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Abstract: Because of the optical properties of medical fluorescence images (FIs) and hardware
limitations, light scattering and diffraction constrain the image quality and resolution. In
contrast to device-based approaches, we developed a post-processing method for FI resolution
enhancement by employing improved generative adversarial networks. To overcome the drawback
of fake texture generation, we proposed total gradient loss for network training. Fine-tuning
training procedure was applied to further improve the network architecture. Finally, a more
agreeable network for resolution enhancement was applied to actual FIs to produce sharper and
clearer boundaries than in the original images.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Intraoperative near-infrared (NIR) fluorescence imaging is an emerging clinical imaging modality,
which can effectively assist various kinds of surgical treatments and is attracting increased
attentions from both imaging and surgical fields [1]. As it utilizes NIR fluorescence probes and
specially designed optical imaging systems for real-time visualization during a surgery, it is
non-radioactive, portable, and relatively cost-effective [2–4]. Typical applications include sentinel
lymph node detection [5,6], tumor visualization [4], and the identification of other vital structures
[7,8]. Clinical applications based on this technique mainly depend on the fluorescence contrast
between the target area and surrounding tissues. Such differences can be caused by delivering a
contrast agent with a spatially varying concentration in the tissues. It can also be designed with a
targeting probe for both diagnostic and therapeutic purposes in specific biochemical environments
[9]. When illuminated by an excitation light, the contrast agent with various concentrations in
tissues emits a fluorescent signal, which is received by a charge-coupled device (CCD) camera
for imaging. The migration of the excitation and emission photons through the tissues is likely
to cause the fluorescence signal to disperse and be lost in space [10]. Because of the optical
limitations of light scattering and diffraction as well as hardware restriction, medical fluorescence
images (FIs) suffer from a relatively low contrast and reduced spatial resolution at the boundaries.
This is problematic in cases where a fine analysis of the fluorescence concentration is required,
such as photodynamic therapy with photosensitizer measurements in tissue [11] and recognizing
vessels or nerves in vivo [12,13].

For the resolution enhancement of fluorescence images, many previous studies focused on the
processing of microscopy fluorescence images [14,15], but for clinical fluorescence images, most
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of them still rely on the improvement of hardware performance. Even though many groups have
developed hardware-based methods over the last 5–10 years to improve the FI resolution [16–18],
post-processing techniques are still an appealing approach to alleviate the limitations of optical
properties and hardware. For natural image resolution enhancement, deep learning methods have
achieved great image recovery performances with high quality and relatively sharp edges [19–24].
SRGAN was proposed by Ledig et al. and implements a deep residual network to recover more
realistic photos from heavily down-sampled natural images [25]. SRGAN can reconstruct more
perceptually convincing images than the other state-of-the-art deep learning methods that are not
based on GAN [25]. However, SRGAN also generates fake textures to sharpen images, which
should be minimized for medical applications. More suitable networks based on deep learning
methods should be developed that provide less fake textures and high-contrast boundaries for FI
resolution enhancement.
We propose a novel FI resolution enhancement method that uses the total gradient loss to

improve generative adversarial networks (GANs) and produce both sharpened edges and fewer
artifact textures. To simulate low-resolution FI reconstruction we first down-sampled images, and
then trained our network with pairs of original and re-up-scaled images with a 4× scale factor.
Compared to SRGAN, our proposed method performed better with both the down-sampled
FI dataset and the original resolution plate. Noise-affect resolution plate experiments were
conducted that further illustrated the effectiveness and robustness of the network for image
enhancement. Furthermore, we tested our method on a real FI of mouse tail blood vessels and a
video of intraoperative fluorescence imaging acquired from a breast cancer surgery. The results
showed image resolution enhancement with sharpened edges.

2. Methods

In this section, we describe the principle of fluorescence imaging and simplify the problem of
low resolution with a down-sampled and re-up-scaled function model. Then, the proposed FI
resolution enhancement method based on GAN is presented. To address the problem of fake
textures, we propose total gradient loss to train the network. We then present a fine-tuning
training procedure for the network architecture improvement based on the microscopy FI training
dataset.

2.1. Problem formulation

The purpose of this study was to recover low-resolution FIs with sharpened boundaries and
high-resolution quality. A low-resolution FI is caused by many factors, which we divided into
three main groups.

