

subpopulations of neurons (typically pyramidal cells and interneurons) and their interactions 

(mostly synaptic). Neural mass models are used to describe the temporal activity of a local 

neuronal population (without the notion of space); they can be extended to the class of 

neural field models (which incorporate both time and space variables) [42].

In this work, we use a Jansen–Rit (JR) neural mass model of coupled cortical columns [43] 

to simulate the local response evoked by electrical simulation on the LFP. This model has 

been successfully used in various contexts including simulating visually evoked potentials 

[33], epileptic activity in the cortex [34] and mechanisms for short term memory and motion 

perception [36]. We specifically simulate the local evoked response to a train of electrical 

pulses at varying frequencies (10–160 Hz) in the amygdala and in cortical structures such as 

orbito-frontal cortex (OFC) and dorsal anterior cingulate cortex (dACC). These regions have 

been repeatedly implicated as important in a variety of psychiatric disorders, and as such 

may be viable targets for brain stimulation [5]. Amygdala and cingulate in particular are 

already under study as targets for psychiatric DBS [45, 46].

The evoked response is the most stereotyped/repeatable brain response to stimulation and 

modeling it might thus be a pre-requisite for capturing more complex phenomena such as 

oscillations or inter-regional synchrony. It is theorized that stimulation evoked response 

(SER) is caused by direct depolarization of the superficial dendritic trees of pyramidal cells 

and those of inhibitory interneurons that synapse near the soma on adjacent pyramidal cells, 

leading to an indirect decrease in pyramidal cell firing through the activation of GABAergic 

synapses. The injected current also depolarizes long-range axons traversing the region of 

stimulation, generating action potentials propagating orthodromically (to local and distant 

pyramidal synapses) as well as antidromically (backpropagating to depolarize the pyramidal 

cell soma and possibly dendrites [44, 45]. It is likely that responses to single pulse 

stimulation in humans reflect both a major pyramidal cell contribution via orthodromic 

cortico-cortical and cortico-subcortical-cortical projections as well as a minor antidromic 

contribution [46]. Evoked responses have, on their own, been sufficient to guide closed-loop 

stimulation in neurological disorders [29] and are also used for cortical mapping [47, 48]. 
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We are particularly interested in the role of stimulation frequency on the evoked response 

because frequency has been found to be a determining factor in the efficacy of DBS in 

movement disorders [49]. We compare the simulation results to matching in vivo stimulation 

paradigms performed in human and non-human primates (NHPs). In doing so, we identify a 

subset of the model parameters that produce results consistent with the in vivo responses to 

stimulation at low and high frequencies. We propose that this simple neural mass model of 

coupled cortical columns can be used to simulate the local effects of stimulation over a range 

of frequencies, bringing us one step closer to rational stimulation design.

2. Methods

We recorded LFP data from five patients with medically refractory epilepsy who were 

monitored for seizure focus localization. Each patient had stereotactically placed depth 

electrodes. Electrode locations were reconstructed based on post-operative CT scans co-

registered with preoperative MRI [50, 51]. In general, the same regions were targeted, but 

not the same coordinates, since the clinically relevant regions and patient’s brain anatomy 

were variable. However, by mapping the electrodes to each patients’ MRI using both 

automatic and visual examination tools (ELA and Dykstra reference), we found that there 

were close similarities in the electrode locations in terms of the relevant brain structures. 

Each patient was stimulated across a pair of electrodes spanning either the amygdala or the 

cingulate/orbitofrontal cortical structures using a 400 ms train of charge-balanced 

symmetrical biphasic 90 μs pulses, with an inter-phase-interval of 53 μs. Pulse frequencies 

ranged from 10–160 Hz and currents from 1–8 mA. We employed a standard stimulation 

protocol used in some clinically relevant stimulation regimes which also allows for delivery 

of charge balanced stimulation which is expected to be safer [52]. For all patients, this 

procedure was done while they received normal seizure medication before resective surgery, 

so as to minimize the risk of evoking a seizure. The LFP recorded from the electrode pair 

adjacent to the stimulating electrode contact pair was used for modeling. Before analysis and 

modeling, we converted each such electrode pair to a single bipolar channel to reduce the 

effects of volume conduction [53]. We chose the neighboring electrode pairs to the 

stimulating electrode to avoid the effects of amplifier saturation at the stimulating electrodes. 

In all cases, we confirmed that the adjacent electrodes studied were located in the same brain 

region as the stimulating electrodes.

One adult male NHP was implanted with two depth electrodes (customized miniaturized 

DBS leads; NeuMed; Hopkinton NY) and an intracranial grid (AdTech) to mimic the brain 

regions spanned in some of our human subject implants. Implants had been in place for over 

a month before stimulation experiments, such that tissue responses such as glial scarring had 

stabilized and progressed to their chronic state. The depth electrodes were primarily in the 

medial orbito-frontal cortex (mOFC, cortical area 25), dorsal anterior cingulate (dACC, 

spanning cortical areas 24c and 9/32), and nucleus accumbens (NAcc) based on three 

standard macaque brain atlases [54, 55]. The intracranial grid was over the dorsolateral 

prefrontal cortex (dlPFC). Electrode locations were reconstructed using similar approaches 

to human localization based on post-operative CT scans co-registered with preoperative 

MRI. A similar stimulation paradigm to the human experiment was followed with 0.16–4 

mA injected current, and a finer frequency sampling (10, 20, 40, 80, 100, 130, 160, 200 Hz). 
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These experiments were done in five sessions over the course of a month as the NHP viewed 

a blank computer screen for 20 min in between running tasks for other experiments.

