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Neural receptive fields are frequently plastic: a neural response
to a stimulus can change over time as a result of experience.
We developed an adaptive point process filtering algorithm that
allowed us to estimate the dynamics of both the spatial recep-
tive field (spatial intensity function) and the interspike interval
structure (temporal intensity function) of neural spike trains on
a millisecond time scale without binning over time or space. We
applied this algorithm to both simulated data and recordings of
putative excitatory neurons from the CA1 region of the hip-
pocampus and the deep layers of the entorhinal cortex (EC) of
awake, behaving rats. Our simulation results demonstrate that
the algorithm accurately tracks simultaneous changes in the
spatial and temporal structure of the spike train. When we
applied the algorithm to experimental data, we found consis-
tent patterns of plasticity in the spatial and temporal intensity
functions of both CA1 and deep EC neurons. These patterns

tended to be opposite in sign, in that the spatial intensity
functions of CA1 neurons showed a consistent increase over
time, whereas those of deep EC neurons tended to decrease,
and the temporal intensity functions of CA1 neurons showed a
consistent increase only in the “theta” (75–150 msec) region,
whereas those of deep EC neurons decreased in the region
between 20 and 75 msec. In addition, the minority of deep EC
neurons whose spatial intensity functions increased in area
over time fired in a significantly more spatially specific manner
than non-increasing deep EC neurons. We hypothesize that this
subset of deep EC neurons may receive more direct input from
CA1 and may be part of a neural circuit that transmits informa-
tion about the animal’s location to the neocortex.
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Neural responses to stimuli can change over time as a result of
experience (Merzenich et al., 1983; Weinberger, 1993; Edeline,
1999; Kaas et al., 1999). This receptive field plasticity has been
observed in the CA1 region of the rat hippocampus in two
conditions. First, the spatial receptive fields (“place fields”) ob-
served in this region (O’Keefe and Dostrovsky, 1971) develop in
approximately the first 5 min of exposure to a novel environment
(Wilson and McNaughton, 1993). Second, place field plasticity
occurs in familiar environments. Mehta et al. (1997) demon-
strated that, over the course of an exposure to a previously visited
environment, place fields expand and their centers of mass shift
in the direction opposite the animal’s direction of motion. In
subsequent work, Mehta et al. (2000) showed that the observed
expansion and shifting could be explained by a skewing of the
place fields resulting from feedforward plasticity in the connec-
tions from CA3 to CA1. This plasticity is reduced in aged animals
(Shen et al., 1997) and blocked by the application of 3-(2-

carboxypiperazin-4-yl)-propyl-1-phosphonic acid, an NMDA re-
ceptor antagonist (Ekstrom et al., 2001), suggesting that it may be
related to learning.

The deep layers of the entorhinal cortex (EC) receive the
majority of neocortically bound hippocampal output (Amaral and
Witter, 1995). Although CA1 cells tend to have compact place
fields, we showed previously that deep EC cells tend to have place
fields that cover long, contiguous sections of the environment and
frequently show a pattern of activity we termed “path equiva-
lence” in which a given neuron is active across locations associ-
ated with the same behavior both within and between environ-
ments (Frank et al., 2000). Little is known about the properties of
spatial receptive field plasticity in the deep EC, however.

In both the rat and the monkey, cells in the EC and associated
temporal cortices can show an enhanced or reduced response to
the second presentation of a stimulus compared with the first
(Miller et al., 1991; Fahy et al., 1993; Li et al., 1993; Miller and
Desimone, 1994; Suzuki et al., 1997; Young et al., 1997; Xiang
and Brown, 1998, 1999). Those findings suggest that deep EC
neurons, like those in CA1, are likely to show spatial receptive
field plasticity. Here we examine the patterns of receptive field
plasticity present in simultaneously recorded neurons from CA1
and the deep EC of awake, behaving rats. We developed a
spline-based adaptive point process filtering algorithm based on
previous work (Brown et al., 2001) that allowed us to characterize
the time course of changes in both the spatial structure of recep-
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tive fields and the interspike interval (ISI) structure of the spike
trains.

Analyses of the same data focusing on static receptive field
properties have been reported previously (Frank et al., 2000,
2001).

MATERIALS AND METHODS

Behavioral methods
The behavioral methods have been published previously (Frank et al.,
2000, 2001), and those methods relevant to the current study will be
summarized here. A total of four rats were used in this study. Animals
were trained before surgery to run for liquid chocolate reward on a
150-cm-long U-shaped track (total length of track, �300 cm). Once the
animal performed at criterion levels, an 18 tetrode microdrive array was
implanted, with six tetrodes targeting the CA1 region of the hippocampus
and 12 tetrodes targeting the EC.

After recovery, recordings were made from both CA1 and the EC until
neurons (putative single cells) could no longer be isolated. On each day
of recording, the animal was first placed on the track, and then data
collection was started. We therefore analyzed receptive field plasticity
from the second to the final pass through the environment. Once neurons
could no longer be isolated, the animal was killed, and between one and
four lesions were made with each tetrode. The brain was then sectioned
and stained. The locations of each tetrode on each day of recording were
determined using the number of lesions, the relative locations of the
tetrodes, and the recorded depths of each tetrode.