1) Fig. 1 shows the basic principle for intraoperative NIR fluorescence imaging. After a short
excitation light pulse, light photons pass through the thick tissue and reach the target area where
the fluorescence contrast agent has accumulated. When the excitation light photon is absorbed by
a fluorophore, a new fluorescence photon is launched at a longer wavelength and is eventually
absorbed or emitted at the surface to be received by a CCD camera with an appropriate filter. To
simplify the photon propagation process in the tissue, we omitted other factors that introduce
complexity, such as the reabsorption of fluorescence photons, diffuse reflection of the excitation
light on the tissue surface, and fluorescence quenching of the contrast agent over time [10]. The
simplified optical propagation model is usually described as a point spread function (PSF) [26].
The PSF of an isotropic point source is often approximated as a Gaussian function [26]:

I(x, y) = I0 exp(−
1

2σ2 ((x − x0)
2 + (y − y0)2)) (1)

where σ is calculated from the fluorophore in the specimen that specifies the width of the PSF, I0
is the peak intensity, which is proportional to the photon emission rate and decreases because of
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the photon absorption effect, and (x0, y0) is the location of the fluorophore. Optical properties
(e.g., light absorption, scattering, and diffraction) change the photon propagation path and absorb
part of the fluorescent emission photons, which leads to blurring and low resolution of the FI [27].
In addition, different tissues have different absorption and scattering properties, even for the same
tissue in different parts [28]. Thus, optical scattering and diffraction reduce the signal-to-noise
ratio (SNR), which limits the resolution of fluorescence images. Moreover, the complexity and
inconsistency of the light propagation procedure make it difficult to describe these phenomena
with precise mathematical models.
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Fig. 1. Schematic illustration of the intraoperative NIR fluorescence imaging.

2) Hardware limitations are another factor that limits the quality of FIs. The resolution of
FI is majorly determined by the sampling rate of the camera, the numerical aperture (NA) of
the lens, and the SNR of the overall system. Thus, low-resolution can be directly improved by
using a better imaging system with higher specifications, but this often brings the increase of
cost [29]. Furthermore, a high-quality imaging system also increases the device volume and
weight, which inevitably reduces the ergonomics and portability. There is a trade-off between the
imaging resolution, ergonomics, and cost when designing an intraoperative NIR fluorescence
imaging system [30]. Therefore, it is worthy of improving the imaging quality through image
prost-processing methods rather than only upgrading the hardware setups.
3) The adverse ambient light condition and lower contrast agent accumulation normally lead

to a low SNR during intraoperative NIR fluorescence imaging and blur the imaging contrast
[31]. In such situation, operators frequently enhance the image contrast to elucidate object details
by manually expending the exposure bar, so that the dynamic range of the camera can be fully
utilized. However, this excessive enhancement actually damages the overall resolution and visual
effects, as even more noise would be introduced into the image [32].
Because the causes of the limited resolution are many and complex, developing a single

mathematical expression is difficult. However, the common features among the factors mentioned
above are a loss of photon signals and diffraction effects. Therefore, we can simulate this
low-resolution problem as a down-sampling and then re-upscaling procedure:

Y = U(DX) (2)

where X is the high-resolution FI, D is the down-sampling operator, U is the augmenting operator
with the bicubic interpolation method, and Y is the low-resolution FI. We applied the deep
learning method to fit the inverse process from Y to X̂. The objective is to minimize the differences
between X and X̂.
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2.2. General GAN for resolution enhancement

Goodfellow [33] proposed the GAN, which can be used to generate higher-quality samples
(x̂ = G(y)) from a distribution of a low-resolution dataset y. GAN can be approximated as a
minmax game between a generator network G and a discriminator network D [33]:

min
G

max
D

V(D,G) = Ex∼Pdata(x)[logD(x)] + Ey∼Py(y)[log(1 − D(G(y)))] (3)

where y is sampled from the distribution Py(y) of the low-resolution images and x is from
the distribution Pdata(x) of the real dataset with high-resolution images. The discriminator is
responsible for judging the gap between the synthesized fake sample G(y) and real sample x.
Meanwhile, the results are presented in the form of scores that are fed back to the generator
network. Thus, the G output is continuously optimized through the minmax game.

