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Activation of microglia commonly occurs in response to a wide
variety of pathological stimuli including trauma, axotomy, isch-
emia, and degeneration in the CNS. In the retina, prolonged or
high-intensity exposure to visible light leads to photoreceptor cell
apoptosis. In such a light-reared retina, we found that activated
microglia invade the degenerating photoreceptor layer and alter
expression of neurotrophic factors such as nerve growth factor
(NGF), ciliary neurotrophic factor (CNTF), and glial cell line-derived
neurotrophic factor (GDNF). Because these neurotrophic factors
modulate secondary trophic factor expression in Muller glial
cells, microglia-Mdller glia cell interaction may contribute to pro-
tection of photoreceptors or increase photoreceptor apoptosis.
In the present study, we demonstrate the possibility that such

functional glia—glia interactions constitute the key mechanism by
which microglia-derived NGF, brain-derived neurotrophic factor
(BDNF), and CNTF indirectly influence photoreceptor survival,
although the receptors for these neurotrophic factors are absent
from photoreceptors, by modulating basic fibroblast growth factor
(bFGF) and GDNF production and release from Muller glia. These
observations suggest that microglia regulate the microglia-Miller
glia-photoreceptor network that serves as a trophic factor-
controlling system during retinal degeneration.
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Many growth factors and neurotrophins have been shown to
promote the survival of retinal neurons. For example, intraocular
injection of brain-derived neurotrophic factor (BDNF),
neurotrophin-3 (NT-3), ciliary neurotrophic factor (CNTF), glial
cell line-derived neurotrophic factor (GDNF), or basic fibroblast
growth factor (bFGF) rescues photoreceptors in animal models
of retinal degeneration (Faktorovich et al., 1990, 1992; LaVail et
al., 1992, 1998; Cayouette et al., 1998; Chong et al., 1999; Frasson
et al.,, 1999). BDNF and N'T-3 mediate cell survival via two types
of transmembrane glycoproteins, the high-affinity trk tyrosine
kinase receptors and the low-affinity neurotrophin receptor p75
(p75™NTR) (Barbacid, 1994). On the other hand, signal transduc-
tion by CNTF requires that it bind first to CNTFRe, a receptor
anchored to the cell membrane through a glycosyl-phos-
phatidylinositol (GPI) linkage (Ip et al., 1993). The binding of
CNTF to CNTFRa leads to recruitment and dimerization of
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¢pl130 and leukemia inhibitory factor receptor (Davis et al.,
1993). GDNF and neurturin act through multicomponent recep-
tor complexes, namely the ligand-binding GPI-linked proteins
(GFRal and GFRa2) and the transmembrane protein tyrosine
kinase Ret (Baloh et al., 2000; Harada et al., 2002).

Paradoxically, BDNF and CNTF are consistently reported as
neuroprotective for photoreceptor cells, although these cells do
not express their receptors (Ugolini et al., 1995; Kirsch et al,,
1997; Harada et al., 2000). However, intraocular administration of
BDNF or CNTF activates Miiller glial cells exclusively (not
photoreceptors) (Wahlin et al., 2000). In addition, BDNF has no
direct effect on isolated photoreceptor cells (Carwile et al., 1998).
Thus, these trophic factors may protect photoreceptors, at least
partly, through Miiller glial cells (Zack, 2000; Bringmann and
Reichenbach, 2001). In fact, Miiller cells contain receptors for
most of the molecules involved in photoreceptor rescue and
become stimulated after retinal insults such as mechanical injury
(Harada et al.,, 1995; Wen et al., 1995; Yoshida et al., 1995),
ischemia (Ju et al., 1999), and light-induced degeneration (Wen et
al., 1998). We previously provided additional direct support for
such a “Miiller cell hypothesis” in that Miiller cells, acting in
response to NT-3 or nerve growth factor (NGF), respectively,
increase or decrease their production of bFGF, which in turn
results in either the protection or increased apoptosis of photo-
receptor cells (Harada et al., 2000). However, the origin of
endogenous trophic factors with which Miiller cells interact dur-
ing photoreceptor degeneration remains unclear.
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Inherited retinal degeneration is accompanied by the migration
of phagocytic cells into the outer retina where photoreceptor
degeneration occurs, and the phagocytic cells are derived from
resident microglial cells and not from peripheral macrophages
(Thanos, 1992; Roque et al., 1996). These results suggest that
microglial cells play a critical role during photoreceptor degen-
eration. However, it is still unknown whether microglia contribute
to the neuroprotection by producing neurotrophic factors or exert
a cytotoxic function by releasing reactive oxygen species, nitric
oxide, or inflammatory cytokines (Kreutzberg, 1996; Graeber et
al., 1998; Ito et al., 1998, 2001; Nakajima et al., 1998, 2001). In the
present study, we examine the effect of photoreceptor degenera-
tion on the production of neurotrophic factors in microglia and
propose a possible mechanism for communication between mi-
croglia and neighboring Miiller glia and photoreceptors. We also
examine whether the Miiller cell hypothesis holds for BDNF,
CNTF, and GDNF, as it does for NGF and NT-3 (Harada et al.,
2000).