We separated both CA1 and EC neurons into putative excitatory and
putative inhibitory subtypes using spike waveform widths and average
firing rates as described previously (Frank et al., 2001). For these anal-
yses, only putative excitatory neurons with a mean spike amplitude of at
least 70 �V and a peak spatial firing rate of at least 10 Hz (for the
definition of peak spatial rate, see Frank et al., 2000) were considered. A
total of 191 CA1 neurons and 56 deep EC neurons were included the data
set used for these analyses. To prepare the data for use with the algo-
rithm, we generated a linear representation of the animal’s position,
converting each run from one end of the track to the other into a set of
locations defined according to their distance from the starting point. We
then determined the times when the animal was at each of the two ends
of the track. We used those times to define the start and ending times of
each pass from endpoint 1 to endpoint 2 and from endpoint 2 to endpoint
1. The start time of each pass was identical to the end time of the
previous pass, so no data were excluded. The position data were then
interpolated at a time step of 2 msec.

When examining the firing of place cells, it is important to distinguish
between periods when the animal is actively exploring and periods when
the animal is engaged in other, nonlocomotive behaviors, because these
periods are associated with distinct patterns of EEG and neural activity
in the hippocampus and EC. During exploration, EEG recorded from the
hippocampus and the EC of the rat contains a large amount of power in
the theta (6–12 Hz) band, and neuron activity in both CA1 and the EC
is strongly modulated at that frequency (Buzsaki et al., 1983; Alonso and
Garcia-Austt, 1987; Chrobak and Buzsaki, 1998; Frank et al., 2001). In
contrast, when the animal is not actively exploring or attentive, little
power in the theta band is present, and, instead, the EEG is character-
ized by large, irregular activity and the presence of sharp waves (Buzsaki
et al., 1983; Buzsaki, 1986) and neural activity in hippocampus is char-
acterized by the presence of synchronized bursts of high-frequency
(100–200 Hz) activity (Buzsaki et al., 1992; Chrobak and Buzsaki, 1994).
Because place-specific activity is generally associated with theta but not
sharp wave EEG patterns, for each data set, we filtered the EEG from a
tetrode located in the deep EC between 6 and 14 Hz and computed the
rms amplitude in that frequency band. We then determined a cut-off
value that we used to indicate the beginning of a non-theta period and a
slightly higher cut-off that we used to indicate the end of that period. To
ensure that only theta activity was included in our analyses, the values
were set to exclude periods when the animal was moving very slowly or
was stationary.

Algorithm
Accurately tracking receptive field plasticity requires a method that can
produce estimates of the receptive field of a neuron on a short time scale.
The most commonly used approach to estimating receptive field struc-
ture involves binning the spike data over time and calculating the firing

rate of the neuron in each bin, but these histogram-based approaches have
some important limitations. First, histogram-based estimates are difficult to
apply in situations in which one wishes to estimate the effects of multiple
variables on firing rate. In those situations, it is necessary to sample every
combination of the values of the variables sufficiently often to produce an
estimate of firing rate for each combination. That requires very large data
sets and becomes impractical as the number of variables increases.

Second, estimation using histograms is inefficient, in that a large
number of parameters (the values of each bin) are estimated with
relatively little data (the number of spikes in each bin) for each param-
eter. As a result, histogram estimates converge to the actual underlying
function relatively slowly (Silverman, 1986; Brown et al., 2002). Third,
these estimates will tend to be inaccurate when applied to small amounts
of data, implying that histogram-based methods are ill-suited to estimat-
ing the plasticity in the structure of receptive fields on short time scales.
For example, a rat running on a linear track can reach speeds of up to 1
m/sec, and an average CA1 or deep EC place cell fires at a peak rate of
�20 Hz (Frank et al., 2001). Thus, even with a large bin size of 5 cm, the
animal would occupy each bin for only 1⁄20th of 1 sec, and, on a given pass
through the environment, there would be many bins that contained no
spikes and a few bins that contained a single spike. The histogram
estimate would therefore indicate that the cell fired at 20 Hz in a few
locations at 0 Hz everywhere else. The same problem arises when one
attempts to estimate the interspike interval structure of the spike train on
short time scales, because, on any given pass, a place cell may fire as few as
five or 10 spikes, resulting in four to nine ISIs, and it is difficult to accurately
estimate a complete interspike interval distribution from so few intervals.

Model-based adaptive estimation algorithms provide an alternate ap-
proach that avoids the problems associated with histogram-based esti-
mates. Model-based approaches can easily handle multiple variables and
do not require binning over time or space (Brown et al., 1998; Barbieri
et al., 2001). When an adaptive algorithm is applied to such a model, the
result is an estimate that, at each instant, combines the estimates from
the previous time step with the new spiking data (Brown et al., 2001).
That combination can produce accurate instantaneous estimates, even
when only a few spikes are observed, and can therefore accurately track
changes in receptive field structure over time.

Definitions. To construct an adaptive algorithm, it is first necessary to
define a conditional intensity or rate function. This conditional intensity
function takes the form �(t��t , Ht ), where �t is a vector of parameter
values at time t that relates Ht , the history of the process up to and
including the current time, to the instantaneous firing rate of the neuron
(Brown et al., 2002). Because the conditional intensity characterizes the
firing rate of the process over time, �(t��t , Ht )�t is the probability of a
spike in [t, t � �t ) when there is history dependence in the spike train.
Our goal was to identify not only plasticity related to spatial receptive
field structure but also plasticity related to the ISI structure of the spike
train. We therefore set �(t��t , Ht ) � �S(x(t))��T(t � �t ) where �S(x(t)) is
a function of the rat’s position x(t) at time t, and �T(t � �t ) is function of
the time since the last spike where �t is the time of the last spike. We call
these separable functions the spatial and temporal intensity functions,
respectively. This approach is similar to one used by Kass and Ventura
(2001) for nonadaptive analyses of monkey supplementary eye field data.