GAN has the advantage of solving the regression problem of image recovery. SRGAN is a new
state-of-the-art method for natural image resolution enhancement; it is a GAN-based network
optimized for perceptual loss that is calculated on feature maps of the Visual Geometry Group
(VGG) network, as described by Simonyan and Zisserman [34]. The perceptual loss is defined as
the Euclidean distance between the feature representations of a reconstructed image G(ILR) and
reference image IHR:

lSRVGG =
1

WH

∑W

w=1

∑H

h=1
(φ(IHR) − φ(G(ILR)))2 (4)

Where φ is the feature map obtained by the VGG network andW and H are the dimensions of
the respective feature maps. A deep residual network is applied in the generator of SRGAN to
decrease the losses, including the content loss and adversarial loss. Considering the unstable
characteristics of the GAN training procedure, many improvements have been proposed, such as
the Wasserstein GAN [35], improved Wasserstein GAN with gradient penalty [36], least-squares
GAN [37], deep convolutional GAN [38], and loss-sensitive GAN with the Lipschitz density
[39]. Many have been proven to significantly enhance the performance in certain applications.

2.3. Proposed method

2.3.1. Network architecture and loss functions

The overall framework of our FI resolution enhancement method is shown in Fig. 2. Simulate
low-resolution (LR) images by first down-sample the high-resolution (HR) images and then
re-upscaled to the original size through bicubic interpolation with a 4× scale factor. Then, pairs of
HR and LR images were imported to the networks for training purpose. We used a least-squares
GAN model [37] with seven dense residual blocks [40] and spectral normalization [41] in the
generator to overcome the low-resolution problem. The primary objective functions for the GAN
used in this study can be described as follows:

min
D

LFI_GAN(D) =
1
2

Ex∼Pdata(x)[(D(x) − 1)
2] + Ey∼Py(y)[D(G(y))

2] (5)

LAdv(G) =
1
2

Ey∼Py(y)[(D(G(y)) − 1)
2] (6)

min
G

LFI_GAN(G) = LX(G) + εLAdv(G) + θLTG(G) (7)

LX(G) = αLMSE(G) + βLL1Smooth(G) + γLVGG(G) + ηLRes(G) (8)

where LFI_GAN(D) is the discriminator loss, D(x) is the discriminator score of the real image with
high resolution, D(G(y)) is the discriminator score of the fake image generated from the generator
network, and LAdv(G) is the adversarial loss, which is a part of the generative loss LFI_GAN(G).



Research Article Vol. 10, No. 9 / 1 September 2019 / Biomedical Optics Express 4746

The generative loss has three parts: the content loss LX(G), adversarial loss mentioned above,
and total gradient loss. The content loss includes MSE loss, L1Smooth loss, and perception loss,
which further includes VGG_loss and ResNet_loss.
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Fig. 2. Simulation of Low-resolution images and improved GAN-based architecture for
fluorescence image resolution enhancement.

2.3.2. Total gradient loss

The total gradient (TG) loss was proposed for using in the network to mitigate the problem of
fake textures produced by SRGAN method. This approach was inspired by the total variation
[42], which is an algorithm designed for denoising by minimizing the gradients of adjacent pixels
for each pixel in an image. In this study, we compared the pre-defined gradients (Eq. 9) from
the generated and real images to develop a loss function (named as the TG loss) that provides
feedback for network training. The TG loss LTG is mathematically expressed as follows:

∆UX
w(i, j, k) = uxi+k,j − u

x
i,j k = 1, 2, · · · , Nw

2

∆UY
w(i, j, k) = uyi+k,j − u

y
i,j k = 1, 2, · · · , Nw

2

∆UX
h (i, j, k) = uxi,j+k − u

x
i,j k = 1, 2, · · · , Nh

2

∆UY
h (i, j, k) = uyi.j+k − u

y
i,j k = 1, 2, · · · , Nh

2

i = 1, 2, · · · ,Nw j = 1, 2, · · · ,Nh

∆UXY
w =

1
2Nw∑
k=1

Nh∑
j=1

Nw−k∑
i=1

1
k [∆U

X
w(i, j, k) − ∆UY

w(i, j, k)]
2

∆UXY
h =

1
2Nh∑
k=1

Nw∑
i=1

Nh−k∑
j=1

1
k [∆U

X
h (i, j, k) − ∆U

Y
h (i, j, k)]

2

LTG = 1
Nw
∆UXY

w +
1
Nh
∆UXY

h

(9)

where uxi,j and uyi,j are the pixel values of the original high-resolution image X and low-resolution
image Y, respectively; ∆Uw is the gradient of the image along the width, and ∆Uh is the gradient
of the image along the height; ∆UXY

w is the total differences between the gradients of X and Y
along the width, and ∆UXY

h is that along the height; Nh is the total pixel number along the height,
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and Nw is the total pixel number along the width; k is the number of pixel offsets in each loop,
ranging from 1 to kmax, and kmax is half of the pixel numbers along the width (or the height) of
the image.

