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The most common type of epilepsy in adults is temporal lobe
epilepsy. After epileptogenic injuries, dentate granule cell axons
(mossy fibers) sprout and form new synaptic connections.
Whether this synaptic reorganization strengthens recurrent in-
hibitory circuits or forms a novel recurrent excitatory circuit is
unresolved. We labeled individual granule cells in vivo, recon-
structed sprouted mossy fibers at the EM level, and identified
postsynaptic targets with GABA immunocytochemistry in the
pilocarpine model of temporal lobe epilepsy. Granule cells pro-
jected an average of 1.0 and 1.1 mm of axon into the granule
cell and molecular layers, respectively. Axons formed an aver-
age of one synapse every 7 �m in the granule cell layer and
every 3 �m in the molecular layer. Most synapses were with
spines (76 and 98% in the granule cell and molecular layers,
respectively). Almost all of the synapses were with GABA-

negative structures (93 and 96% in the granule cell and molec-
ular layers, respectively). By integrating light microscopic and
EM data, we estimate that sprouted mossy fibers form an
average of over 500 new synapses per granule cell, but �25 of
the new synapses are with GABAergic interneurons. These
findings suggest that almost all of the synapses formed by
mossy fibers in the granule cell and molecular layers are with
other granule cells. Therefore, after epileptogenic treatments
that kill hilar mossy cells, mossy fiber sprouting does not simply
replace one recurrent excitatory circuit with another. Rather, it
replaces a distally distributed and disynaptic excitatory feed-
back circuit with one that is local and monosynaptic.
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Temporal lobe epilepsy is the most common type of epilepsy in
adults (Engel et al., 1997). The recurrent excitation hypothesis of
temporal lobe epilepsy proposes that, after epileptogenic injuries,
granule cell axons (mossy fibers) reorganize and establish an
abnormal recurrent excitatory circuit that generates seizure ac-
tivity through positive feedback between granule cells (Nadler et
al., 1980; Tauck and Nadler, 1985). Data supporting the recurrent
excitation hypothesis include evidence that mossy fibers invade
the granule cell layer and molecular layer of the dentate gyrus
(regions mossy fibers normally avoid) in tissue from patients (de
Lanerolle et al., 1989; Sutula et al., 1989; Houser et al., 1990;
Babb et al., 1991; Isokawa et al., 1993; Franck et al., 1995;
Masukawa et al., 1995; Zhang and Houser, 1999) and models of
temporal lobe epilepsy (Cronin and Dudek, 1988; Sutula et al.,
1988, 1998; Mello et al., 1993; Represa et al., 1993; Okazaki et al.,
1995; Buckmaster and Dudek, 1997b; Kotti et al., 1997; Wenzel et
al., 2000). Electron microscopic analyses suggest that at least
some of the new synaptic contacts formed by sprouted mossy
fibers are with granule cell dendrites (Frotscher and Zimmer,
1983; Babb et al., 1991; Represa et al., 1993; Franck et al., 1995;
Okazaki et al., 1995; Zhang and Houser, 1999; Wenzel et al.,
2000).

In contrast to the recurrent excitation hypothesis, the recurrent
inhibition hypothesis proposes that sprouted mossy fibers prefer-
entially synapse with inhibitory interneurons rather than with

granule cells. The cell bodies and dendrites of inhibitory inter-
neurons appear to be contacted by more mossy fiber terminals
after axon reorganization (Sloviter, 1992; Kotti et al., 1997). If
this hypothesis is correct, mossy fiber sprouting may be a homeo-
static mechanism to control hyperexcitability by enhancing recur-
rent inhibition in the dentate gyrus.

Thus, currently available data are consistent with both the
recurrent excitation and recurrent inhibition hypotheses. The net
effect of mossy fiber sprouting will depend on the number of
synapses made with each cell type: granule cells versus GABAer-
gic interneurons. To address this issue, we measured the axon
length and synaptic density and examined the ultrastructure and
neurochemistry of the postsynaptic targets of sprouted mossy
fibers in a model of temporal lobe epilepsy.