MATERIALS AND METHODS

Experimental animals. Experiments were performed using Wistar rats,
C57BL/6J mice, and p75NT® knock-out mice (purchased from the Jack-
son Laboratory) in accordance with the ARVO statement for the Use of
Animals in Vision Research. Animals were maintained in either a 12 hr
light/dark cycle (LD 12:12) or 24 hr of constant illumination. Light
intensity inside the cages ranged from 100 to 200 lux under LD 12:12,
whereas 800-1300 lux was used for 24 hr of constant illumination to effect
light-induced retinal degeneration (Harada et al., 1996, 1998a).

Immunohistochemistry. Rats were anesthetized with diethylether and
perfused transcardially with saline, followed by 4% paraformaldehyde in
0.1 M phosphate buffer containing 0.5% picric acid at room temperature.
Rat eyes were removed and postfixed overnight in the same fixative and
then embedded in paraffin. The posterior portion of the eye was sec-
tioned sagittally at 7 wm thickness, mounted, and stained with hematox-
ylin and eosin. For immunohistochemical staining, the sections were
incubated in PBS containing 10% normal goat serum for 30 min at room
temperature. They were then incubated overnight with a microglia-
specific rabbit polyclonal antibody, ibal (1.0 ug/ml) (Graeber et al., 1998;
Ito et al., 1998, 2001; Nakajima et al., 1998) and a mouse monoclonal
antibody against ED1 (Serotec; 100X) and visualized with Cy3-
conjugated goat anti-rabbit IgG (Amersham Biosciences) and FITC-
conjugated goat anti-mouse IgG (Jackson ImmunoResearch). The sec-
tions were examined with a confocal laser scanning microscope
(Olympus).

Cell culture. Microglial cells were isolated from postnatal day (P) 35 rat
eyes reared under LD 12:12 or 24 hr of constant illumination and
cultured as described previously (Roque and Caldwell, 1993). These
culture cells were examined immunocytochemically after incubation with
the rabbit polyclonal antibody ibal (1.0 ug/ml) or a Miiller cell-specific
antibody against GLAST (1.0 ug/ml) (Harada et al., 1998b). A portion of
culture medium was used to quantify NGF (Chemicon), NT-3 (Pro-
mega), GDNF (Promega), and bFGF (R & D Systems) protein expres-
sion levels using ELISA assay kits.

Miiller cells were isolated from P35 rat eyes and cultured according to
an established protocol (Hicks and Courtois, 1990). Total RNA for PCR
was prepared from these cells that were either unstimulated or stimulated
with 100 ng/ml of recombinant BDNF, CNTF, bFGF, or GDNF for 12
hr. In some experiments (see Figs. 4, 5), these Miiller culture cells were
incubated with microglia-conditioned medium (MCM) for 12 hr. MCM
was prepared from both normal and light-damaged retina, and the final
medium change was performed 72 hr before use. Trk-specific inhibitor
K252a (Kyowa Hakko; 100 ng/ml), NT-3 blocking antibody (Chemicon;
1 pg/ml), and REX antiserum directed toward the extracellular domain
of the p75N™ (Weskamp and Reichardt, 1991) (courtesy of L. F.
Reichardt, University of California San Francisco) (diluted 1:100) were
added 30 min before MCM treatment.

Laser capture microdissection. Laser capture microdissection (LCM)
was performed as described (Harada et al., 2000). Fifty frozen sections (7
wm thick) were made from each P35 eye and stained with hematoxylin.
LCM system LM200 (Olympus) was used for laser capture. Following
the manufacturer’s protocols, samples were obtained from the outer
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nuclear layer (ONL) (see Fig. 34,B), avoiding contamination from
neighboring layers. Total RNA was extracted from the LCM samples
from three independent animals in both the normal and light-reared
groups.