Human subject data collection was done following a protocol which was approved by the 

Partners Healthcare Institutional Review Board and after participants provided informed 

consent. All animal care and experimentation were overseen and approved by the 

Institutional Animal and Care Use Committee at the Massachusetts General Hospital and 

were directed in agreement with the Public Health Services Guide for the Care and Use of 

Animals.

2.1. Stimulation evoked response (SER)

Each subject dataset consisted of five–ten trials at each stimulation frequency and current. 

Each such trial consisted of a 400 ms train of stimulation followed by an evoked response 

immediately after the cessation of the stimulation train (figure 1(b)). To characterize this 

stimulation evoked response (SER) and to determine how it varied over stimulation 

frequencies and across datasets, the following two quantities were calculated: (i) The 

normalized peak voltage, calculated as the first positive peak value of the SER divided by 

the standard deviation of the recorded LFP over a period of 500 ms before stimulation was 

delivered; (ii) The time of occurrence of the peak SER. Error bounds for both the quantities 

at a specific stimulation frequency and current were determined using standard deviations of 

1000 surrogate SERs. Each such surrogate was constructed by averaging SERs sampled 

from the recorded five–ten trials with replacement. These quantities were chosen motivated 

by the classical P300 observed in evoked response potentials (ERP) [56, 57].

2.2. JR neural mass model

The JR model is a neural mass model that simulates the aggregate neuronal population 

activity of a local cortical circuit or cortical column [33]. A single cortical column is 

modeled as a population of pyramidal cells receiving inhibitory and excitatory feedback 

from local interneurons and excitatory input from neighboring or distant columns (figure 

1(a)). In this representation, each neuronal population is modeled by two blocks:

1. An alpha function block that converts the average input action potential density 

of a neural population to an average output postsynaptic membrane potential 

(PSP) which can either be excitatory (he (t) = Aate−at, t > 0) or inhibitory (hi (t) = 

Bbte−bt, t > 0). In these expressions, the parameters A and B determine the 

maximum amplitude of the excitatory and inhibitory PSP respectively, while the 

parameters a and b represent the average reciprocal time constant of the passive 

membrane and other spatially distributed delays in the dendritic network.

2. A sigmoid function block (S (v) = 2E/[1 + er(v0−v)]) that transforms the average 

membrane potential (v) of a neuronal population into the average action potential 

density fired by the neuronal population. Here, parameter E represents the 

maximum firing rate of the neural population, parameter v0 is the PSP that 

produces 50% of the maximum firing rate, and parameter r is the steepness of the 

sigmoid function.
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In this model, a pyramidal population (middle red box in figure 1(a) receives feedback from 

the inter-neuronal populations via internal connections (C1–C4 in figure 1(a). The original 

model proposed in (33) possessed one external input (p(t)), that represented local and distant 

excitatory inputs from other cortical columns. Here we have included additional inputs 

(symbols I1, I2, I3 in figure 1) to model the tendency of external electrical stimulation to 

depolarize all neuronal sub-types. Here we used the cortical column model to represent the 

neuronal population in a brain region (cortical or subcortical). In some simulations, we 

coupled a second cortical column to the first cortical column via coupling constants 

(symbols K1 and K2 in figure 1(a) and a delay block (hD) simulating the neuronal 

transmission delay. We consider the second column as representing a neighboring region 

coupled to the primary region of interest. The second cortical column consists of the same 

neuronal populations and connections and has similar parameters to those used in the first 

column. The parameters that differ include A (excitatory PSP amplitude), B (inhibitory PSP 

amplitude), and the mean value of the external input p(t) (does not include DBS input). We 

assumed that the neuronal population in neighboring brain regions have the same intrinsic 

properties except slight differences in the excitability (A, B) and the mean value of the 

external input (P2 in figure 1(a). For the rest of the paper, we will refer to the single and 

double column models as 1-node and 2-node models respectively.

2.3. Model parameter identification

A 1-node JR model has three parameters associated with the sigmoid function (E, r, v0), two 

parameters for each alpha function block (and therefore six for the three populations) and 

four internal connectivity parameters (C1–C4), resulting in a total of 13 parameters (table 1). 