MATERIALS AND METHODS
Animals. All experiments were approved by the Stanford University
Institutional Animal Care and Use Committee and performed in accor-
dance with the National Institute of Health Guide for the Care and Use of
Laboratory Animals. Sprague Dawley male rats (2 months old) were
treated with pilocarpine (380 mg/kg, i.p.) 20 min after atropine methyl-
bromide (5 mg/kg, i.p.). Diazepam (10 mg/kg, i.p.) was administered 2–3
hr after the onset of status epilepticus and repeated as needed. Rats were
video monitored for seizure activity 40 hr/week. Their first observed
spontaneous seizure occurred 45 � 7 d (mean � SEM) after status
epilepticus, and they were used in an experiment 45 � 19 d after their
first observed seizure.

Intracellular labeling. We chose to intracellularly label granule cells in
vivo rather than in hippocampal slices, because the in vivo technique
permits labeling of the entire axon arbor of the cell, and it provides
superior tissue preservation for ultrastructural analyses and immunocy-
tochemical labeling. The methods used for in vivo intracellular labeling of
granule cells have been described previously (Buckmaster and Dudek,
1999). Cells were labeled with biocytin by passing 300 msec pulses of
0.1–0.3 nA hyperpolarizing current, 50% duty cycle, for an average of 16
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min. The rat was then killed by urethane overdose (2.5 gm/kg, i.p.) and
perfused through the ascending aorta at 30 ml/min with 0.9% NaCl for
1 min and 2.5% paraformaldehyde and 1% glutaraldehyde in 0.1 M
phosphate buffer (PB), pH 7.4, for 30 min. The brain was removed,
hemisected, postfixed overnight, and then cryoprotected in 30% sucrose
in 0.1 M PB.

Tissue processing. The hippocampus was isolated, straightened, frozen,
and sectioned perpendicular to the septotemporal axis with a microtome
set at 40 �m. The methods used for the Timm’s stain were similar to
those described previously (Buckmaster and Dudek, 1997b). For biocytin
processing, serial sections were collected in 0.1 M Tris buffer (TB), pH
7.4, and treated with 1% sodium borohydride for 30 min and 1%
hydrogen peroxide for 2 hr. After rinsing, sections were placed in
blocking solution consisting of 2% bovine serum albumin (BSA), 0.25%
DMSO, and 0.05 M Tris-buffered saline (TBS), pH 7.4, for 1 hr. Sections
incubated in avidin–biotin–horseradish peroxidase complex (1:250; Vec-
tor Laboratories, Burlingame, CA) in 0.5% BSA, 0.25% DMSO, and 0.05
M TBS at 4°C for 86 hr. After thorough washing in TB, sections were
exposed to 0.04% diaminobenzidine and 0.05% NiCl for 15 min. Hydro-
gen peroxide was added to result in a 0.0025% solution, and sections were
reacted for 1 hr. The reaction was stopped in washes of TB. Sections were
postfixed with 1% OsO4 in sodium cacodylate buffer for 1 hr, dehydrated
in a series of ethanols, placed in propylene oxide, gradually transferred
to pure Araldite/Eponate-12 (Ted Pella, Redding, CA), and flat embed-
ded between sheets of ACLAR at 60°C for 24 hr.

The axon arbors of nine granule cells were drawn with a camera lucida,
and two-dimensional axon lengths were measured from the drawings
with respect to position within strata of the dentate gyrus. Axon arbors
of two of the nine cells were also reconstructed three-dimensionally with
a Neurolucida system (MicroBrightField, Colchester, VT). Axon lengths
measured two-dimensionally were adjusted for three-dimensionality by a
correction factor (1.25), which was determined using values from the cells
analyzed both ways. Axon lengths were adjusted for tissue shrinkage
using previously determined shrinkage factors (1.06� in the transverse
plane and 1.96� in the z-axis) (Buckmaster and Dudek, 1999).