Quantitative RT-PCR analysis. Complementary DNA reverse tran-
scribed from total RNA was amplified by using specific primers as shown
in the supplemental Table (available at www.jneurosci.org). Negative
controls for PCR were performed using “templates” derived from reverse
transcription (RT) reactions lacking either reverse transcriptase or total
RNA. Quantitative RT-PCR analysis was performed as reported previ-
ously (Harada et al., 1998a). To construct a standard curve, 3.75-30 ng of
total RNA was reverse transcribed, and the resulting cDNA was sub-
jected to 20 (G3PDH), 38 [NT-3, Ret, and inducible nitric oxide synthase
(iNOS)], or 32 (others) cycles of PCR. Ten microliters of each reaction
mixture were removed after each cycle during cycles 12-20 (G3PDH),
30-38 (N'T-3, Ret, and iNOS) or 24-32 (others) and electrophoresed on
a 2% Tris borate-EDTA Agarose gel. The gel was stained with ethidium
bromide to detect the bands of amplified fragments, which were quanti-
tated using a CCD image sensor (Chemilmager, Alpha Innotech). To
determine the linear range of PCR product accumulation, the results
were plotted on a semilogarithmic scale against the PCR cycle number
or on a logarithmic scale against the amount of template RNA used in
the reverse transcription reaction. On the basis of these results, subse-
quent RT-PCR analyses were performed using 15 ng total RNA with PCR
cycle numbers shown in the supplemental Table (available at www.
jneurosci.org). The intensity of the band from each gene was normalized
to the intensity of the band from G3PDH. For this purpose, the primers
for G3PDH mRNA were added to the reaction mixture after some
reactions to make its final PCR cycle number to be 18. This normalized
value was used to determine the relative expression level in each gene.

Statistics. Data are presented as mean = SEM except as noted. When
statistical analysis was performed, one-factor ANOVA was used to esti-
mate the significance of the results. Statistical significance was accepted
at p < 0.05.

RESULTS

Microglial cells migrate to the outer retina during
light-induced retinal degeneration

We first examined the distribution of microglial cells in normal
and light-degenerated rat retinas at P35. In these experiments, we
used a microglia-specific antibody that recognizes ibal, a new
member of the EF hand family of proteins that are present on
resting as well as activated and phagocytic microglia (Graeber et
al., 1998; Ito et al., 1998, 2001; Nakajima et al., 1998). Anti-ibal
recognizes microglial epitopes from a wide variety of species and
is suitable for double-labeling experiments in combination with
monoclonal markers. In normal retina, ibal immunoreactivity
was observed only in the inner part of the retina, such as the
ganglion cell layer (GCL) and the inner nuclear layer (INL) (Fig.
1A4). These immunostained cells are characteristic of “resting,”
ramified microglia (Slepko and Levi, 1996). In light-reared retina,
photoreceptor degeneration begins after P21, and approximately
half of the photoreceptor nuclei disappear by P35 (Fig. 24,B)
(Harada et al., 1998a). In such light-degenerated retina, ibal
immunoreactivity was observed in the outer as well as inner
retina (Fig. 1D). Microglial cells in the outer retina appear to
change their morphology during retinal degeneration (from hav-
ing defined processes to a more amorphous/amoeboid shape).
Thus, we next examined whether such amoeboid microglial cells
are, in fact, “activated” (Slepko and Levi, 1996; Marin-Teva et al.,
1998). For this purpose, we used a monoclonal antibody against
ED1, an intracellular marker for activated microglia in vivo
(Graeber et al., 1990). In control retina, all ibal-positive cells
were ED1 negative (Fig. 1C, arrows). However, almost all micro-
glial cells in the outer retina were double-labeled by ibal and ED1
(Fig. 1F, arrowheads), although those in the GCL and INL
remained ED1 negative (arrows) in the light-reared retina.
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Figure 1. Activation of microglia during light-induced retinal degeneration. A-F, Immunohistochemical analysis of normal (A-C) and light-reared
(D—-F) P35 rat retina using the antibodies ibal (red in A, C, D, F) and ED1 (green in B, C, E, F). In light-degenerated retina, ibal immunoreactivity
was observed in the outer retina and double-labeled with ED1 ( yellow) (F, arrowheads). G, Quantitative analysis of the ED1-positive cultured microglial
cells from normal (red bar) and light-reared ( green bar) P35 rat retina. Each data point represents the mean = SEM of the values obtained from six
independent experiments; *p < 0.05. H, I, Double-label immunocytochemistry of cultured microglial cells using the antibodies ibal (red) and ED1
(green) from normal (H) and light-reared (1) P35 rat retina. GCL, Ganglion cell layer; INL, inner nuclear layer; ONL, outer nuclear layer. Scale bars,

30 wm.