The reason of designing the TG loss to train our network is because it does not only compare
the gradient of two adjacent pixels between generated and original images, it also compares
gradients of long-distanced pixels between these two images (Fig. 3). Because for the detailed
texture of an image, we assume that each pixel is related with its surrounding neighbors, as well
as its distanced pixels. Comparing the long-distanced gradients of corresponding pixels between
the two images helps to reduce the differences. The unique feature of TG loss takes account of
this assumption, so that fake textures can be minimized in generated images.
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Fig. 3. Schematic of total-gradient algorithm.

Setting offset k to be the half of the total pixel number N (Nw or Nh) can include all pixels
of the image into the calculation process. When kmax is greater than N/2, some pixels will be
excluded from the procedure of the loss calculation, and then the proportion of other pixels in the
loss calculation will be increased. This excessive calculation will bring inhomogeneities. When
kmax is equal to 1, only adjacent pixel variations are included into the loss calculation between
two images. Furthermore, to evaluate the optimal value of kmax, controlled experiments were
conducted. Based on those reasons, in order to generate an image with enhanced resolution
and suppressed fake texture, we employed the difference of TG between original and generated
images as the training loss.

2.3.3. Networks and training settings

In this study, we used the pretrained VGG16 [34] and ResNET152 [43] models to calculate
the perception losses. The network was trained with a loss function having the following fixed
hyperparameters: ε = 10−3, α = 1, β = 1, γ = 8 × 10−3, η = 10−2, θ = 1, which are the
parameters in Eqs. (7) and (8) in the first training procedure. These parameters are adjusted
depending on the loss changes and validation dataset performances, which including the generator
loss and the PSNR (dB) calculated at the end of each epoch during training procedure. We
adopted Adam optimization with a learning rate of 1×10−3 for both the generative and adversarial
networks. To speed up the training process and image generation procedure as well as to simulate
the photon propagation properties in thick tissues, we adopted the network architecture shown in
Fig. 2. In the network, we first down-sampled the low-resolution images by the stride convolution
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[38] to reduce the image size and speed up the calculation. Meanwhile, we extracted the main
features by learning the parameters of the stride convolution kernel. Then, ResNET and sub-pixel
convolution layer [44] structures were applied to upscale the images. Considering the similarity
structures between low-resolution FIs and the simulated low-resolution images, a scale factor of
4× was selected for this study. We first trained the network by using natural image datasets with
a batch size of 64 and random crop size of 64. A validation dataset was used to evaluate the
network performance of every epoch. The first training step was run for 200 epochs, and the
epoch with higher peak signal-to-noise ratio (PSNR) [45] calculated for the validation set was
selected as the starting epoch in the next fine-tuning procedure. Both the down-sampling (strided
convolution) and up-sampling (sub-pixel convolution layer) procedures were performed on the
networks, and all were trained together during the training process.

2.3.4. Fine-tuning learning

Toobtainmore suitable networks formedical FIs, a fine-tuning procedurewas performed during the
second training process. For the fine-tuning procedure, a microscopic FI dataset including images
with sharp edges was used for training. Based on experimental results, we adjusted the parameters
of the loss function in Eqs. (7) and (8) as follows: ε = 1, α = 10, β = 10, γ = 8, η = 1, θ = 10.
Adam optimization with a learning rate of 1× 10−6 was performed during the fine-tuning training
procedure. The batch size was 64, and the crop size was 32. To avoid overfitting the fine-tuning
training set, we developed a validation set to monitor the PSNR (dB) performance of every epoch
and obtained better networks by stopping early.

2.4. Implementation details and evaluation methods

2.4.1. Implementation

We implemented our FI resolution enhancement method with PyTorch 0.4.1, which is a library
of Python 3.6. The code was run on a GPU (NVIDIA GeForce RTX2070, 8 GB) and CPU (Intel
Core i7-6700 @ 3.40 Hz).