Electron microscopy. After light microscopic analysis, biocytin-labeled
axon segments in the granule cell layer and molecular layer were selected
for ultrastructural analysis. Selected regions were remounted on a blank
Araldite/Eponate-12 block. From each thick section, �500 serial ultra-
thin sections (80 nm) were made (Reichert Ultracut S; Leica, Vienna,
Austria) and collected on single-slot nickel grids coated with support
film. For postembedding GABA immunocytochemistry, sections were
etched with 0.5% periodic acid for 30 min and 7% sodium metaperiodate
for 30 min. Sections were exposed to blocking solution consisting of 0.8%
ovalbumin and 5% fetal calf serum in 0.05 M TBS, pH 7.6, for 1 hr. After
sections were incubated overnight in rabbit anti-GABA serum (1:80) in
blocking solution, they were gently rinsed and then incubated in anti-
rabbit colloidal gold (10 nm diameter, 1:80; Ted Pella) in 0.1% Triton
X-100 and 0.05 M TB, pH 8.2, for 90 min. After rinsing, sections were
stained with 2% uranyl acetate for 6 min and Sato’s lead stain for 4 min.
All chemicals and reagents were from Sigma (St. Louis, MO) unless
specified otherwise.

Using a transmission electron microscope (Jeol 100CX; Jeol, Peabody,
MA), the biocytin-labeled axon collateral and surrounding structures
were photographed. Sections processed for postembedding GABA im-
munocytochemistry were checked for positive controls on a batch-by-
batch basis. A batch of sections was included for immunocytochemical
analysis only if specifically GABA-labeled aspiny dendrites were found in
the molecular layer.

Axon segments were three-dimensionally reconstructed from electron
micrographs using Neurolucida software (MicroBrightField) and a data
tablet (Summagraphics, Seymour, CT). Low-magnification
(1800–18,500�) prints at intervals of �50 sections were used to align
biocytin-labeled profiles with surrounding landmarks, such as granule
cell nuclei. Serial high-magnification (39,600–58,300�) prints were used
to reconstruct axon segments. The number of high-magnification prints
greatly exceeded the number of sections, because axon segments snaked
up and down and sometimes extended longitudinally within a section so
that montages of multiple prints had to be assembled. Axon length was
measured only from reconstructed segments; gaps in the reconstruction
were not included.

The criteria used to identify ultrastructural profiles have been de-
scribed previously (Gray, 1959; Peters et al., 1991; Buckmaster et al.,
1996, 2002). Briefly, synapses were identified by cleft material between
parallel membranes of a vesicle-filled biocytin-labeled presynaptic ele-

ment and a postsynaptic element with a postsynaptic density. Sometimes
it was difficult to determine whether or not a synaptic contact was
present, because the plane of section was not always perpendicular to the
plane of the apposed cell membranes. In those cases, the specimen holder
of the electron microscope was tilted to check suspected synapses, and
�30% of them were synaptic contacts. Dendritic shafts were identified by
morphological features of dendrites, including microtubules and mito-
chondria. Dendritic spines were identified by morphological features of
spines, including a spine apparatus and continuity with a dendritic shaft.

RESULTS
Sprouted mossy fiber length
In control tissue, mossy fibers are confined to the hilus and CA3
region, but, in epileptic tissue, mossy fibers project into the
granule cell layer and inner one-third of the molecular layer. This
axon reorganization is revealed by the Timm’s stain, which labels
black the zinc-rich mossy fiber terminals (Fig. 1). Previous studies
have shown that, in rat models of temporal lobe epilepsy, indi-
vidual granule cells have sprouted mossy fiber collaterals that
extend an average summed length of �1 mm in the granule cell
layer and �1 mm in the molecular layer (Sutula et al., 1998;
Buckmaster and Dudek, 1999). Our findings confirm these re-
sults. In six epileptic rats, nine granule cells were labeled: two in
the superior blade, two at the apex, and five in the inferior blade
of the granule cell layer. In the granule cell layer, the average
axon length per cell was 1.01 � 0.41 mm (mean � SEM), and, in
the molecular layer, it was 1.12 � 0.59 mm. All of the labeled
granule cells had only one primary axon arising from the soma.
Therefore, all of the sprouted axons that projected into the
granule cell layer and molecular layer were collaterals and not
new primary axons. We cannot exclude the possibility that axon
arbors were incompletely labeled with biocytin, but this seems
unlikely. All of the cells had darkly labeled dendrites, dendritic
spines, and axons, including fine collaterals and a primary branch
that projected to the distal CA3 region.