Effects of retinal degeneration on the production of
trophic factors in microglia

To examine the function of microglia during retinal degeneration,
we prepared pure cultured microglial cells from normal and
light-degenerated rat retina at P35. In culture, the number of
ED1-positive microglia increases with time (Slepko and Levi,
1996). Interestingly, in our culture system the number of ED1-
positive microglia (Fig. 1G) was greater in cultures from light-
reared retina (Fig. 17) than in those from control retina (Fig. 1H).
In addition, almost all of the cells analyzed were ibal positive
(>99%). Furthermore, by using the Miiller cell-specific antibody
against GLAST, we determined that Miiller glial cell contamina-
tion was negligible (data not shown). Using our cultured micro-
glial cells, we examined whether retinal degeneration affects the
expression levels of cytotoxic agents produced by these cells.
Because nitric oxide produced by microglial cells may injure
photoreceptors (Goureau et al., 1994; Cotinet et al., 1997), we
examined gene expression of iNOS using quantitative RT-PCR
analysis. However, we found that the level of iNOS mRNA in
microglia from degenerated retinas was not significantly different
from that of normal retinas (Table 1). We next examined the
effect of retinal degeneration on microglia with respect to the
expression of neurotrophic factors (Shimojo et al., 1991; Frade et
al.,, 1998), which may stimulate photoreceptor survival during
retinal degeneration (Faktorovich et al., 1990; LaVail et al., 1992;
Cao et al.,, 1997; Fontaine et al., 1998). RT-PCR indicated that
mRNA levels for NGF and NT-3, as well as CNTF and GDNEF,
were significantly increased in light-reared microglia relative to
normal microglia, although this was not the case for BDNF
(Table 1). On the other hand, there was an unexpected decrease
in bFGF mRNA (Table 1).

In a previous study, we found that exogenous NGF and NT-3
alter bFGF production in Miiller glial cells, which act directly on
photoreceptor survival (Harada et al., 2000). To determine
whether mRNA upregulation of NGF and NT-3 in microglial
cells (Table 1) really leads to protein upregulation, we examined
protein expression levels in culture medium by ELISA. NGF
protein expression level in light-reared culture medium was up-
regulated to 138 = 9% (n = 18) compared with that in normal

culture medium (p < 0.01). On the other hand, NT-3 protein
expression was below detectable levels in both normal and light-
reared culture medium.

We also examined GDNF and bFGF protein expression levels
in culture medium. GDNF protein expression level in light-
reared culture medium was upregulated to 189 * 23% (n = 24)
compared with that in normal culture medium (p < 0.01). On the
other hand, bFGF protein expression was slightly decreased (93 =
3%;n = 18) (p < 0.05). These results are consistent with the data
from quantitative RT-PCR analysis (Table 1).

Photoreceptors express receptors for GDNF but not
for CNTF in both normal and light-degenerated retina
Because microglial CNTF and GDNF expression is increased
during retinal degeneration (Table 1), we examined receptor
expression levels in whole retina. In light-reared P35 retina (Fig.
2B), the expression of CNTFRa (241 * 23%; n = 6), GFRal
(140 = 7%; n = 6), and GFRa2 (147 = 17%; n = 6) was
significantly upregulated compared with normal retina (Fig. 24)
reared under a 12 hr light/dark cycle (Fig. 2D,E). In addition,
gpl130 (134 £ 5%; n = 6) and LIFRB (179 = 15%; n = 6) were
also upregulated, but this was not the case for Ret (124 = 5%;n =
6) (data not shown). When rats were raised under continuous
illumination from P2 to P21, followed by LD 12:12 from P22 to
P35, retinal degeneration did not progress after P22 (Fig. 2C).
Under such conditions, only CNTFRa expression was upregu-
lated (192 = 26%; n = 6) compared with normal retina reared
under LD 12:12 (Fig. 2D,E).

Because our data indicated that CNTF and GDNF receptors
are upregulated in light-reared retina, we next determined
whether these receptors are localized to photoreceptors. We
assayed photoreceptor-specific gene expression of the receptors
CNTFRa, GFRal, and GFRa2 using laser capture microdissec-
tion. For this purpose, total RNA was extracted from cells resid-
ing in the ONL (Fig. 34,B), which is composed of photoreceptor
nuclei. However, we were unable to detect CNTFR« gene ex-
pression in the ONL (Fig. 3C, lanes 2, 3), a result that is consis-
tent with data from previous reports (Ugolini et al., 1995; Kirsch
et al.,, 1997). In contrast, GDNF receptor genes were detected in
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Figure 2. Gene expression of CNTF and GDNF receptors during light-
induced retinal degeneration. A-C, Light micrograph of retinal sections
taken from P35 rats raised under LD 12:12 (A), continuous illumination
(B), or continuous illumination to P21 followed by LD 12:12 from P22 to
P35 (C). Note the decreased photoreceptor cell number and ONL thick-
ness in B. D, E, Representative data (D) and summary (E) of quantitative
RT-PCR analysis using total RNA extracted from whole retina raised
under LD 12:12 (black bar), continuous illumination (white bar), and
continuous illumination to P21 followed by LD 12:12 from P22 to P35
(hatched bar). Each data point represents the mean = SEM of the values
obtained from six independent experiments. **p < 0.01; *p < 0.05. GCL,
Ganglion cell layer; INL, inner nuclear layer; ONL, outer nuclear layer.