2.4.2. Evaluation methods

The root mean square error (RMSE) [46], PSNR (dB), and structural similarity index (SSIM)
[47] were used to compare the SRGAN and the improved FI resolution enhancement method.
SRGAN was implemented in PyTorch [48]. FIs were divided into validation and test datasets for
the training and evaluation of the networks. We adopted resolution plates, resolution plates with
Poisson noise, and an original FI of blood vessels in mouse tail, as well as an intraoperative NIR
fluorescence imaging video to test the performance of our FI resolution enhancement method.

3. Experiments and results

Experiments were performed as explained above. We evaluated the network performance with a
macro FI test dataset. Note that the test images were down-sampled, and the original images
were used as the ground truth for comparison. The experimental results are presented below.

3.1. Dataset preparation and experimental settings

The first training procedure was performed on natural image datasets (VOC2012 and DIV2K).
The corresponding validation dataset consisted of four images that were randomly picked from
CImageNET400 and constrained by the memory storage of the GPU. After the first training
procedure using natural images, we also employed the second training (the fine-tuning procedure).
Because our method was aimed to enhance the resolution of macro FIs, we needed to establish
the fine-tuning training dataset with higher resolution FIs. Thus, we chose microscopy FIs
with good image quality, along with the 4× down-sampled and re-up-scaled processing, as
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the second fine-tuning training dataset. Data augmentation strategies (e.g., cropping, cutting,
adjusting the brightness) were used to expand the volume of the fine-tuning training dataset.
The parameters were set according to the training procedure described above. The fluorescence
microscopy images for fine-tuning training were taken from https://storage.googleapis.com/in-
silico-labeling/data_sample.zip.
To assist the fine-turning procedure, we further established a fine-tuning validation dataset,

which consisted of 10 images from four intraoperative NIR fluorescence imaging videos.
Furthermore, the test dataset consisted of 60 images from the other four NIR fluorescence imaging
videos was used to evaluate the overall performance of the proposed method. To avoid overfitting
caused by FI similarity, all employed images extracted from NIR videos were sampled with
obvious differences. The intraoperative NIR fluorescence imaging videos were acquired by the
Peking University People’s Hospital (clinical trial number: NCT02611245 in ClinicalTrials.gov).

3.2. Fluorescence image dataset test results

We first applied our training procedure to a set of down-sampled and re-up-scaled natural images
and made the networks learn this transform to recover the original high-resolution images. To
evaluate the effects of the total gradient loss, TG loss with different parameters and fine-tuning
procedure on the network training results, we trained the networks separately: without the TG loss
(FI-GAN-NOTG) and with the TG loss for kmax= 1 (FI-GAN-TG-1), kmax=N/2 (FI-GAN-TG),
as well as kmax=N (FI-GAN-TG-N) (Fig. 4(A) and 4(B)). These results showed that the TG loss
with kmax=N/2 achieved a better performance. Please note that in these controlled experiments,
we fixed the weight parameter (θ = 1) of the TG loss to evaluate the performances with different
kmax values. Then, the epoch with better PSNR value of FI-GAN-TG (kmax=N/2) was
selected as the preliminary training network result. We transformed the training procedure to the
fine-tuning process (FI-GAN-TGFT). During this process, the validation indicators were also
computed on a FI validation dataset. The second training loss and the resulted PSNR of the
validation dataset are plotted in Fig. 4(C) and (D), respectively. The PSNR of the fine-tuning
procedure first increased and then decreased (Fig. 4(D)); we selected the peak as the final network.
We used 60 macro FIs as the test dataset to compare the performances of our method with

different parameters with SRGAN. Table 1 presents the statistical results in terms of RMSE,
PSNR, and SSIM. The results showed that in the first training procedure, the FI-GAN-TG
(kmax=N/2) provided a better performance than the other two networks (kmax= 1 and N). After
the second training procedure (the fine-tuning), the obtained FI-GAN-TGFT further improved
the performance from FI-GAN-TG.

Table 1. Statistics of Different Networks and Different kmax Values in TG loss.