In defining the intensity functions, we noted that CA1 and deep EC
place fields have complex shapes that cannot be accurately described
using Gaussian or other low-dimensional parametric surfaces (Muller et
al., 1987; Frank et al., 2000; Mehta et al., 2000). In addition, the ISI
histograms of CA1 and deep EC neurons are very different (Frank et al.,
2001). To allow us to accurately capture the complex shape of place fields
and the ISI structure of CA1 and deep EC spike trains, we defined
�S(x(t)) and �T(t � �t ) as separate spline curves. A spline curve is a set
of piecewise continuous polynomials that interpolate between a small
number of given coordinates, known as control points (Hearn and Baker,
1996). A spline can approximate any well behaved function and can
therefore capture the complex shapes of place fields and ISI functions.

In these analyses, we used cardinal splines to model the spatial and
temporal intensity functions. Cardinal splines are two-dimensional func-
tions whose slope at any control point is determined by the magnitudes
of the two adjacent control points (Hearn and Baker, 1996). Thus, all
cardinal splines are piecewise differentiable (C 3), and every point along
a cardinal spline is completely specified by at most four adjacent control
point magnitudes. The selection of a cardinal spline-based model pro-
vides an implicit set of smoothness and continuity conditions for the
firing intensity function.

We assumed that the animal’s position could vary continuously be-
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tween locations xstart and xend , and we defined a discrete set of spatial
locations and magnitudes as the I control points {(xi , �i

S)}i�1
I such that

xi � xi�1, x2 � xstart , and xI�1 � xend. The spatial intensity function is then
defined by the cardinal spline as follows:

�S� x� � 	u� x�3 u� x�2 u� x� 1
�
�0.5 1.5 �1.5 0.5

1 �2.5 2 �0.5
�0.5 0 0.5 0

0 1 0 0
��

�i�1
S

�i
S

�i�1
S

�i�2
S
�,

for x � (xi , xi�1]. Here, u(x) � (x � xi )/(xi�1 � xi ) is a fractional measure
of the distance between the animal’s position x(t) and the two adjacent
control points. Note that any point on the spline is fully determined by
the four nearest spatial control point magnitudes.

The time locations and associated magnitudes for the control points of
the temporal spline were defined similarly as the J pairs: {(tj , �j

T)}j�1
J such

that tj � tj�1, where tJ�1 is a time longer than the maximum interspike
interval. The temporal intensity function is then given by the following:

�T�t� � 	v�t�3 v�t�2 v�t� 1
�
�0.5 1.5 �1.5 0.5

1 �2.5 2 �0.5
�0.5 0 0.5 0

0 1 0 0
��

�j�1
T

�j
T

�j�1
T

�j�2
T
�,

for t � (tj , tj�1]. Here, v(t) � (t � tj )/(tj�1 � tj ), similar to u(x) above.
Under this model, the temporal component of the intensity function
depends only on the time since the last spike. In addition, because neural
firing rates cannot be negative, we defined �S(x(t)) � max(�S(x(t)), 0) and
�T(t � �t ) � max(�T(t � �t ), 0).

In previous work, (Brown et al., 2001), we constructed a general
adaptive estimation algorithm using point process observations. For any
parametric neural spike train model, this algorithm can describe the time
evolution of the set of parameters that best explains the observed firing
activity. We applied a similar algorithm to the spline-based place field
model described above by adaptively altering the spline control point
magnitudes based on the instantaneous spiking of each cell. At each
instant in time, the update algorithm determines the number of spikes
that occurred and compares that with the number expected given the
current value of the parameter estimates. This difference, known as the
innovation, takes the form N(tk�1, tk ) � �(tk�1��tk�1

, Htk )�tk , where
N(tk�1, tk ) is the number of spikes observed from time tk�1 to time tk , and
�tk is the length of the current time step. The algorithm then updates the
control point magnitudes in such a way as to locally increase or decrease
the estimated firing rate depending on that innovation. This algorithm
can be run using arbitrarily small time steps, and, for these analyses, we
chose a time step of 2 msec.

We constructed a modified adaptive updating algorithm with a con-
stant learning rate with respect to the spline derivatives of the following
form:

�tk

S � �tk�1

S � �S

d�S

d�S 	N�tk�1 , tk� � ��t��tk�1 , Htk�1��tk
 (1.1)

�tk

T � �tk�1

T � �T

d�T

d�T 	N�tk�1 , tk� � ��t��tk�1 , Htk��tk
 ,

where �tk
S � [�1,tk

S , �2,tk
S , . . ., �I,tk

S ] and �tk
T � [�1,tk

T , �2,tk
T , . . ., �J,tk

T ] are the
spatial and temporal control point magnitude vectors at time tk , �S and �T
are the spatial and temporal learning rates, d�S/d�S is the vector of
derivatives of the spatial intensity function with respect to each spatial
control point magnitude, and d�T/d�T is the vector of derivatives of the
temporal intensity function with respect to each temporal control point
magnitude. We derive our adaptive algorithm from our previous work
described by Brown et al. (2001) as follows. The previous instantaneous
steepest descent algorithm for point processes gave the updating rule for
the parameters as follows:

�tk � �tk�1 � ��log���tk�1��tk�1 , Htk�1��	N�tk�1 , tk� � ��tk�1��tk�1 , Htk�1��tk
,

where � denotes the gradient with respect to �tk , and

� � ��1 0
0 �2

�
is a vector of learning rates. The algorithm in Equation 1.1
follows by setting �S � �1�S(x(tk�1)) and �T � �2�T(t � �t ). Thus,

this adaptive estimation algorithm is based on the same instan-
taneous log-likelihood criterion function described previously but
uses a modified learning rate.