both normal and light-reared ONL (Fig. 3C) (Jing et al., 1996;
Jomary et al., 1999). To assess the effect of retinal degeneration
on GFRal/a2 expression, we attempted to quantify expression
levels in both normal and light-reared retina, but found that levels

J. Neurosci., November 1, 2002, 22(21):9228-9236 9231

were too low for accurate determination. Despite this limitation
of our data, these results suggest the possibility that microglia-
derived GDNF, but not CNTF, has a direct effect on photore-
ceptor survival.

Microglia-conditioned medium decreases bFGF
production in Miiller glial cells

We demonstrated previously that retinal degeneration increases
the expression of low-affinity p75™"® in retinal Miiller glial cells,
resulting in a decrease of bFGF production and photoreceptor
apoptosis (Harada et al., 2000). In light of our results that suggest
that microglia is a potential source of NGF (Table 1), we next
examined the effect of microglia-conditioned medium on bFGF
expression in cultured Miiller cells (Fig. 44). As shown in Figure
4F, light-reared MCM (60 = 15%; n = 3) but not normal MCM
(96 = 14%; n = 3) caused a decrease in bFGF mRNA in Miiller
cells. This decrease was reversed by the addition of a p75™ TR
neutralizing antibody (111 = 5%; n = 3), but not by a trk
receptor-specific blocker (K252a) (37 = 5%; n = 3) (data not
shown). These results suggest that p75™™® is involved in the
regulation of bFGF expression in Miiller cells. To test this hy-
pothesis more definitively, we examined the effect of light-reared
MCM on bFGF production in cultured Miiller cells from p75N "R
knock-out mice (Fig. 54). As shown in Figure 5B, although
light-reared MCM significantly reduced bFGF expression in cul-
tured Miiller cells from control C57BL/6J mice (61 = 9%; n = 3),
no effect was observed in Miiller cells from p75N™® knock-out
mice (109 * 12%; n = 3). These results are consistent with the
idea that p75™™® is involved in the control of bFGF production
in Miiller cells and that a p75™™® ligand (presumably NGF)
reduces bFGF production.

Microglia-conditioned medium increases BDNF
production in Miiller glial cells

We also examined the effect of MCM on the expression of other
trophic factors in cultured Miiller cells (Fig. 4A4). Figure 4C shows
that BDNF mRNA increased in Miiller cells when cultured with
light-reared MCM (151 * 18%; n = 3) but not normal MCM
(82 £ 6%; n = 3). However, such was not the case for NGF (Fig.
4B), NT-3 (Fig. 4D), CNTF (Fig. 4E), or GDNF (Fig. 4G).
Because both trkB and p75™™® are detected in Miiller cells (von
Bartheld, 1998; Harada et al., 2000), we next examined whether
exogenous BDNF may alter the expression of secondary trophic
factors in cultured Miiller cells (Table 2). After BDNF treatment,
both CNTF and bFGF were upregulated. However, given that
CNTFRa is absent from photoreceptors (Fig. 3C), we further
examined the effect of exogenous CNTF on Miiller cells after
confirming that CNTFRa was expressed in these cells (data not
shown). Surprisingly, CNTF treatment upregulated BDNF as
well as bFGF expression in Miiller cells (Table 2). Because both
GFRal and GFRa2 genes were expressed in Miiller cells (data
not shown), we also examined the effect of exogenous GDNF on
Miiller cells and found increased expression of BDNF, GDNF,
and bFGF (Table 2). These results suggest the possibility that
microglia-derived CNTF and GDNF may increase BDNF pro-
duction in Miiller cells, resulting, in turn, in bFGF upregulation
in other Miiller cells. Taken together with the fact that GDNF
receptors are expressed in photoreceptors (Fig. 3C), microglia-
derived GDNF may act through both direct and indirect path-
ways to rescue photoreceptors during light-induced retinal
degeneration.
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Table 1. Quantification of mRNA productions in microglial cells

NGF BDNF NT-3 CNTF bFGF GDNF iNOS
Control 101 =4 100 £5 101 =8 100 = 6 101 £5 100 = 4 100 = 7
Light reared 131 £ 7% 116 £5 294 + 16* 139 + 3* 79 + 4% 140 = 5% 115 =7

mRNA productions were quantified in microglial cells from control and light-reared P35 rat retinas. For each determination, the mRNA production level in controls was
normalized to a value of 100. Results of nine independent experiments are presented as the mean = SEM. *p < 0.05 versus control (one-factor ANOVA).