Fluorescence60 SRGAN FI-GAN-NOTG
FI-GAN-TG-1

kmax= 1
FI-GAN-TG
kmax=N/2

FI-GAN-TG-N
kmax=N FI-GAN-TGFT

RMSE 0.0209 0.0215 0.0217 0.0203 0.0209 0.0200
PSNR (dB) 34.12 33.88 33.79 34.42 34.16 34.58
SSIM 0.8929 0.8880 0.8981 0.9127 0.9033 0.9164

Figure 5 shows the performances with three examples in the test dataset. These FIs included
the lung tissue, Indocyanine green (ICG) injection point for lung lymph node mapping, and the
lung tissue incision. The first column shows the merged and color images of the corresponding
FIs. The second and third columns show the original high-resolution (HR) images and the
preprocessed low-resolution (LR) images.
To clarify the detail variations, we magnified parts of the images with red frames which are

shown in every second row. It was difficult to discover the differences between the post-processing
methods at the small scale, but the difference between processed images can clearly be seen when

https://storage.googleapis.com/in-silico-labeling/data_sample.zip
https://storage.googleapis.com/in-silico-labeling/data_sample.zip
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Fig. 4. Training procedures of kmax evaluation and fine-tuning. (A) Generator loss curve 
with and without TG loss constraint. Different kmax values (1, N/2, and N) was set for 
the TG loss in the first training procedure. (B) PSNR (dB) of the validation dataset with 
and without TG loss constraint. (C) Generator loss curve in the fine-tuning procedure. 
kmax was set to be N/2 for the TG loss. (D) PSNR (dB) of the validation dataset in the 
fine-tuning procedure. 
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images and made the networks learn this transform to recover the original high-resolution 
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Fig. 4. Training procedures of kmax evaluation and fine-tuning. (A) Generator loss curve
with and without TG loss constraint. Different kmax values (1, N/2, and N) was set for the
TG loss in the first training procedure. (B) PSNR (dB) of the validation dataset with and
without TG loss constraint. (C) Generator loss curve in the fine-tuning procedure. kmax
was set to be N/2 for the TG loss. (D) PSNR (dB) of the validation dataset in the fine-tuning
procedure.

magnified. False textures were observed with SRGAN and diminished with the proposed method.
The quantitative analysis of Fig. 5(A) is shown in Fig. 5(D). The change in the fluorescence
intensity at the red line indicates that our method fit well to the original image, and SRGAN
showed a jittery curve because of fake textures (stripe artifacts). All of the preprocessed LR
images were after the 4× down-sampling. The difference between our method and SRGAN
was whether the image input into the network was re-amplified to the original size by bicubic
interpolation.

3.3. Resolution plate test results

As a practical application comparation with SRGAN, we tested the performance of the proposed
method with a fluorescence resolution plate made of the serum-soluble ICG and a negative
optical resolution plate. A solution was prepared by dissolving 2 mg of ICG in 10 ml of serum.
A thin layer of the ICG solution was placed over a Petri dish, and the negative of the optical
resolution plate was slowly placed on it to avoid air bubbles. The resolution plate was used
with fluorescence imaging equipment developed by the Laboratory of Molecular Imaging at the
Chinese Academy of Sciences to detect fluorescence signals.
Figure 6(A) shows the fluorescence resolution plate images processed results. The first

column is the original image magnified four times of the fluorescence resolution plate and the
partial enlargement areas indicated by red boxes. The last two columns are the post-processed
images. The image processed with the proposed resolution enhancement method showed clear
improvement in the imaging resolution, but the one processed by SRGAN still had the problem
of fake textures. The fluorescence intensity curve further shows that our method reduced the
fake textures, achieved a balance between the fake details and sharpening, and overall performed
better (Fig. 6(B)).

To evaluate the robustness of our method under a noise condition, after the bicubic interpolation,
the four times enlarged white light image and the corresponding NIR fluorescence image of the
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Fig. 5. Test results for FI resolution enhancement network with down-sampled examples. 
(A) The lung tissue; (B) ICG injection point for lung lymph node mapping; (C) The lung 
tissue incision; (D) Fluorescence intensity quantitative analysis of (A). In (A-C) from left 
to right, merged and color images, original fluorescence images with relative high 
resolution, down-sampled fluorescence images with low resolution, images processed by 
SRGAN, images processed by our method. In (D), the local curve of (A) is amplified 
showing fake textures (stripe artifacts) with vibration under SRGAN processing. 