Sprouted mossy fibers preferentially synapse with
dendritic spines
Granule cells have spiny dendrites unlike many inhibitory inter-
neurons in the dentate gyrus (Ramón y Cajal, 1995). If sprouted
mossy fibers preferentially synapse with granule cells, one would
expect to find a high proportion of synapses with dendritic spines.

Figure 1. Timm’s-stained sections of the hippocampus in a control (a, c)
and a pilocarpine-induced epileptic rat (b, d). Boxed regions in a and b are
shown at higher magnification in c and d, respectively. Black mossy fiber
terminals are evident in the granule cell layer ( gcl ) and inner one-third of
the molecular layer (ml ) in the epileptic but not the control rat.
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On the other hand, if sprouted mossy fibers preferentially synapse
with inhibitory interneurons, one would expect to find a high
proportion of synapses with dendritic shafts. To identify synapses
and postsynaptic ultrastructure, segments of sprouted mossy fi-
bers were reconstructed at the EM level (Fig. 2). Many synaptic
contacts were found along the reconstructed axon segments. Al-
though there was variability in the size of the postsynaptic den-
sities, the vast majority of synapses formed by sprouted mossy
fibers were clearly asymmetric (type 1) synaptic contacts (Fig. 3a).
From six epileptic rats, eight sprouted mossy fibers were recon-
structed for a summed length of 312 �m in the granule cell layer
and 973 �m in the molecular layer (Fig. 4). In addition, three axon
segments were examined for synaptic contacts but were not re-
constructed. The proportion of synapses formed with dendritic
spines versus dendritic shafts was measured (Table 1). In the
granule cell layer, 45 synaptic contacts were identified: 76% with
dendritic spines and 24% with dendritic shafts. In the molecular
layer, 471 synaptic contacts were identified: 93% with dendritic
spines and 7% with dendritic shafts. The proportion of synapses
formed with dendritic spines was significantly higher in the mo-
lecular layer than in the granule cell layer ( p � 0.005; �2 test).
These findings suggest that sprouted mossy fibers preferentially
synapse with spiny granule cells. However, some classes of inhib-
itory interneurons in the dentate gyrus do have spines (Halasy
and Somogyi, 1993; Sik et al., 1996; Acsády et al., 1998; Buck-
master et al., 2002). Therefore, some of the synapses with spines
might have been with inhibitory interneurons and not granule
cells. In addition, granule cells could receive excitatory synaptic
contacts on their dendritic shafts. Therefore, some of the syn-
apses with shafts (Fig. 3b) might have been with spiny granule
cells and not interneurons. To address these issues, we used
postembedding GABA immunocytochemistry to evaluate the
neurochemical identity of the synaptic targets of sprouted mossy
fibers.

Sprouted mossy fibers preferentially synapse with
GABA-negative dendritic spines
Inhibitory interneurons synthesize and express the neurotrans-
mitter GABA (Ribak et al., 1978; Sloviter and Nilaver, 1987), and
their cell bodies and dendrites are GABA-positive (Halasy and
Somogyi, 1993). Granule cells usually are not GABA positive
(Sloviter and Nilaver, 1987), but, under special circumstances,
they may be (Sloviter et al., 1996). In our material, all granule
cells appeared to be GABA-negative. However, if some did have
GABA-positive dendrites, we would have overestimated the num-
ber of synapses formed by sprouted mossy fibers with interneu-
rons. Specifically GABA-labeled aspiny dendrites were identified
in the molecular layer of each batch of immunolabeled sections.
In addition, whenever GABA-negative postsynaptic targets were