CNTFRo

Lane 1 2 3

Figure 3. Expression of CNTF and GDNF receptors in P35 rat photo-
receptors. A, B, Cells residing in the ONL were extracted from normal
(A4) and light-reared (B) P35 rat retina using a laser-capture microdissec-
tion system and then processed for RT-PCR. C, RT-PCR analysis of
whole retina (lane 1) or cells in the ONL from either the control (lane 2)
or light-reared (lane 3) retina. GCL, Ganglion cell layer; INL, inner
nuclear layer; ONL, outer nuclear layer.

DISCUSSION

We have shown that retinal degeneration transforms microglia
from a resting state to one of “activation.” Degenerating photo-
receptors influence the migration of microglia from the inner to
the outer retina and alter trophic factor production in microglia
that may subsequently affect photoreceptor cell survival. Further-
more, microglia-derived factors influence the production of sec-
ondary trophic factors in another retinal glial cell type, the Miiller
cell. As summarized in Figure 6, these findings suggest that
functional interactions between microglia and Miiller glial cells
may be bidirectional and regulate photoreceptor cell survival
during retinal degeneration.
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Figure 4. Effect of microglia-conditioned medium (MCM) on trophic
factor expression in cultured Miiller glial cells. 4, Experimental protocol
for examining the effect of MCM prepared from either normal or light-
damaged P35 rat retina. Miiller cells were incubated with MCM for 12 hr,
and mRNA levels of trophic factors were determined by quantitative
PT-PCR. B-G, RT-PCR analysis of NGF (B), BDNF (C), NT-3 (D),
CNTF (E), bFGF (F), and GDNF (G). Note the upregulation of BDNF
(C) and downregulation of bFGF (F) in Miiller cells after incubation with
light-reared MCM. Each data point represents the mean + SEM of the
values obtained from three independent experiments. *p < 0.01.
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Figure 5. Effect of microglia-conditioned medium (MCM) on bFGF
expression in cultured Miiller cells from p75N™ knock-out mice. 4,
Experimental protocol for examining bFGF mRNA levels in Miiller cells
from wild-type (p75*/*) and p75™"® knock-out (p75 /") mice. Miiller
cells were incubated with MCM for 12 hr, and bFGF mRNA levels were
determined by quantitative RT-PCR. B, RT-PCR analysis of bFGF. Note
the stable bFGF expression levels in Miiller cells from p75N™® knock-out
(p75 /") mice. Each data point represents the mean = SEM of the values
obtained from three independent experiments. *p < 0.01.

Migration of microglia and microglia-derived factors
during retinal degeneration
Prolonged or high-intensity exposure to visible light leads to
photoreceptor cell apoptosis (Noell, 1980; Harada et al., 1996,
1998a, 2000; Reme et al., 1998). However, exogenous BDNF,
NT-3, CNTF, GDNF, and bFGF can delay this process (Fak-
torovich et al., 1990, 1992; LaValil et al., 1992, 1998; Cayouette et
al., 1998; Chong et al., 1999; Frasson et al., 1999). Our present
data suggest that microglia represent a potential endogenous
source of these factors (Table 2) and may be available for the
protection of photoreceptors. Although microglia increase NGF
and GDNF protein productions during retinal degeneration, the
opposite is true for bFGF. Similar results have been reported in
studies with brain microglia (Araujo and Cotman, 1992). Release
of bFGF from brain microglia is reduced by interleukin-3, epi-
dermal growth factor (EGF), and NGF but is slightly augmented
by y-interferon. Together with our present findings, these results
suggest that under conditions such as trauma and neurodegenera-
tion, in which there is an imbalance in these molecules, bFGF
production in microglial cells may be adversely affected. In addi-
tion, the presence of bFGF receptors on photoreceptors (Fon-
taine et al., 1998) implies that endogenous bFGF release from
microglia may serve diverse functions during retinal degenera-
tion. One important point is that the translational products of
bFGF mRNA lack a signal peptide sequence that would ordi-
narily direct its secretion. Although it is not fully understood,
many reports conclude that bFGF must somehow escape the cell
and indicate mechanisms for bFGF secretion (von Heijne, 1983;
Kurokawa et al., 1987; Sato and Rifkin, 1988; Klionsky et al.,
1992; Mignatti et al., 1992; Florkiewicz et al., 1995; Piotrowicz et
al., 1997; Dow and deVere White, 2000). We have determined
previously that the production and secretion of bFGF by Miiller
cells can be regulated by exogenous NGF and NT-3 (Harada et
al., 2000).