In our 1-node JR model, we fixed the sigmoid function parameters and the internal 

connection parameters to those used in (43). These parameters were chosen such that the 

model operated in a non-oscillatory regime, i.e a free running model without an external 

perturbation will not produce any oscillations. We also set the external input (p) to a zero 

mean Gaussian process with a standard deviation of 0.1. The three time constant parameters, 

namely a, ka * a, and b of the pyramidal, excitatory interneuron and inhibitory interneuron 

populations, respectively, as well as the corresponding maximum PSP A, kA * A, B were 

identified from measured data (figure 1(b). We estimated the parameters corresponding to 

the synaptic time constants from data, as these parameters determine the shape of the 

response to input stimulation.

The following steps were used to identify these six parameters for a 1-node JR model:

i. A stimulation train of unit amplitude biphasic pulses (positive and negative 

square wave as shown in figure 1(b) at a frequency of Flow = 20 Hz or Fhigh = 80 

Hz was provided as inputs (I1, I2, I3) to a 1-node JR model. A set of SERs was 

simulated as an output of the JR model, where each SER was simulated for a 

different combination of the parameters [A, B, a, b, ka, kA] which were varied 

over a range of [1 5], [16 27], [20 120], [10 80], [0.2 2], [0.2 2], respectively. In 

total, 950 400 parameter combinations were simulated.

ii. The correlation coefficient was calculated between each simulated SER and the 

recorded SER from each patient at the 6 mA, 20 Hz or 80 Hz stimulation 
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frequencies. Two types of SER were considered; SER1: the entire duration of the 

stimulation, including both the stimulated period and 1 s after stimulation 

ceased; SER2: 1s of response following stimulation. This produced two 

correlation values, cc1 and cc2 for each set of parameters and each recorded 

SER. We chose to examine the correlation in these two intervals as there are 

evoked responses both during stimulation and for at least 1 s after (figure 1(b).

iii. The parameter sets that produced the top five correlation coefficients (cc1, cc2) 

were determined and the corresponding simulated SER1 and SER2 were visually 

inspected to avoid parameter sets that produced an unstable model in the form of 

oscillations. The final parameter set was chosen based on two criteria: (a) 

dynamics did not exhibit oscillatory SER, (b) The dynamics produced high 

correlation values during both SER1 and SER2. For example, if parameters S1 

producing max (cc1) also produced a high cc2 (>0.6), while parameters S2 

producing max (cc2) showed a poor cc1, then we chose S1.

This three-step procedure was repeated for each patient dataset corresponding to 20 and 80 

Hz SERs, and the best-fitting parameter set for the 1-node model determined. This produced, 

for each patient dataset, two 1-node models corresponding to 20 Hz and 80 Hz stimulation 

train input. We chose the 20 and 80 Hz stimulation frequencies to create training datasets 

based on the SER shapes in the low and high frequency ranges, respectively. We chose 80 

Hz based on the empirical observation that the SER shape changes around 80 Hz (figure 

1(a). Hence 80 Hz is in the 2nd frequency group which we label high frequency. In addition, 

we note that these stimulation frequencies were applied to and recorded from all patient 

datasets.

The 2-node JR model was built by coupling a second node to the 1-node JR model 

parameterized using the 20 Hz SERs. Using the 80 Hz SERs, an additional six parameters 

were identified for this 2-node JR model: three coupling parameters K1, K2, ad; the input 

parameter P; and two parameters A, B corresponding to excitatory and inhibitory 

populations in the second node. Here K1 denotes the connection strength from the primary 

to the secondary node, while K2 denotes the feedback that the first node receives from the 

second coupled node. The delay between these nodes is simulated using an alpha function 

with time constant 1/ad. P is a constant value added to the existing external input to the 

primary node. The other parameters of the second node matched those of the primary node, 

except for the values of A and B, which were similar, but not identical to, those of the 

primary node. These parameters were identified using a similar approach as described above 

with a set of simulated responses generated from the 2-node JR model with an input 

stimulation train of frequency Fhigh = 80 Hz. The correlation coefficients were then 

calculated between the simulated responses and the recorded 80 Hz SERs for each patient 

(parameter identification is outlined in figure 1(b). We note that the 2-node model is not a 

combination of two 1-node models, each of the nodes fit at 20 and 80 Hz SERs. Instead, for 

the 2-node model, we use the 20 Hz SERs to estimate a 1-node model and then the 80 Hz 

SERs to estimate a subset of the 2nd node parameters as well as inter node coupling 

parameters.
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This procedure produced two types of models (figure 1(c) to simulate SERs over a range of 

stimulation frequencies (10–160 Hz):

Model 1: A 1-node JR model to simulate the lower frequency (10–40 Hz) SERs and a 

2nd node coupled to this first one (2-node model) to simulate higher 

frequency (80–160 Hz) SERs;

Model 2: Two independently parameterized 1-node JR models, one for simulating 

lower frequency SERs and the other one to simulate higher frequency 

SERs.

The Model 1 framework suggests that the low frequency stimulation response is governed by 

a local region, while higher frequency stimulation involves connected brain regions. Model 2 

on the other hand, suggests that the local effect of stimulation in lower frequencies is 

different from that in higher frequencies, and that the two ranges of frequencies activate 

local neuronal masses with different properties.