Figure 2. EM reconstruction of a sprouted mossy fiber in an epileptic rat.
a, A granule cell labeled with biocytin in vivo in an epileptic rat. Photo-
graph of section containing the soma (a1) and a light-microscopic recon-
struction (a2) of the cell. Dendrites are thick; axon is thin. All of the axon
shown in this reconstruction is within the dentate gyrus, and most is
within the hilus. Several sections away from the soma, an axon collateral
projected from the hilus through the granule cell layer and into the

4

molecular layer. A segment of that axon collateral (box) was selected for
reconstruction at the EM level. h, Hilus; gcl, granule cell layer; ml,
molecular layer. b, Photograph of the selected axon segment. c1, EM
reconstruction of the selected axon segment (black). Gray contours indi-
cate cell nuclei that were used as landmarks. The area in the box is shown
at high magnification in d. c2, Side view of three-dimensionally recon-
structed axon segment demonstrating how the axon projected through the
thickness of the section. d1, Magnified view of boxed region in c1 dem-
onstrates that the reconstructed axon segment consists of aligned serial
contours ( gray) that outlined biocytin-labeled axon profiles in serial
electron micrographs. The black contour outlined the biocytin-labeled
axon (black) in d2, which forms a synapse (arrowhead) with a dendritic
spine.
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identified, other GABA-positive structures were evident in the
same section (Fig. 5a). Adjacent sections were examined to verify
neurochemical identity of postsynaptic targets. These positive
controls reduced the likelihood of false-negative results.

Sprouted mossy fibers formed asymmetric synaptic contacts

with GABA-negative and GABA-positive postsynaptic targets
(Fig. 5). The proportion of synapses formed with GABA-negative
versus GABA-positive targets was measured from a subset of the
reconstructed sprouted mossy fibers described above (Table 1).
From three epileptic rats, four reconstructed sprouted mossy
fibers had a summed length of 173 �m in the granule cell layer
and 585 �m in the molecular layer (Fig. 6). In addition, another
three axon segments from three different rats were examined for
synaptic contacts but were not reconstructed. In the granule cell
layer, 30 synaptic contacts were identified: 93% with GABA-
negative targets and 7% with GABA-positive targets. In the
molecular layer, 366 synaptic contacts were identified: 96% with
GABA-negative targets and 4% with GABA-positive targets.
These findings indicate that sprouted mossy fibers preferentially
synapse with GABA-negative dendritic spines. For sprouted
mossy fibers in both the granule cell layer and molecular layer,
67% of the postsynaptic dendritic shafts and 98% of the postsyn-
aptic dendritic spines were GABA-negative.

Number of new synapses
Synaptic density was measured from the EM reconstructions of
sprouted mossy fibers (Figs. 4, 6). For the eight reconstructed
axon segments in the molecular layer, an average of one synapse
was formed per 3 �m (0.17–0.43 synapses/�m). For the five
reconstructed axon segments in the granule cell layer, an average
of one synapse was formed every 7 �m (0.10–0.22 synapses/�m).
Synaptic density was significantly higher in the molecular layer
than in the granule cell layer ( p � 0.002; t test). Most presynaptic
profiles formed only one synapse, but it was not uncommon to
find a large presynaptic bouton that formed multiple synapses.
Only very rarely could we verify multiple synaptic contacts be-
tween a sprouted mossy fiber and a postsynaptic neuron. How-
ever, this was difficult to determine, because postsynaptic neurons
were not labeled individually.

Integrating our light microscopic data on sprouted mossy fiber
length per granule cell with our EM data on synaptic density, we
estimate that the average granule cell formed 140 new synapses in
the granule cell layer and 370 new synapses in the molecular layer.
Furthermore, we estimate that �88% of the new synapses were
with dendritic spines and �95% were with GABA-negative
targets.