In the present study, we also examined NGF and N'T-3 protein
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release from microglia during photoreceptor degeneration. NGF
protein expression in culture medium of light-reared microglia
was higher than that of normal microglia, but NT-3 protein
expression was below detectable levels in both normal and light-
reared culture medium. These results are consistent with the data
that NGF mRNA expression level was much higher than NT-3.
The linear range of PCR product accumulation was 22-26 cycles
for NGF (data not shown), so quantification was done at 24 cycles
(see supplemental Table available at www.jneurosci.org). On the
other hand, it was 32-35 cycles for NT-3 (data not shown), and we
needed 33 cycles for quantification (see supplemental Table avail-
able at www.jneurosci.org). These results suggest that our quan-
titative RT-PCR method is truly sensitive to small changes in
mRNA levels (e.g., ~30% increase in NGF mRNA lead to ~40%
increase in NGF protein), but NT-3 mRNA upregulation did not
translate into increased release of NT-3 protein from microglial
cells in vitro. Because we measured only released N'T-3 protein in
culture medium, NT-3 protein production in microglia might be
upregulated during photoreceptor degeneration, but not released.
Another possibility is that released N'T-3 might have been con-
sumed by an autocrine mechanism.

The microglia—-Miiller glia network as a trophic factor
regulator during retinal degeneration

We demonstrated previously that trkC and p75™™® are upregu-
lated in Miiller cells during retinal degeneration and that exoge-
nous N'T-3 increases bFGF production in Miiller cells by activat-
ing trkC, whereas exogenous NGF decreases bFGF production by
activating p75NT™® (Harada et al., 2000). In this context,
microglia-derived NT-3 and NGF appear to function in opposi-
tion to each other. However, the concentration of microglia-
released NGF is much higher than that of NT-3, and light-reared
MCM decreases bFGF expression in cultured Miiller cells (Fig.
4F). In addition, light-reared MCM had no effect on cultured
Miiller cells taken from p75NT® knock-out mice (Fig. 5). These
results suggest that the NGF pathway predominates over the
NT-3 pathway during retinal degeneration in vivo. Frade et al.
(1996) demonstrated previously that NGF causes retinal apopto-
sis during development by activating p75™"®. Subsequently,
these workers identified microglia as the source of apoptotic NGF
in the developing chick retina (Frade and Barde, 1998). Together
with our present findings, these results suggest that activated
microglia may also be the source of apoptotic NGF in the degen-
erating adult retina (Fig. 6).

BDNF and CNTF may stimulate photoreceptor survival via
the microglia-Miiller glia network (Fig. 6) because their appro-
priate receptors are absent from photoreceptors (Fig. 3). In
addition, microglia-derived GDNF may participate in both direct
and indirect pathways for photoreceptor rescue. Interestingly,
Miiller cells treated with GDNF exhibit increased expression of
BDNF, bFGF, and GDNF (Table 2). Although enhanced expres-
sion of GDNF in response to GDNF treatment may seem odd, a
similar observation was reported for bFGF (Cao et al., 1997). We
also found that exogenous bFGF upregulates bFGF mRNA
(207 £ 16%; n = 6) in Miiller cells (data not shown). Further-
more, in Miiller cells, BDNF treatment increases CNTF expres-
sion, and vice versa (Table 2). Because the binding of BDNF,
CNTF, and GDNF to their receptors results in tyrosine phos-
phorylation of cellular substrates, microglia—Miiller glia cell in-
teractions may work as a regulator for these trophic factors by
using both paracrine and autocrine systems (Fig. 6).