2.4. Model performance

We implemented the following procedure to compare the in vivo stimulation data and the 

simulation results. We first calculated a correlation coefficient between the recorded SER 

and the simulated SER at each stimulation frequency using both Models 1 and 2. We then 

compared for significant differences between these two correlation coefficients at each 

frequency by using a resampling procedure. To perform the resampling, we generated 1000 

surrogate SERs from the in vivo recordings by resampling with replacement from the 

individual SER trials, computed the correlation coefficient between each of these surrogate 

in vivo SERs and the model SERs, then computed the difference in correlation between the 

two model results. We used the surrogate difference to construct a confidence bound to test 

the null hypothesis that Models 1 and 2 produce the same correlation coefficient across all 

stimulation frequencies

To test the robustness of the simulations to changes in the fixed model parameters (E, v0, r, 
C) of the primary node, we performed a sensitivity analysis. We varied these fixed 

parameters by +/−1, +/−2, +/−−3, +/−4 and +/−5% of their nominal value to create a set of 

14 640 (114−1) combinations of perturbed and nominal parameters. For example, one 

combination of parameters corresponds to the three parameters E, v0, and r fixed at their 

nominal values, and the parameter C increased by 2%. For each such combination of fixed 

parameters (with at least one parameter different from the corresponding nominal value), we 

simulated responses to electrical stimulation over 10–160 Hz. Each simulated SERs was 

compared to the SER simulated in the original model by calculating a correlation coefficient 

between the two SERs. The simulated SERs were also visually inspected to determine if 

perturbing the model parameters by 5% results in model dynamics that did not relax to rest 

(i.e. model dynamics consisting of oscillations).

3. Results

We analyzed SER in five human patients and one NHP to determine consistent SER 

characteristics across these datasets. We then fit JR models [43] using a subset of this data 
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(figure 1). We show that these models can be used to accurately simulate the entire dataset. 

We also show that this model can predict responses across recording sessions over a month 

in an NHP.

3.1. SER peak latency is more consistent across patients than SER peak voltage

To study the neural dynamics of SERs and determine if there are consistent response 

characteristics across human participants, we compared local neural responses to amygdala 

and cortical stimulation across six datasets from five patients (figure 2). In the example 80 

Hz SERs recorded in the amygdala and cortex (figure 2(a), the first 400 ms is the duration 

when the stimulation train was applied at the neighboring electrode pair, the artifacts of 

which are seen in the recorded LFP. The artifacts are modulated by a slower varying 

response during this period. After the stimulation train ended, the voltage reached a 

maximum value (indicated by a black circle) and then returned to resting state. This after-

stimulation response (SER) lasted for approximately 0.6–1 s.

The general time course of the SER shape is similar across datasets in the cortex and the 

amygdala (figure 2(a). The normalized peak voltage, calculated as the maximum value of the 

SER divided by the standard deviation of the pre-stimulation period voltage (figure 2(b), 

showed a variable relationship with stimulation frequency across patients. The time taken for 

the voltage to reach this peak value (figure 2(c) increased with stimulation frequency, 

indicating that the SER peak shifts later as stimulation frequency increases. The shaded error 

bars in figures 2(b) and (c) represent 1 standard deviation calculated from 1000 surrogates 

generated by resampling with replacement of the five–ten trials recorded at each stimulation 

frequency. The normalized peak voltage did not show any consistent trend over stimulation 

frequency, even within an individual cortical structure or amygdala. The time to peak voltage 

showed a general increase and saturation with increase in stimulation frequency in both 

brain structures. Overall, the time to peak voltage showed a more consistent trend across 

frequencies and patients than the normalized peak voltage.

3.2. A neural mass model of cortical population activity mimics the in vivo SER

To determine the parameter sets in the 1-node JR model that mimicked in vivo SER, we 

simulated this model with parameters as in (43) and different combinations of external input 

chosen to reproduce different stimulation trains. For example, we compared simulated 

response of the 1-node JR model to a train of 20 Hz stimulation pulses applied as input to 

different combinations of the model’s three neural populations to the in vivo SER (figure 

3(a). Visual inspection suggests that the model produced a SER similar to the in vivo data 

(figure 3(b) only when the same stimulation input was provided to all three neuronal 

populations (figure 3(a), subpanel iv). This is biophysically plausible, because electrical 

stimulation generates a wide electric field affecting all the populations, rather than a single 

population in the column [58]. We therefore chose to model stimulation as impacting all 

three neural populations.

The recorded SERs were used to estimate model parameters in a 1-node and 2-node JR 

model (see methods). All the simulations including model parameter identification, model 

prediction and model robustness analysis were performed using custom written codes in 
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MATLAB software. The basic code for simulating a 1-node and a 2-node model are in a 

github repository (https://github.com/tne-lab/Jansen–Rit-model/blob/master/jansen_sim.m). 

The initial simulations corresponding to 950 400 parameters for the 1-node model took 

around 6 h for each stimulation frequency. The simulation corresponding to the 2-node 

model at a particular stimulation frequency took around 7.5 h.