We used 60 macro FIs as the test dataset to compare the performances of our method 
with different parameters with SRGAN. Table 1 presents the statistical results in terms of 
RMSE, PSNR, and SSIM. The results showed that in the first training procedure, the FI-

Fig. 5. Test results for FI resolution enhancement network with down-sampled examples.
(A) The lung tissue; (B) ICG injection point for lung lymph node mapping; (C) The lung
tissue incision; (D) Fluorescence intensity quantitative analysis of (A). In (A-C) from left to
right, merged and color images, original fluorescence images with relative high resolution,
down-sampled fluorescence images with low resolution, images processed by SRGAN,
images processed by our method. In (D), the local curve of (A) is amplified showing fake
textures (stripe artifacts) with vibration under SRGAN processing.
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Fig. 6. Resolution plate tests. (A) Four times magnified NIR fluorescence images of the 
resolution plate were compared. From left to right: original images, images processed by 
SRGAN, images processed by our method. Two red frames were enlarged and 
overlapped in the second row for better comparisons. (B) Fluorescence intensity curves 
extracted from the red line are plotted and compared for each case. (C) White light and 
fluorescence images of the noise-affect resolution plate were compared. From left to right: 
original images, adding Poisson noise images, and Poisson noise images processed by our 
method. Orange frames were enlarged for better comparisons. (D) Fluorescence intensity 
curves extracted from the orange line are plotted and compared for each case. 

3.4 Practical application tests of resolution enhancement 

Considering the advantages of our method for resolution enhancement and edge 
sharpness, we believe that it will be benefit for intraoperative NIR fluorescence imaging. 
Therefore, we applied this method to the in vivo fluorescence imaging of blood vessels in 
a mouse tail to further evaluate its performance. A 7-week-old nude mouse was used and 
the experiment was conducted under the guidelines approved by the Institutional Animal 
Care and Use Committee at Peking University. It was injected with ICG at a 
concentration of 0.1 mg/ml through the tail vein immediately before fluorescence 
imaging. The obtained NIR FI was then processed with our proposed method. Because 
SRGAN is used for processing images with a small size, it has less benefit for processing 
such a fluorescent divergent image besides magnifying it. Different from SRGAN, the 
proposed method has the network structure of first down-sampling and then re-up-scaling 
the image to the original size. Therefore, it fitted the optical scattering characteristics and 
provided good results, as shown in Fig. 7. The contour of the three blood vessels in the 
mouse tail were blurred and merged into each other in the original NIR FI (Fig. 7A). It 
was not easy for observers to distinguish these vessels by naked eyes. However, our 
method improved the contrast with much sharper contours of these vessels (Fig. 7B). 

Fig. 6. Resolution plate tests. (A) Four times magnified NIR fluorescence images of the
resolution plate were compared. From left to right: original images, images processed by
SRGAN, images processed by our method. Two red frames were enlarged and overlapped in
the second row for better comparisons. (B) Fluorescence intensity curves extracted from the
red line are plotted and compared for each case. (C) White light and fluorescence images of
the noise-affect resolution plate were compared. From left to right: original images, adding
Poisson noise images, and Poisson noise images processed by our method. Orange frames
were enlarged for better comparisons. (D) Fluorescence intensity curves extracted from the
orange line are plotted and compared for each case.

resolution plate were deliberately added with the Poisson noise. Then, the proposed method
was applied into the Poisson noise images to enhance the resolution (Fig. 6(C)). The line pairs
in each orange frame were further enlarged for comparisons (red, green, and blue frames for
the origin, Poisson noise, and processed images, respectively). The originally distinguishable
line pairs became unrecognizable after adding Poisson noise. However, our method successfully
enhanced the image resolution with sharper edges, and the three lines became recognizable again.
Quantitative comparisons of intensity curves were also plotted for white light and fluorescence
images, respectively (Fig. 6(D)), which indicates that our method can survive from the interference
of Poisson noise and enhanced the image resolution.