One important issue is the sensitivity of LCM in detecting
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Table 2. Quantification of mRNA productions in Miiller glial cells

Control BDNF treated CNTF treated GDNPF treated
NGF 100 =2 120 =7 83+ 8 82 +5
BDNF 101 =5 102 =7 260 *+ 4* 127 + 4%
NT-3 101 =6 95+ 8 117 = 10 895
CNTF 100 = 3 149 = 7* 98 +5 110 = 7
bFGF 101 =4 129 + 4* 162 = 12* 153 = 5%
GDNF 100 = 5 108 = 6 98 + 4 145 + 6*

mRNA productions were quantified in control, BDNF-, CNTF-, and GDNF-treated rat Miiller glial cells. For each determination, the mRNA production level in controls
was normalized to a value of 100. Results of nine independent experiments are presented as the mean = SEM. *p < 0.05 versus control (one-factor ANOVA).
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Figure 6. Model for the microglia—Miiller glia network in light-
degenerated retina. Microglial cells constitutively release various agents
that may affect surrounding retinal cells. In light-degenerated retina,
reduced bFGF may induce photoreceptor apoptosis, but increased
GDNF may directly rescue photoreceptors (middle). Microglia-derived
GDNF and CNTF increase BDNF and bFGF, whereas BDNF increases
CNTF and bFGF production in Miiller cells, which may enhance photo-
receptor rescue (right). On the other hand, microglia-derived NGF re-
duces bFGF production in Miiller cells, which in turn may induce pho-
toreceptor apoptosis (lef?).

photoreceptor-specific trophic factor receptor mRNAs (Fig. 3).
Although a recent study demonstrated trkB protein in cone
photoreceptors (Di Polo et al., 2000), we could not identify trkB
mRNA in photoreceptors isolated by LCM (Harada et al., 2000).
This suggests the possibility that our method is insufficient to
identify trkB mRNA in cone photoreceptors. In this regard, we
note that previous reports were also unable to demonstrate trkB
mRNA in photoreceptors by in situ hybridization (Jelsma et al.,
1993; Perez and Caminos, 1995; Gao et al., 1997; Suzuki et al.,
1998; Rohrer et al., 1999). Rohrer et al. (1999) recently demon-
strated that signaling paths between trkB-expressing retinal cells
(ganglion, amacrine, horizontal, retinal pigment epithelium, and

Miiller glial cells) and the photoreceptors are required for normal
photoreceptor development because photoreceptors do not nor-
mally express trkB receptors. Although we have to consider the
possibility that photoreceptors may express low levels of trkB and
CNTFRa proteins, these results still support the importance of
the glia—neuron network in the retina.

Glia—-glia and glia-neuron networks as a new
therapeutic target for neurodegeneration

Activated microglial cells are observed in various pathological
conditions caused by trauma and ischemia and are also involved
in pathophysiologies of the CNS, including Alzheimer’s disease
and AIDS (Kreutzberg, 1996; McGeer and McGeer, 1998; Stoll
and Jander, 1999; Le et al., 2001; Nakajima and Kohsaka, 2001).
Migration of microglia is thought to be regulated by various
factors such as extracellular pH (Faff and Nolte, 2000), nitric
oxide (Chen et al., 2000), hepatocyte growth factor (Badie et al.,
1999), EGF (Nolte et al., 1997), chemokines (Asensio et al., 1999;
Cross and Woodroofe, 1999; Hesselgesser and Horuk, 1999;
Maciejewski-Lenoir et al., 1999), and NMDA-induced degener-
ation (Heppner et al., 1998) to name a few. Thus, by controlling
these factors through intervention, microglial migration may be
suppressed to an extent sufficient to prevent neural cell apoptosis
in various neurological diseases. However, at the same time, such
strategies may inhibit the direct neuroprotective effect by
microglia-derived factors. Thus it is clear that further investiga-
tion is necessary to reveal the functional importance of microglial
migration during neurodegeneration.

Our present results suggest that although degeneration is a
multicellular and multifactorial process, the functional glia—glia
network may provide a new therapeutic target for the treatment
of neurodegeneration. The primary function of neurotrophic
factors is sustaining the viability of neurons, a process that is
counterbalanced by a receptor mechanism that eliminates cells by
apoptosis. Such bidirectional control may be used selectively
during development and neurodegenerative diseases (Yano and
Chao, 2000). Thus, treatment strategies that reinforce survival
pathways (Fig. 6, blue arrows) or weaken apoptotic pathways (Fig.
6, red arrows) may be useful for the prevention of neurodegen-
erative diseases. Because apoptotic cell death is the final common
pathway for photoreceptors in all animal models of retinitis
pigmentosa and light-induced retinal degeneration (Steele and
O’Tousa, 1990; Chang et al., 1993; Portera-Cailliau et al., 1994;
Papermaster and Windle, 1995; Reme et al., 1998; Travis, 1998;
Alloway et al., 2000; Harada et al., 2000; Kiselev et al., 2000), the
present results raise intriguing possibilities for the management
of these pathological conditions by controlling the activity of the
microglia—Miiller glia—photoreceptor network.
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