DISCUSSION
Previous studies provide evidence that sprouted mossy fibers
synapse with spines of excitatory granule cells (Frotscher and
Zimmer, 1983; Represa et al., 1993; Franck et al., 1995; Okazaki
et al., 1995; Zhang and Houser, 1999; Wenzel et al., 2000).
However, other studies suggest that sprouted mossy fibers pref-
erentially synapse with inhibitory interneurons (Sloviter, 1992;
Kotti et al., 1997). We addressed this unsettled issue by intracel-
lularly labeling granule cells in epileptic rats in vivo, reconstruct-
ing sprouted axon segments at the EM level, identifying postsyn-
aptic targets with GABA immunocytochemistry, and quantifying
the number of new synapses formed by sprouted mossy fibers. We
found that sprouted mossy fibers synapse almost exclusively with
GABA-negative dendritic spines.

Granule cells are the predominant synaptic target of
sprouted mossy fibers
It is highly likely that sprouted mossy fibers synapsed with the
GABA-negative dendritic spines of granule cells. Granule cells
are the predominant GABA-negative neurons in the dentate
gyrus, and their spiny dendrites project through the granule cell

Figure 3. Sprouted mossy fibers synapsed with dendritic spines and
dendritic shafts. a, A biocytin-labeled axon (black) in the molecular layer
formed synapses (arrowheads) with a large and a small spine. b, A
biocytin-labeled axon (black) in the molecular layer formed a synapse
(arrowhead) with the shaft of a spiny (arrows) dendrite.
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layer and into the molecular layer in which they extend and
ramify (Ramón y Cajal, 1995). Hilar mossy cells, like granule
cells, are GABA-negative (Soriano and Frotscher, 1994), but, in
rats, mossy cell dendrites are mostly confined to the hilus and only
occasionally extend into the molecular layer (Amaral, 1978).
There are GABA-negative cholinergic neurons in the dentate
gyrus, but they are extremely rare (Frotscher et al., 2000). There-
fore, granule cells account for the vast majority of GABA-
negative neuronal structures in the granule cell layer and molec-
ular layer.

Only 4% of the synaptic contacts examined were with GABA-
immunoreactive neurons. This finding suggests that sprouted

mossy fibers only occasionally synapsed with inhibitory interneu-
rons. The Timm’s stain has been used to demonstrate appositions
and synaptic contacts between mossy fiber terminals and basket
cells in the granule cell layer of control (Ribak and Peterson,
1991) and epileptic (Sloviter, 1992; Kotti et al., 1997) rats. Qual-
itatively, it appears that basket cells receive more synaptic input
from Timm’s-positive terminals after mossy fiber sprouting (Slo-
viter, 1992; Kotti et al., 1997). Quantitative analyses are needed,
but this finding suggests that basket cells may receive more direct
synaptic input from granule cells after mossy fiber sprouting.
However, it does not necessarily follow that basket cells receive
more excitatory synaptic contacts, because Timm’s-positive inputs

Figure 4. Sprouted mossy fibers synapsed preferentially with dendritic spines. Reconstructed sprouted mossy fibers with synaptic contacts indicated by
markers. Squares indicate that the postsynaptic target was a dendritic spine; circles indicate a dendritic shaft. The identity of each reconstruction (rat and
segment) corresponds to Table 1. Borders between strata (h, hilus; gcl, granule cell layer; ml, molecular layer) are indicated by lines.

Table 1. EM-reconstructed sprouted mossy fibers in epileptic rats

Rat and
segment

Molecular layer (# synapses) Granule cell layer (# synapses)

Length
(�m) Spine Shaft

GABA
negative

GABA
positive

Length
(�m) Spine Shaft

GABA
negative

GABA
positive

1A 84 32 4 32 4 42 6 0 6 0
1B 297 98 11 99 3 122 14 3 16 1
2 97 41 0 40 1 9 1 1 1 1
3 107 32 4 30 4 – – – – –
4A 157 23 3 – – 79 7 2 – –
4B 41 13 2 – – – – – – –
5A 97 20 3 – – – – – – –
6A 93 28 4 – – 60 2 4 – –
6B – 70 3 73 0 – 2 1 3 0
5B – 33 0 33 0 – 2 0 2 0
4C – 47 0 46 1 – – – – –