Using the definition of �S(x(t)), we can show that the instanta-
neous derivative of the spatial spline with respect to any spatial
control point magnitude is given by the following:

d�S� x�t��
d� j

S � �
0.5u�t�3 � 0.5u�t�2 x�t� � 	 xi�2 , xi�1


�1.5u�t�3 � 2u�t�2 � 0.5u�t� x�t� � 	xi�1 , xi

1.5u�t�3 � 2.5u�t�2 � 1 x�t� � 	xi , xi�1


�0.5u�t�3 � u�t�2 � 0.5u�t� x�t� � 	xi�1 , xi�2

0 otherwise

.

The derivative is nonzero at exactly four control points. The same is true
for the derivative of the temporal spline with respect to all temporal
control point magnitudes. Thus, if the animal were located at a position
between control points xj and xj�1, the algorithm would update the values
of spatial control points {xj�1, xj , xj�1, xj�2}. The choice of cardinal
splines therefore causes updates to the intensity functions to be local, in
that the presence or absence of a spike at a given time will change the
spatial and temporal intensity functions over only a small region.

Control point spacing. The control point spacings regulate the mini-
mum width of features within the spline functions that the model can
estimate. If the spacings are set too large, the spline will over-smooth the
data, but if they are set too small, the spline will fit the spike train rather
than the underlying process. The spacing size should be determined by
some natural feature size of the underlying process. We therefore chose
control point spacings consistent with our experience with the spatial
receptive field and ISI structure of CA1 and deep EC neurons (Frank et
al., 2001).

The spatial control points were positioned along the track every 10 cm,
allowing for spatial features on the scale of �5 cm. To account for both
position and direction of movement in the spatial component of the
intensity function, we expressed the rat’s motion along a 300 cm track by
a proportion of its complete periodic trajectory. A full back-and-forth
run along the track represents a single spatial period of the animal’s
movement, so x(t) represents the total distance from the starting point to
the current location. It is therefore a one-dimensional linear measure.
Additionally, connections were made between the beginning and the end
of the periodic path by equating the magnitudes of each of the following
pairs of control points: x1 and xI�2, x2 and xI�1, and x3 and xI. When the
magnitude of one element of the pair was changed, then so too was its
counterpart. The resulting control point set thus describes a circular
spline representing the animal’s back-and-forth motion along the track.

The temporal control point locations were positioned along an abscissa
representing a continuous range of times since the last spike. A first
subset of control points contained regularly spaced locations between 1
and 25 msec at even stretches of 4 msec. The remaining control points
were spaced between 25 msec and the longest observed ISI at even
stretches of 25 msec. This specific temporal control point spacing was
designed to be the largest possible spacing that could extract fine features
in the short interspike intervals, corresponding to the refractory period
and the tendency of the CA1 neurons to fire in bursts, and broader
features in the longer ISIs, corresponding to features such as theta
rhythmicity. Larger control point spacings help prevent over-fitting, as is
explained in Discussion.

Implementation. Because the spatial and temporal splines are separa-
ble, a doubling in the magnitude of all of the control points of the spatial
spline and a halving of the magnitude of all of the control points of the
temporal spline would result in exactly the same firing rate (conditional
intensity) profile over time. To ensure that the relative magnitudes of the
two splines remained constant over time, we used a cyclic descent
method to implement the adaptive algorithm. Given an initial estimate of
the spatial and temporal intensity functions, we fixed the temporal
function and ran the algorithm forward, allowing the spatial function to
change over time. Beginning with the same initial estimates, we then
fixed the evolution of the spatial function and reran the algorithm with an
adapting temporal function. Thus, for the first (second) half of an
iteration, the changes in the spatial (temporal) function were fixed to be
those found for the previous iteration, and the values of the temporal
(spatial) function were updated according to the adaptive algorithm. We
continued to iterate the model until the patterns of change remained
stable from one run to the next using the following convergence criterion:
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a change of no more than the greater of 3 or 10% of any control point
magnitude of the spatial intensity function and a change of no more than
the greater of 0.3 or 10% of any control point magnitude of the temporal
intensity function. These criteria were chosen based on the relative
magnitudes of the spatial and temporal intensity functions derived from
CA1 and deep EC neurons as described below. We tested this approach
using simulations in which the spatial and temporal splines remained
constant over time and found that the relative magnitudes of the spatial
and temporal control point magnitudes did not change over time.

Initial estimates. It was also necessary to select a method to generate an
initial spline estimate at which to start the adaptive update algorithm.
Mehta et al. (2000) showed previously that changes in the place field
structure can be detected as early as the second pass through the
environment. For that reason, it is essential to develop a good estimate
for the initial values of the spatial and temporal intensity functions. We
investigated defining starting values for the spatial and temporal intensity
functions using only the data from the first pass from one end of the
environment to the other. Simulation studies showed that estimate often
did not accurately capture the true underlying structure of the receptive
field. We generated a more accurate initial estimate by repeatedly run-
ning the adaptive estimation algorithm backward in time. We initialized
the spatial intensity function to have a value of the mean firing rate of a
neuron for all positions and initialized the temporal intensity function to
have a value of one at all points. Running the algorithm backward in
time, we then used the cyclic descent method described above and
iterated until the first pass estimates converged using the same criteria as
for the forward estimation. This approach yielded reasonable starting
values for the simulation studies discussed below. In addition, this ap-
proach is conservative, because the estimate for the first pass is obtained
by combining the spiking from the first pass with the estimate derived
from the subsequent passes. As such, if the first pass estimate is in error,
the error will lead to an underestimate rather than an overestimate of the
amount of change that occurred.