Using the 1-node JR model parameterized using 20 Hz and 80 Hz SERs and the 2-node JR 

model, we simulated response to stimulation for the entire frequency range (10–160 Hz) and 

computed the correlation coefficient between the recorded and the simulated SERs. We also 

calculated correlation coefficients between the simulated SERs and 1000 surrogate SERs 

generated by resampling with replacement of the recorded SER trials. This procedure 

generated 1000 correlation coefficients for each stimulation frequency which were then used 

to generate the confidence bounds (5th and 95th percentiles). An example set of recorded 

and simulated SERs in the amygdala of patient P1 is shown in figures 3(b) and (c). 

Comparing the two 1-node JR models (figure 3(b), the 1-node model fit to 20 Hz SERs 

produced correlation coefficients 0.42 ± 0.13 and 0.94 ± 0.03 (mean ± 2 std) at 10 Hz and 20 

Hz stimulation respectively. Thus, the model fit to 20 Hz SER provided a better fit than that 

fit to 80 Hz both quantitatively and qualitatively (visual inspection) in the lower frequency 

range. At these two stimulation frequencies, this 1-node model also produced a better fit 

than the 2-node model (figure 3(c). On the other hand, at 40, 80 and 160 Hz, the 1-node 

model fit to 80 Hz SERs produced a better fit than the one fit to 20 Hz SERs. Thus, any 

given 1-node model is only able to capture SER over a limited frequency range. The 2-node 

model (figure 3(c) improved the fit at 40 Hz (not used for parameter estimation) over both 1-

node models with a correlation of 0.95 ± 0.01. At 80 and 160 Hz, the 1-node model fit to 80 

Hz SER provided a better fit than the 2-node model as shown by higher correlation 

coefficients (figure 3(c).

We considered two modeling paradigms (figure 1(c): (i) Model 1 combining a 1-node JR 

model fit to 20 Hz SER and a 2-node JR model with the 2nd node parameters estimated 

from 80 Hz SER, (ii) Model 2 combining a 1-node JR model fit to 20 Hz SER and another 

1-node JR model fit to 80 Hz SER. In both models 1 and 2, the 1-node JR model fit to 20 Hz 

SER was used to simulate SERs in the low frequency (10–40 Hz) range while the high 

frequency (80–160 Hz) SERs were simulated using the 2-node model (Model 1) or the 1-

node model fit to 80 Hz SER (Model 2).

To compare the performances of Models 1 and 2 across stimulation frequencies, we 

averaged the correlation coefficients over all frequency points greater than 40 Hz and 

calculated the difference in the average correlation coefficients between Models 1 and 2. We 

constructed 95% confidence intervals for this difference through a resampling procedure as 

described in methods section. In both amygdala (left column in figure 4) and OFC/dACC 

(right column in figure 4), 2/3 datasets had a significantly higher correlation coefficient 

using models 1 than 2 (p < 0.06). We conclude that, in most cases, Model 1, which included 

both 1-node and 2-node models, had a better performance across the 40–160 Hz range of 

stimulation frequencies and hence would be a preferred modeling strategy. We also noted 

that the correlation coefficient decreases at higher frequencies mostly in Model 2 where a 1-
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node JR model was used for higher frequencies. This might indicate that a 2-node model is 

necessary to simulate the SERs at higher frequencies.

3.3. Estimated model parameters are more variable in the cortical than subcortical 
regions

Visual inspection of figure 5 reveals that some the estimated model parameters for the 1 

node and 2 node models show some variability across 6 human datasets. This observation is 

especially strong for the amygdala, where the variability in most parameter estimates is less 

than for cortex. This difference in variability could be due to the fact that the cortical region 

sampled across datasets (determined by electrode placements in the cortex) is inherently 

more variable than the amygdala. To quantify the range of parameter space spanned by each 

region model, we calculated the ratio of the range of each estimated parameter for a 

particular region to the range considered for parameter estimation.

This ratio can vary between 0 and 1, with 0 indicating an identical parameter value estimated 

across all patient datasets, and 1 indicating estimated parameters extending across the entire 

range of values considered. For the 1-node model fits, the cortical regions exhibited ratios 

between 0 and 0.875 (parameters ka and A, respectively for the 20 Hz fit), and between 0 

and 0.89 (b or ka, and kA, respectively, for the 80 Hz fit). In the amygdala, these ratios 

tended to be smaller; between 0 and 0.64 for the 20 Hz fit, and between 0 and 0.54 for the 80 

Hz fit. In general, we note that parameters linked to time constants (a,b,ka,ad) and couplings 

(K1,K2) showed lesser variability (0–0.5) for both regions.

3.4. Simulated LFP is robust to changes in fixed parameters

When the fixed model parameters of the primary node were varied by +/−5%, the simulated 

SERs closely followed the ones corresponding to the original parameter values. This 

correspondence results in high correlation coefficients between the SERs simulated with 

different parameter configurations (figure 6). These results support the conclusion that the 

simulations are robust to minor changes in the fixed parameters.