3.4. Practical application tests of resolution enhancement

Considering the advantages of our method for resolution enhancement and edge sharpness, we
believe that it will be benefit for intraoperative NIR fluorescence imaging. Therefore, we applied
this method to the in vivo fluorescence imaging of blood vessels in a mouse tail to further evaluate
its performance. A 7-week-old nude mouse was used and the experiment was conducted under
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the guidelines approved by the Institutional Animal Care and Use Committee at Peking University.
It was injected with ICG at a concentration of 0.1 mg/ml through the tail vein immediately before
fluorescence imaging. The obtained NIR FI was then processed with our proposed method.
Because SRGAN is used for processing images with a small size, it has less benefit for processing
such a fluorescent divergent image besides magnifying it. Different from SRGAN, the proposed
method has the network structure of first down-sampling and then re-up-scaling the image to
the original size. Therefore, it fitted the optical scattering characteristics and provided good
results, as shown in Fig. 7. The contour of the three blood vessels in the mouse tail were blurred
and merged into each other in the original NIR FI (Fig. 7(A)). It was not easy for observers
to distinguish these vessels by naked eyes. However, our method improved the contrast with
much sharper contours of these vessels (Fig. 7(B)). Such resolution enhancement made all three
vessels become more recognizable, and their anatomical structure was consistent with the ground
truth white light image (Fig. 7(C)). Quantitative comparisons between the original FI and the
processed FI also proved that the contrast of the three vessels was improved (Fig. 7(D)).

 

Such resolution enhancement made all three vessels become more recognizable, and their 
anatomical structure was consistent with the ground truth white light image (Fig. 7C). 
Quantitative comparisons between the original FI and the processed FI also proved that 
the contrast of the three vessels was improved (Fig. 7D).  

 

Fig. 7. Method validation by in vivo NIR fluorescence imaging of mouse tail vessels. (A) 
The original fluorescence image of three blood vessels inside the mouse tail. The yellow 
frame is magnified to indicate the structure of the three vessels. (B) The processed image 
given by our method. The same area was magnified as in (A). (C) The white light color 
image of the mouse tail. The three blood vessels can be clearly seen as they are close to 
the skin surface. (D) The comparison of fluorescence intensity curves at the yellow line 
indicated in the right bottom of (C). 

Furthermore, we applied the proposed method to a short video of intraoperative NIR 
fluorescence imaging acquired during a breast cancer surgery for sentinel lymph node 
mapping. The results showed that our method successfully processed the 640 360×  
pixels video in real time, and the overall resolution of lymph-vessels was enhanced with 
sharper contours (supplementary video, Fig. 8).  

 
Fig. 8. Supplementary video of NIR fluorescence imaging acquired during a breast cancer 
surgery for sentinel lymph node mapping, left: original video, right: post-processed video 
by using our method (see Visualization 1). 

 

Fig. 7. Method validation by in vivo NIR fluorescence imaging of mouse tail vessels. (A)
The original fluorescence image of three blood vessels inside the mouse tail. The yellow
frame is magnified to indicate the structure of the three vessels. (B) The processed image
given by our method. The same area was magnified as in (A). (C) The white light color
image of the mouse tail. The three blood vessels can be clearly seen as they are close to
the skin surface. (D) The comparison of fluorescence intensity curves at the yellow line
indicated in the right bottom of (C).

Furthermore, we applied the proposed method to a short video of intraoperative NIR fluores-
cence imaging acquired during a breast cancer surgery for sentinel lymph node mapping. The
results showed that our method successfully processed the 640 × 360 pixels video in real time,
and the overall resolution of lymph-vessels was enhanced with sharper contours (supplementary
video, Fig. 8).
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Fig. 8. Supplementary video of NIR fluorescence imaging acquired during a breast cancer
surgery for sentinel lymph node mapping, left: original video, right: post-processed video
by using our method (see Visualization 1).

4. Conclusions

We presented a GAN-based method that uses the total gradient loss for FI resolution enhancement.
This is a post-processing method based on enhancing the resolution of a single image. The total
gradient loss acts as a constraint to approximate the gradient of the generated image to that of the
original image. Our results suggest that our method provides a better performance with fewer
fake textures than SRGAN. However, the problem of generating false features still exists, which
is caused by the hallucinations of the networks. New methods need to be investigated to further
minimize false features after such resolution enhancement, which we will carry on in future
studies. In contrast with SRGAN, which directly processes the down-sampled images, our method
re-up-scales images to simulate photon scattering in thick tissues. The results for the resolution
plates, the original FI of the blood vessels in mouse tail and the original video of intraoperative
NIR fluorescence imaging further illustrated the applicability of the proposed method in actual
fluorescence imaging for resolution enhancement. For 1280 × 720 pixels video, the output frame
per second rate for the proposed method is 5 fps under the experimental environment in this study.
In this study, we only used the 4× scaling factor, which limited the best performance that could
be obtained in various imaging situations. Future research can focus on adding a scaling factor
estimation procedure based on the actual imaging situation to achieve an adaptive resolution
enhancement effect for the image processing.
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