Simulation studies
Learning rates. To select and evaluate the learning rates that could
accurately track changes in receptive field structure we devised a set of
simulated random spike processes based on predetermined time-varying
spatial intensity and temporal ISI modulation driving functions. The set
of spatial driving functions from which simulations were drawn was
designed to produce a very wide range of changes. These simulations
consisted of the following. S1 was a Gaussian curve with a fixed center
located 250 cm from the start of the track, a fixed SD of 20 cm, and a
maximum firing rate that increased linearly from 20 to 50 Hz. S2 was a
slowly skewing Gaussian produced by the product of a Gaussian curve
and a sigmoid with identical centers. The center of the Gaussian curve
moved backward linearly from 250 to 233 cm from the beginning of the
track. The height of the Gaussian component increased from 15 to 20 Hz.
The SD of the Gaussian grew linearly from 20 to 30 cm. The sigmoid
function had the form (1 � e�	(x��))�1, where the 	 parameter varied
linearly from 0 to 1, producing a left skew (for the initial and final spatial
intensity functions, see Fig. 1). S3 was a rapidly skewing Gaussian similar
to that described in S2. Both the height of the Gaussian and the 	
parameter of the sigmoid increased as in S2. The center moved backward
linearly from 250 to 150 cm, and the SD of the Gaussian increased
linearly from 20 to 50 cm.

The set of temporal intensity driving functions used in the simulation
studies consisted of the following. T1 was a fixed driving function with
two peaks representing a propensity to fire in bursts centered at an ISI of

9 msec with a maximum modulation height of 3.6, and a theta rhythm
modulation centered at an ISI of 125 msec with a maximum modulation
height of 5.5. This modulation profile was obtained by running the
adaptive algorithm on a single CA1 pyramidal cell and using the mod-
ulation function estimated for the starting value. T2 was characterized by
rapidly increasing bursting and decreasing theta regions. The burst peak
increased linearly from no modulation to the maximum value in T1,
whereas the theta modulation peak decreased linearly from the peak
value in T1 to nothing. T3 was characterized by slowly increasing bursting
and decreasing theta regions. The dynamics were as in T2, with both peak
heights halved (for initial and final temporal intensity functions, see Fig.
1). T4 was characterized by rapidly decreasing bursting and increasing
theta. The burst peak decreased linearly from the peak value in T1 to no
modulation, whereas the theta modulation peak increased linearly from
zero to the peak value in T1. T5 was characterized by slowly decreasing
bursting and increasing theta with dynamics as in T4, with both peak
heights halved.

There are a total of 15 different combinations of spatial and temporal
driving functions. For each of these, we calculated the instantaneous
firing intensity function that would be generated as a rat ran back and
forth at a constant speed of 25 cm/sec for 800 sec and simulated five
instances of a spike train using the time-rescaling algorithm described by
Brown et al. (2002). For each instance, the simulated spike train was then
fed back into the adaptive algorithm across a range of learning rates. The
spatial learning rates varied from 0.5 to 3.5 by increments of 0.5, and the
temporal learning rates varied from 0.0 to 0.35 by increments of 0.05. For
every combination of those spatial and temporal learning rates, we calcu-
lated the sum over time of the total mean squared error between the
estimated control point magnitudes and the values for the actual driving
functions. Thus, for each simulation, we produced two error surfaces. The
first related the spatial and temporal learning rates to the error in the spatial
intensity function, and the second related the spatial and temporal learning
rates to the error in the temporal intensity function. We examined each of
these error surfaces to determine a range of spatial and temporal learning
rates that would minimize both the spatial and temporal errors.

Tracking. To quantify the ability of this adaptive estimation algorithm
to track the spatial and temporal features of interest, we examined its
accuracy in tracking each of these features individually. The spatial
features that we were interested in tracking included the total spatial
area, mean, SD, and localized skewness. These statistics were computed
as follows: total spatial area A � �x1

XI�1 �S (x)dx, center (mean) � � �x1
XI�1

x�S (x)dx, scale (SD)

s � ��x1

XI�1 � x � ��2 �S � x�dx ,

and a localized skewness measure skew � (�xa
xb (x � �)3 �S (x)dx)/(As �3/2),

where xa and xb were obtained by extending the left and right interquar-
tile whiskers by three times their original magnitude (Velleman and
Hoaglin, 1981). This modified version of the skewness measure was used
because we found that the skewness computed across all positions was
very sensitive to small outliers in the intensity function. These spatial
statistics were calculated from the estimated spatial intensity spline at
each moment in time. It is important to note that, whereas an increase or
decrease in the total area of the spatial intensity function will be asso-
ciated with an increase or decrease in average firing rate, respectively,
the actual firing rate at each time will be the product of the magnitude of
the appropriate points of the spatial and temporal intensity functions. As
such, the spatial intensity function can be thought of as the place field of
the neuron with the temporal structure (bursting, theta modulation, etc.)

Figure 1. Examples of changing spatial and
temporal intensity functions used for simu-
lation studies. The lef t shows the initial and
final values for the spatial intensity functions
from S2, and the right shows the initial and
final values for the temporal intensity func-
tions from T2. The dots superimposed on the
curves represent control points.
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factored out. All of the temporal statistics of interest were computed as
the area under the estimated temporal ISI modulation spline, computed
in the same manner as the spatial area above, localized to specific ISI
regions. They included a burst area from 1 to 21 msec, a burst-to-theta
area from 21 to 75 msec, a theta modulation area from 75 to 150 msec
(corresponding to a modulation of between �7 and 13 Hz), and a theta
to two-theta area from 150 to 300 msec.

For the spatial measures of mean, area, and SD and for the temporal
measures of the burst, burst-to-theta, and theta areas, we simulated 100
examples of cells in which the value of the measure increased or de-
creased linearly over the course of the 800 sec simulation by 1, 5, 10, or
50%. All other spatial and temporal characteristics were held fixed. The
initial control point magnitudes used for these simulations were chosen
to be resemble those seen in real data (see Results) and were as follows:
the spatial intensity function was initialized to be a Gaussian with a mean
location of 150 cm, a peak firing rate of 20 Hz, and an SD of 15 cm; the
temporal intensity function was the same as that used for the static
temporal function T1 for the learning rate simulation studies described
above.