3.5. Model predictions remain accurate over multiple days of recording in an NHP

The application of chronic stimulation to treat brain disorders requires models that can be 

accurate for long periods of time. This is important for model development and prediction of 

how neural tissue responds to electrical stimulation. This is because model parameter 

estimation is time-consuming, and frequent re-estimations of the model parameters would 

not be practical. To test whether the present model has the desired long-term accuracy, we 

recorded SERs to 4mA, 10–200 Hz stimulation over five sessions in the medial orbito-

frontal cortex (mOFC) of a non-human primate (NHP, figure 7(a). These five sessions 

spanned a month and intervals between sessions ranged between 2–15 d. As observed for the 

human data, the NHP dataset showed an increase and saturation of the time to first peak with 

increasing stimulation frequency (figure 7(b), top). There is more variability in the time to 

first peak across recording sessions in the lower frequency range (<100 Hz). The normalized 

peak voltage did not show any consistent trend across recording sessions with stimulation 

frequency and had overlapping error ranges except for session 2 (figure 7(b); bottom).
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To determine if model parameters from one session could predict subsequent stimulation 

sessions, the mOFC SERs recorded at 4 mA, 20 Hz and 80 Hz on session 1 were used to 

parameterize a 2-node JR model using the same procedure as described for human data 

(examples shown in figure 7(a). Using the optimal parameter sets from the first session, we 

then simulated the SERs for all stimulation frequencies and compared these simulated SERs 

to the SERs recorded from the other four sessions. In the examples shown in figure 7(a), the 

correlation coefficients between the simulated SERs and those recorded across five sessions 

ranged from 0.61–0.91, 0.53–0.87 and 0.78–0.96 at 20 Hz, 40 Hz and 100 Hz respectively. 

Over the last two recording sessions, the mean correlation coefficient over all the 

frequencies decreased, however the correlation tended to remain high (mean correlation = 

0.75 in session 5, highest mean correlation of 0.90 in session 2, figure 7(c). We note that the 

higher stimulation frequencies produced a better overall fit with less variability in the 

correlation coefficient across the five sessions (figure 7(d).

To determine if the recording session and/or the stimulation frequency had a significant 

effect on the correlation coefficient, we fit a linear regression model of the form:

y x0 + X f + Xd

with the response variable (y) being the correlation coefficients (figures 7(c) and (d)) and the 

two predictors Xf and Xd being the stimulation frequency and the recording day 

respectively. x0 is an intercept term. The recording session number had a significant effect in 

predicting the correlation coefficients (p < 0.05) while the stimulation frequency did not 

(table 2). This is why we observe a higher variability of the correlation coefficient across 

recording sessions (figure 7(c) as compared to that across stimulation frequency (figure 7(d).

4. Discussion

Electrical stimulation of cortical and sub-cortical brain structures is a promising treatment 

paradigm for neurological and neuropsychiatric disorders [16, 59, 60]. Understanding and 

quantifying how neuronal populations respond to electrical stimulation could help design 

optimal stimulation paradigms, particularly in biomarker-based treatment. Toward this end, 

we showed that a neural mass model of cortical columns can successfully simulate electrical 

SERs in cortical and sub-cortical structures. Such a model, once calibrated using data 

recorded from a subset of stimulation frequencies, can then be used to predict the effects of 

electrical stimulation at frequencies not used to train the model. This allows an exploration 

of the stimulation response over a wide range of stimulation parameter values that would be 

difficult to test in vivo. Although the model framework is calibrated for local responses, this 

could be extended to a wider network of two or more brain regions by adding more JR nodes 

and using appropriate recorded data. This would require more data to estimate the additional 

parameters introduced. Recordings from each region would be necessary and SERs from 

each region would be required to estimate network connectivity. Furthermore, we could 

modify the model parameters to simulate responses in other brain regions using a recorded 

LFP from the target regions for model calibration.
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We chose a neural mass model to simulate the effect of electrical stimulation in local 

neuronal populations for two main reasons. First, this class of models has a relatively 

constrainable parameter space when compared to more detailed biophysical models. Second, 

neural mass models generate biophysically interpretable results and hence provide a balance 

between data-driven abstract models and detailed biophysical models. Such neural 

population models have been used in different contexts. They have successfully simulated 

resting brain rhythms in normal and pathological states as well as event-related responses 

[38, 61]. There have been relatively few attempts at simulating the effects of external 

electrical [62] and magnetic [63] stimulation in neural mass models. Here we chose the JR 

neural mass model originally developed to simulate visual evoked response in EEG signals. 

We extended this model by (i) adapting it for LFP recorded from both cortical and sub-

cortical structures and (ii) introducing external electrical stimulation of varying frequency in 

this model. This suggests that this model can be used as a general model of neuronal 

interactions.