Total 973 437 34 353 13 312 34 11 28 2
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may have only replaced Timm’s-negative excitatory inputs that
were lost during epileptogenic injuries. Regardless of the changes
in excitatory synaptic input to basket cells, our findings suggest
that, for each new synapse formed by a sprouted mossy fiber with
a GABA-positive neuron, �20 new synapses are formed with
granule cells.

Functional implications
Our findings support the hypothesis that granule cell axon reor-
ganization produces a novel recurrent excitatory network that
might generate seizures in patients and models of temporal lobe
epilepsy (Nadler et al., 1980; Tauck and Nadler, 1985). According
to that hypothesis, sprouted mossy fibers replace the excitatory
synaptic input to granule cell proximal dendrites that is lost after
hilar mossy cells are killed by epileptogenic injuries. Mossy cells
are the predominant neuron in the hilus (Amaral, 1978; Buck-
master and Jongen-Rêlo, 1999). In patients and models of tem-
poral lobe epilepsy, the loss of hilar neurons is correlated with the
extent of mossy fiber sprouting (Babb et al., 1991; Masukawa et
al., 1995; Buckmaster and Dudek, 1997b; Nissinen et al., 2001).
Like sprouted mossy fibers, axons of mossy cells are glutamater-
gic, and they synapse almost exclusively with GABA-negative
dendritic spines in the granule cell layer and molecular layer
(Buckmaster et al., 1996; Wenzel et al., 1997). However, sprouted
mossy fibers project locally (within 400 �m of the parent cell
body) (Sutula et al., 1998; Buckmaster and Dudek, 1999), whereas
mossy cell axons project distally (beyond 600 �m of the parent
cell body) before making the vast majority of their synaptic
contacts (Buckmaster et al., 1996). Therefore, the loss of mossy
cells and the sprouting of mossy fibers does not simply replace
one recurrent excitatory network with another. Rather, it replaces
a distally distributed and disynaptic excitatory feedback circuit
with one that is local and monosynaptic. Previous slice experi-
ments provide functional evidence of recurrent excitation be-
tween granule cells after mossy fiber sprouting in models of
temporal lobe epilepsy (Wuarin and Dudek, 1996, 2001; Molnár
and Nadler, 1999; Lynch and Sutula, 2000). In addition, mossy
fiber sprouting brings synaptically releasable zinc into the granule
cell layer and molecular layer where it might diffuse to inhibitory
synapses and impair GABAA receptor-mediated inhibition (Buhl
et al., 1996; Shumate et al., 1998).

The consequences of synaptic reorganization in the dentate
gyrus may be especially dire. It has been proposed that normally
the dentate gyrus acts like a gate and prevents seizures by filtering
neuronal activity between highly seizurogenic regions in the
hippocampus and entorhinal cortex (Stringer et al., 1989; Loth-
man et al., 1991). In kainate-induced epileptic rats, however, the
threshold for maximal dentate activation is increased, not de-
creased (Buckmaster and Dudek, 1997a). Nevertheless, the for-
mation of a novel excitatory feedback circuit between granule
cells may reduce the filtering capability of the dentate and in-
crease its propensity to amplify neuronal activity and propagate
seizures through the hippocampus and to other limbic structures.