Application of algorithm to experimental data
Neural data: goodness-of-fit. When applying a set of analyses to data,
whether the analyses involve histogram-based estimates or an explicit
statistical model, it is important to determine whether the estimates
produced by the analyses accurately describe the data. For the simula-
tions, the goodness-of-fit could be evaluated directly by comparing the
adaptive estimate with the actual driving function, but because we do not
have access to the actual driving function for CA1 and deep EC neurons,
another approach is required. In this situation, we determined how well
the adaptive model captured the structure of the data by constructing
Komologorov–Smirnov (KS) plots for each neuron (Barbieri et al., 2001,
Brown et al., 2002). Briefly, to construct each plot, we computed, for each
ISI, 
k � �lk�1

lk �(u��u , Hu )du, where lk is the time of the k-th spike, and
�(u��u , Hu ) is the conditional intensity function. According to the time
rescaling theorem (Brown et al., 2002), if �(u��u , Hu ) correctly describes
the rate process underlying the spike train, the 
k values will be expo-
nentially distributed with unit rate. Thus, setting zk � 1 � e �
k produces
a set of independent uniform random variables on the interval [0, 1]. A
measure of the agreement between the cumulative distribution of the zk
values and the quantiles of the uniform distribution directly evaluates
how well the original model agrees with the spike train data. We applied
that analysis to the model with adapting spatial and temporal compo-
nents, as well as to a model with an adaptive spatial component and a static
temporal component set to one for all ISIs, to determine whether the
addition of an adapting temporal component significantly improved the fit
to the data.

We analyzed the changes in the spatial and temporal intensity func-
tions by computing the same measures used above for the simulations. To
allow for comparison across different animals and data sets, we sampled
these measures at 20 points, evenly spaced in time along each pass from
one end of the U track to the other. For the measures applied to the
spatial receptive field, each direction of motion on the track was consid-
ered separately. As mentioned above, a single temporal intensity func-
tion was used for both directions of motion along the track. We defined
a “pass” for the temporal function to be a single forward and backward
pass in each direction along the track so that the spatial and temporal
functions would be displayed on the same relative scale. To produce a
meaningful estimate of the mean and skewness of the spatial intensity
function, only those passes with a single place field (for definition, see

Frank et al., 2000) were included in the analysis of center location and
skewness (CA1, n � 232 place fields; deep EC, n � 62 place fields).

Experimental data: relationship between plasticity and spatial coding. We
also examined the relationship between patterns of plasticity in the
spatial intensity function and the precision of spatial coding in CA1 and
deep EC neurons. For each neuron, we fit a linear regression to the area
of the spatial receptive field of the neuron and determined whether the
line, fit to the area, changed height by 
20% over the course of the run.
Examining the CA1 and the deep EC separately, we divided the neurons
into two groups, one whose area increased by at least 20%, and the other
whose area either increased by �20% or decreased. We computed the
average position information coefficient (Skaggs et al., 1993), which
measures the relative position specificity of each neuron averaged over
the course of the entire run. We also divided the neurons into groups
based on 10, 15, and 25% changes to ensure that our results were not
attributable to the specific choice of the 20% cutoff.

RESULTS
Simulation results
Learning rate
A broad grid search over spatial and temporal learning rates
resulted in both spatial and temporal error surfaces with single
minima. Thus, for each error surface, a single combination of
spatial and temporal learning rates was found that minimized the
differences between the adaptive estimate and the actual driving
function. There was some variability in the location of that
minimum across 15 simulations and the five instances of each
simulation, but in all cases in which the simulation involved
changing driving functions, the minimum was close to the point
corresponding to a spatial learning rate of 2.0 and a temporal
learning rate of 0.15. We therefore chose those values for our
simulation studies.

Tracking
An example of the instantaneous actual and estimated intensity
functions is shown in Figure 2. This example shows the capacity
of the algorithm to accurately estimate both the spatial and
temporal intensity functions. Video 1 similarly shows the entire
time course of an example of the algorithm tracking simulated
data [Videos 1–4 are available on the Journal of Neuroscience
website (www.jneurosci.org)]. To quantify the accuracy of track-
ing for the spatial and temporal area measures and for the spatial
scale measure, we first normalized the trajectory of the measure
(the set of values across time) for each simulated or real neuron
by its mean. We then fit a regression line to the trajectory of the
measure produced by the algorithm and compared the amount of
change predicted by that regression line with the actual amount
of change used in the simulation. The errors are reported in terms
of absolute percentages extrapolated to 40 total passes through
the environment to permit easy comparison of simulated and real
data. Thus, an error of 2% on a simulation with a change of 10%