We considered two modeling regimes to account for the variability in the SERs caused by 

variation in stimulation frequency. We showed that the stimulation parameters influence the 

model’s response characteristics. A model calibrated to match the in vivo response to low 

frequency stimulation does not predict the in vivo response to high frequency stimulation, 

and vice versa. This is evident from the change in the shape of the evoked responses with 

variations in stimulation frequencies, which is not a simple linear effect. This change in 

response was observed in the 40–80 Hz range. Hence, we chose the two training sets to be 

20 Hz and 80 Hz. A similar change in therapeutic regimes has been found in DBS for 

Parkinson’s disease where low frequency DBS can worsen symptoms while high frequency 

stimulation ameliorates symptoms [49, 64]. We further demonstrated that variability in the 

SER could be better captured by a 2-node model than by 1-node models. Biophysically, we 

interpret this model to indicate that the system enters different network states corresponding 

to different ranges of stimulation frequency. This could be caused by frequency dependent 

plasticity [65]. Intuitively, we expect that a higher order model (i.e. a model with more 

variables) will better reproduce the in vivo responses observed at higher frequencies. Our 

results indicate that the higher frequency response is better simulated by using a higher order 

dynamic system than the lower frequency response. Here, we chose to implement these 

additional variables by developing a 2-node model which has a biophysically realistic 

interpretation. We note that other model choices may succeed as well.

We observed consistent SERs over a month in an NHP, particularly in the higher frequency 

range. This was also captured by the model, which was parameterized using data from the 

first recording session. As expected, due to the consistency of the in vivo SERs, the 

simulated SERs from the model showed high correlation with the in vivo observations over 

the remaining 4 recording sessions. These results indicate that, for chronic implants, 

stimulation effects and model fits are stable and do not require recalibration over a period of 

at least two–four weeks. However, we note that this stable duration may depend on the 

frequency of stimulation, because in the current dataset, we observed that the model 

predictions were more variable in the lower frequency range than the higher frequency. 

Higher frequencies are more common in present-day clinical applications, a model 

limitation that would merit exploration in future research. Moreover, the response to 
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stimulation over time will potentially depend on patient comorbidities and stimulation target 

which could potentially be tested with the next-generation DBS systems such as the PC+S. 

Here, we did not examine responses to long term stimulation. For long term responses, we 

expect that we would have to change the coupling parameters as a function of external 

stimulation with some decay over time after stimulation stops.

In this work, we fit a model to individual patient dataset and did not average across datasets 

as we envision that such a model fit should be patient specific. We chose to model the time 

domain evoked response because this feature has been demonstrated as a potential feedback 

control signal for adjusting DBS parameters for tremor reduction [29]. DBS evoked response 

in scalp EEG has also been shown to be a good discriminator between primary and 

secondary dystonia [66]. Evoked compound nerve action potentials have been used to design 

an autonomous neural control for vagus nerve stimulation for treating epileptic and 

depressed patients [67]. Although we focused on simulating the electrical SER, and used this 

feature to calibrate the model, the approach employed here could be extended to model 

oscillatory features, such as the evoked alpha or theta band power. For parameter 

identification, we used a grid search method to maximize the correlation coefficient between 

the in vivo and simulated data. We used correlation coefficient as a distance metric because 

we were interested in the shape of the SER.

We also identified a subset of the model parameters while fixing the rest of the parameters to 

previously used values. The fixed parameters corresponded to intrinsic subpopulation 

connectivity and the nonlinear transfer function from the mean membrane potential to the 

mean output spiking rate [43]. We chose to fix these parameters, as these are typically time 

independent and less likely to be affected by external stimulation on a short time window. 

The values were chosen to produce a non-oscillatory regime. We also showed that the 

simulations were robust to changes in these fixed parameters by 1%–5% of their nominal 

values. The estimated parameters from recorded data reflect the linear time varying transfer 

function that converts the average input action potential density of a neural population to an 

average output PSP. Although we did employ some visual inspection as part of the model 

parameter estimation, we then validated the results by testing the models against datasets 

that were not used for the model fitting. We thus avoided overfitting by using only one or 

two sets of SERs for training, and then testing on the rest of the dataset. This is evident from 

the simulated SERS in similar frequency ranges which showed comparable correlation 

coefficients as the training dataset. Other data assimilation techniques, such as dynamic 

causal modeling [68] and Monte Carlo methods [69], might be used for identifying all or a 

subset of the model parameters. In addition, other features from the data—for example, 

measures of coupling between two brain areas—may help further constrain and validate 

multi-node, network models. We note that this modeling approach is not meant for online 

parameter estimation. Instead, this procedure is most compatible with offline model fitting to 

support an in silico simulation engine. Here we used visual inspection as part of the 

parameter estimation procedure, as is common in offline signal analysis and modeling.

An important direction of future work would be to use this modeling framework to find the 

SER correlates of therapeutic outcome [29]. For example, if specific aspects of the SER 

produce a positive therapeutic outcome, we could attempt to identify stimulation parameters 
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that maximize those physiologic responses. Another application would be to use animal 

models of psychiatric disorders for testing effects of model-based predicted stimulation 

parameters on behavior. This would help design model-based stimulation to change behavior 

in a desired manner.