Our findings support the recurrent excitation hypothesis, but
many questions persist. Mossy fiber sprouting apparent as aber-
rant Timm’s staining in the granule cell layer and molecular layer
is a common finding in patients and models of temporal lobe
epilepsy. The extent of aberrant Timm’s staining, however, does
not correlate with seizure frequency (Buckmaster and Dudek,
1997b; Timofeeva and Peterson, 1999; Nissinen et al., 2001).
Longo and Mello (1997, 1998) reported that, in models of tem-
poral lobe epilepsy, treatment with cycloheximide blocks mossy

Figure 5. Sprouted mossy fibers synapsed with GABA-negative and
GABA-positive targets. a, A biocytin-labeled axon (black) formed synap-
tic contacts (arrowheads) with two GABA-negative spines. Nearby
GABA-positive structures were labeled with 10-nm-diameter colloidal
gold particles, and a GABA-positive axon terminal formed a symmetric
synapse (arrow) with a granule cell body. b, A biocytin-labeled axon
(black) in the molecular layer formed a synaptic contact (arrowhead) with
a GABA-positive dendritic shaft.
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fiber sprouting, but the rats develop epilepsy nevertheless. How-
ever, other investigators have not been able to replicate that
controversial result (Williams et al., 2002). Mossy fiber sprouting
is likely to be one of many factors that contribute to temporal lobe

epileptogenesis. Some other likely contributors include changes
in neurotransmitter expression by granule cells (Shumate et al.,
1998), altered patterns of synaptic input from the entorhinal
cortex after layer III neuron loss (Du et al., 1993), and the loss of

Figure 6. Sprouted mossy fibers synapsed preferentially with GABA-negative dendritic spines. Reconstructed sprouted mossy fibers with synaptic
contacts indicated by markers. Squares indicate that the postsynaptic target was a dendritic spine; circles indicate a dendritic shaft. Open markers indicate
that the postsynaptic target was GABA-negative; filled markers indicate GABA-positive. The identity of each reconstruction (rat and segment)
corresponds to Table 1. Borders between strata (h, hilus; gcl, granule cell layer; ml, molecular layer) are indicated by lines.

6656 J. Neurosci., August 15, 2002, 22(15):6650–6658 Buckmaster et al. • Epilepsy-Related Excitatory Synaptogenesis



GABAergic interneurons in the dentate gyrus (de Lanerolle et
al., 1989; Sloviter et al., 1991; Mathern et al., 1995; Zhu et al.,
1997; Maglóczky et al., 2000).

Another persistent question is the effect of mossy fiber sprout-
ing within the hilus. The summed length per granule cell of mossy
fiber collaterals within the hilus is greater in epileptic versus
control rats (Sutula et al., 1998; Buckmaster and Dudek, 1999;
Wenzel et al., 2000). Within the hilus of control rats, there are a
variety of different cell types that mossy fibers might synapse with
(Amaral, 1978). In patients (de Lanerolle et al., 1989; Sloviter et
al., 1991; Mathern et al., 1995; Zhu et al., 1997; Maglóczky et al.,
2000) and models of temporal lobe epilepsy (Sloviter, 1987;
Obenaus et al., 1993; Buckmaster and Dudek, 1997b; Buckmaster
and Jongen-Rêlo, 1999), hilar neuron loss changes the number
and proportion of synaptic targets available to mossy fibers within
the hilus. The formation of novel basal dendrites by granule cells
(Spigelman et al., 1998; Buckmaster and Dudek, 1999) provides
another synaptic target within the hilus and another avenue for
excitatory feedback between granule cells (Ribak et al., 2000).
Future studies could address these issues by reconstructing mossy
fibers in the hilus and identifying their postsynaptic targets.

The present study shows that sprouting mossy fibers synapse
almost exclusively with excitatory neurons in the granule cell
layer and molecular layer of the dentate gyrus. Lesioning the
synaptic input from the entorhinal cortex to granule cells also
triggers mossy fiber sprouting and synaptogenesis in adult rats
(Laurberg and Zimmer, 1981; Frotscher and Zimmer, 1983). A
variety of experimental treatments that produce epilepsy also
induce axon sprouting in other brain regions (Salin et al., 1995;
Perez et al., 1996; McKinney et al., 1997; Esclapez et al., 1999).
These findings highlight the remarkable plasticity of the adult
CNS and suggest that the formation of novel recurrent excita-
tory circuits may be a common contributing factor to
epileptogenesis.
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