Figure 2. A comparison of the estimated
and actual spatial and temporal intensity
functions. In the lef t (spatial intensity) and
right (temporal intensity) plots, the gray lines
represent the underlying spatial and tempo-
ral driving functions, respectively, used to
generate a set of observed spike data as
described above. In this example, the driv-
ing functions were a slowly skewing shifting
Gaussian spatial intensity (a shifted version
of S2) and fixed ISI modulation functions
(T1). The spline estimates of these intensity

functions, obtained by applying our adaptive estimation algorithm to this simulated spike train data, are displayed in the corresponding plot as black lines.
Overall, the agreement between the actual and estimated functions is very good. The largest apparent deviations are in the temporal intensity function
at long interspike intervals. This is attributable to the very small number of long ISIs and the corresponding lack of sampling of these intervals.
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Figure 3. Examples of tracking from simulation S2–T2. In each plot, the gray line shows the actual trajectory of the measure, and the thicker black line
shows the measure derived from the algorithm. Because our interest was in accurately capturing the trends in the data, we plotted the spatial area and
scale measures, as well as all of the temporal measures, on a normalized scale. To construct these plots, we normalized the actual statistic by its mean
and shifted it to start at one. We similarly normalized the estimated statistic by its mean and shifted it by the same amount as for the actual statistic. This
produces plots in which changes are expressed as a proportion of the initial value. To construct the adjusted center plots, we also shifted the actual center
curve to begin at zero and shifted the estimated curve by the same amount as the actual curve, so the two could be easily compared. A, Examples of the
tracking of measures of the spatial and temporal intensity functions from a single simulated cell. The top row shows the spatial measures, and the bottom
row shows the temporal measures. The tracking of the spatial area was somewhat noisy because of variability of the spike train and our choice of a learning
rate that could track very fast changes, but nevertheless the trend captured by the estimate is similar to that present in the real data. The tracking of the
center was very accurate. The tracking of the scale and the skewness were also, like that of the area measure, somewhat noisy, but once again the trends
in the estimate follow the actual trends. Similarly, the trends in the measures of area under different sections of the temporal intensity curve were similar
to the actual trends. B, The same measures averaged over 100 simulations. The trajectory of the normalized area, adjusted (Figure legend continues.)
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indicates that the algorithm produced an estimated trend whose
trend led to a change between 8 and 12%. We quantified the
movement of the center in the same manner, except we did not
normalize the trajectory.

Here we summarize the data by reporting the maximum devi-
ation over the increasing and decreasing simulations. For the 1, 5,
and 10% levels of changes of the simulated areas and SDs, the
magnitude of the estimated trend was within 2% of the magnitude
of the actual trend. For the 50% change, the magnitude of the
estimated trend differed by up to 6% for the area and up to 9% for
the SD. These deviations were always conservative, in that the
algorithm underestimated the actual change. The errors in the
mean were at most 1 cm for levels of change of 10 cm or less.
The error for movements of 50 cm was �3 cm.

The tracking of the burst, burst-to-theta, and theta area mea-
sures showed similar levels of deviation from the true trajectory.
These deviations increased from between 1 and 6% for the 1, 5,
and 10% changes to as much as 20% for the 50% change. As for
the large deviations between the estimated and actual spatial
intensity functions, the larger deviations were always conservative
in that, when there was a large error, the algorithm consistently
underestimated the actual magnitude of change. An analysis of
these large errors showed that an increase or decrease in one
region of the temporal modulation function produces an increase
or decrease in firing rate over all positions; the algorithm was
distributing the change into both the temporal and the spatial
intensity functions. In effect, these simulated data can be well fit
by a number of different combinations of spatial and temporal
intensity functions.

We then examined the tracking for simulations such as those
used for the learning rate estimation, in which multiple measures
were changing simultaneously. We found that the algorithm
tracked well for both individual examples (Fig. 3A) and popula-
tions of simulated neurons (Fig. 3B). The estimated trajectory for
the measures of the spatial and temporal intensity functions
derived from a single example were variable because of the
stochasticity of the spike train. Nonetheless, the trends from the
estimated measures were similar to those of the actual driving
functions. When these trends were averaged across 100 simulated
cells, the agreement between the estimates and the actual func-
tion was very good for all spatial and temporal measures. There
was a small deviation between the trends for the spatial center
and the burst and theta area because of the conservative nature of
the first pass estimate. These results were consistent across the 15
types of simulations, in that the algorithm generally tracked the
slower changes very well. The faster changes were also generally
tracked well, and, when the tracking was less accurate, the esti-
mated trends indicated a smaller change than was actually
present.

Experimental data results
To ensure that our results were robust to the choice of learning
rates, we ran the algorithm with all combinations of spatial
learning rates of 1.0, 2.0, and 3.0 and temporal learning rates of

0.075, 0.15, and 0.225. If the learning rates were too low to
accurately follow changes in the firing rate, then the adaptive
model would smooth these changes, suggesting that the changes
occur over a longer period than was actually the case. As the
learning rates were increased, the adaptive model would more
and more closely approximate the changes in the actual firing rate
until it accurately captured the true trend. Increasing the learning
rate beyond that point would result in a model capturing the true
trend but was more variable than at lower learning rates. Thus, if
the observed rate of change of a measure is the same across
different learning rates, we are more confident that we have
accurately captured the true rate of change.

We also ran the algorithm with a spatial learning rate of 2.0 and
a temporal learning rate of 0.0 to determine whether the adaptive
temporal component made a substantial contribution to the
model goodness-of-fit. Any results that were not consistent across
all combinations are mentioned in the text. In applying the
algorithm to the data, we used the same control point spacings
and the same implementation described above. To determine
whether trends seen in the estimated temporal and spatial inten-
sity functions reflected actual changes in the data, we compared
the magnitude of the trend with the magnitude of the errors for
each of the measures determined above (Simulation results,
Tracking). If the trend for the real data was larger than the errors,
we can conclude that the trend is real. As an example, area
changes of 10% or less were associated with errors of 2% or less.
Thus, if we observed a change of 10% in the estimated spatial
intensity function, we would conclude that there was a real trend
whose magnitude was between �8 and 12%.