5. Conclusion

We show that a relatively simple neural mass model of coupled cortical columns predicts the 

response to electrical stimulation in human and NHP brain. This modeling framework can 

potentially help overcome an inherent drawback of human brain stimulation studies, where 

investigators tend to use a narrow subset of stimulation parameters. By using the model to 

explore a wider range of stimulation settings, an optimal stimulation strategy for a given 

patient could be proposed and tested. This has applications in designing DBS-based neuro-

physiology experiments and in the creation of model-driven closed-loop neuro-stimulation 

algorithms.
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Figure 1. 
Model schematic and method for identifying model parameters: (a) schematic of a 2-node 

JR model. Boxes represent neuronal populations and circles represent intra and inter 

population couplings. The parameters in red are the ones that were estimated. (b) A 

flowchart representation of the steps followed for model parameterization. The model 

parameters are described in table 1. The parameters with asterisks indicate those identified 

using recorded SER. Example SERs recorded from amygdala is also shown along with a 

reconstruction of the patient brain and electrode locations. (c) Two possible model 

paradigms: Model 1: 1-node JR model to simulate low frequency SERs and a second node 
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added onto this to simulate high frequency SERs, Model 2: a combination of two 1-node JR 

models to simulate SERs in the low and high frequency stimulation regimes.
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Figure 2. 
Recorded SER trends across patients: (a) example 80 Hz SER normalized to pre-stimulation 

baseline in the six datasets recorded from N = 5 patients. Each SER (averaged over trials) 

was recorded in the amygdala (top) and OFC/dACC (bottom). (b) Variation of normalized 

peak voltage, (c) time to peak voltage over stimulation frequencies. The shaded error bars 

indicate 1 standard deviation calculated from 1000 surrogate SERs generated by resampling 

with replacement 5–10 recorded SER trials at each stimulation frequency and for each 

dataset. The coloring scheme for b and c are same as in a. The recorded SER corresponding 

to 80 Hz stimulation for all the datasets (boxed in green) are plotted in a. Note: P2 had SERs 

from 10–80 Hz.
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Figure 3. 
Examples of recorded and simulated SERs in amygdala: (a) simulating the effect of 

stimulation on a 1-node JR model by adding input stimulation train to one, two or all three 

populations within a column. (b) Left: Recorded (black) and simulated SER using the 1-

node JR models fit to 20 Hz (blue) and 80 Hz (purple) SERs in the amygdala. Right: 

Recorded (black) and simulated SER using 1-node JR model (blue) and that using the 2-

node JR model (red). The blue SER is simulated using the 1-node model that produced a 

higher correlation coefficient. Each row in b corresponds to a different stimulation frequency 

as indicated on the y-axis. The correlation coefficients (mean ± 2 std dev) between the 

recorded and the simulated SER are shown in the same color as the corresponding plot.
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Figure 4. 
The correlation between the human and model SERs tends to be highest for the 2-node 

model. Correlation coefficient between recorded and simulated SERs in the amygdala (left) 

and dACC/OFC (right) across subjects plotted over stimulation frequencies. SERs used to 

calculate the correlation coefficients were simulated using Model 1 (blue) and Model 2 

(red). Yellow stars indicate the datasets for which Model 1 had significantly better fit (higher 

correlation coefficient) than Model 2 across stimulation frequencies greater than that where 

Models 1 and 2 were used (same 1-node model for lower frequencies). The p-value was 

determined based on empirical distributions generated by 1000 correlation coefficients 

calculated between surrogate SERs and simulated SERs averaged over frequencies. The p-

value is corrected for multiple comparisons (N = 6 datasets) using Bonferroni correction. 

Note: amygdala (P2) did not have stimulation frequencies above 80 Hz as epileptiform 

activity appeared at 160 Hz.
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Figure 5. 
Estimated model parameters differ between amygdala and cortex. (left, middle): 1-node 

model parameter estimates using recorded SERs at 80 and 20 Hz stimulation. (right): the 

2nd node coupling parameters that were used to improve model fit in higher frequency 

stimulation (80–160 Hz) regime for amygdala (black) and cortical (magenta) structures.
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Figure 6. 
(a) Mean and standard deviation of the correlation coefficient between simulated SER from 

the original fixed parameters and those simulated using perturbed fixed parameters across 

stimulation frequencies. Each fixed parameter was perturbed by 1%–5%. The different 

datasets are color-coded. (b) Example simulated SER using perturbed parameters for 10 Hz 

and 20 Hz stimulation.
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Figure 7. 
The brain responds consistently to stimulation over one month. (a) Example SERs recorded 

in the mOFC with local stimulation at 4 mA and 10–200 Hz frequency over a period of 1 

month and that simulated using a 2-node JR model which was parameterized using SERs 

recorded in the first session, the range of correlation coefficients between the recorded and 

simulated SERs across sessions included, (b) normalized peak voltage and time to peak 

voltage over the five recording sessions, (c) variation of the correlation coefficient between 

the recorded and simulated SER over recording sessions and that over stimulation 

frequencies.
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Table 2.

Coefficients of regression model.

variable Estimated coefficient Std error T-stat P-value

Xf (frequency) 0.0004 0.0002 1.84 0.074

Xd (day) −0.0033 0.0015 −2.23 0.032
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