Goodness-of-fit
An examination of the KS plots revealed that the inclusion of an
adapting temporal function made a substantial difference in the
fit of the model to the data (Fig. 4). When we examined the model
without an adapting temporal component, we found that, for the
95% (99%) confidence bounds, the model predictions were within
the bounds for 0 of 191 (3 of 191) CA1 neurons and 2 of 56 (4 of
56) deep EC neurons. When an adaptive temporal component
was added, the agreement between the model and the data
improves substantially, and, for the 95% (99%) confidence
bounds, the model predictions were within the bounds for 71 of
191 (115 of 191) CA1 neurons and 25 of 56 (41 of 56) deep EC
neurons.

CA1 receptive field plasticity
Examples of the instantaneous estimates of spatial and temporal
intensity functions for two CA1 neurons are shown in Figure 5. In
both cases, only motion in one direction along the U track is
shown. The complete evolution of the spatial and temporal in-
tensity functions for a representative CA1 neuron is shown in
Video 2. When we examined the averaged trajectories for the
spatial and temporal measures computed for CA1 neurons, we
found that the area of the spatial receptive field increases and the
center of the spatial receptive field moved backward over time

4

center, and normalized scale are all very close to the actual trajectories. The small deviation visible at the start of the area and center measures is
attributable to the first pass estimate. The skewness also tracked well, although there were slightly larger errors for the skewness than for the area or the
mean. The algorithm was also able to simultaneously track the trends in the different regions of the temporal function. The estimates of the burst-to-theta
(21–75 msec) and theta to two-theta (150–300 msec) area were essentially identical to those for the actual function, and the estimates for the burst (1–21
msec) and theta (75–150 msec) regions follow the true values very closely, with a slight deviation at the beginning that was, as with the area and mean,
related to the algorithm used to determine the first pass estimate. Thus, the algorithm is able to track changes in both the spatial receptive field and in
the interspike interval structure of spike train data.
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(Fig. 6A). The time courses of these changes were different, in
that, although the area increased approximately linearly over time
and had a relatively small SE, the center reached its most extreme
values by approximately the 15th pass and appeared to be rela-
tively more variable. In addition, there was a significant decrease
in the scale of the spatial receptive fields. Finally, the modified
measure of skewness had consistent negative value throughout
the run but did not appear to change over time.

We then examined the changes in the temporal intensity func-
tion and found that there were specific changes in the intensity
associated with different intervals over time (Fig. 6B). The area of
the bursting region was approximately constant, whereas the
burst-to-theta (20–75 msec) region showed a brief increase in
area over the first 10 passes and then a return to the starting
levels. The theta region (75–150 msec) showed by far the largest
and most consistent change, increasing by 10% within the first 10
passes and then remaining constant. That increase occurred at a
much faster rate than the increase in the spatial area. Finally, the
area of the theta to two-theta (150–300 msec) region remained
approximately constant.

Deep EC receptive field plasticity
Examples of the instantaneous spatial and temporal intensity
functions for two deep EC neurons are shown in Figure 7. The
spatial intensity functions of deep EC neurons were less spatially
concentrated than those of CA1 neurons, reflecting the differ-
ences in spatial specificity between the regions. The temporal
intensity functions of deep EC neurons also tended to be very
different from their CA1 counterparts in that there was generally
very little area below 10 msec. The temporal intensity functions of
deep EC neurons also frequently had a peak near 100 msec, but

the structure beyond that theta peak was not clearly consistent
across multiple cells.

Just as the individual spatial and temporal intensity functions
of deep EC neurons differ substantially from those of CA1 neu-
rons, the patterns of receptive field plasticity found in the activity
of deep EC neurons also differ from those of CA1 neurons. There
was no clear tendency for the center of the spatial receptive fields
of the deep EC neurons to move over time (Fig. 8A). In addition,
on average, the area of the spatial intensity actually decreased by
�6% over 40 passes. That slow decrease was significantly greater
than the errors in tracking found for simulations. There was no
trend in the movement of the center, but the decrease in area was
accompanied by a small but significant decrease in the scale of the
spatial intensity function of �7%. Finally, there was no tendency
for the spatial intensity functions to be positively or negatively
skewed.

When we examined the intervals of the temporal intensity
function (Fig. 8B), we found a slight but nonsignificant decrease
in the burst, theta, and theta to two-theta regions. The burst-to-
theta region decreased by �9% over 40 passes, a change that was
significantly greater than zero. We also found that, when the
model was run without an adapting temporal component (e.g.,
with a temporal learning rate of zero), the decrease in the spatial
component was �14%, indicating that, on average, the firing rate
of deep EC neurons decreased by 14% over the course of 40
passes.

Relationship between plasticity and spatial coding
When we examined groups of CA1 neurons with increasing
(
20%) or non-increasing spatial intensity function areas, we
found that these groups did not differ in terms of either their

Figure 4. Examples of Komologorov–
Smirnov plots showing the agreement be-
tween the statistical model and the data for
CA1 and deep EC neurons. The plots were
constructed as described in Materials and
Methods. The top row shows the results
when the model contained only an adaptive
spatial component (e.g., the initial temporal
intensity function was everywhere set to
one and the temporal learning rate was set
to zero), and the bottom row shows the
results when the model contains both adap-
tive spatial and temporal components with
a temporal learning rate of 0.15. In both
cases, the spatial learning rate was 2.0. Each
plot shows the correct distribution (solid
gray line), the 95% confidence intervals for
the correct distribution ( gray dashed lines),
and the distribution resulting from the
adaptive model (black line). Each column
shows the results for a single cell in two
conditions. Although the spatial function
changes over time, the agreement between
the model and the data is poor, suggesting
that the model does not accurately capture
the firing rate of the spike train. The plots
for the CA1 neurons suggest that the lack of
fit is most pronounced for low zk values,
which correspond primarily to shorter ISIs
(Barbieri et al., 2001), suggesting that the
model predicts fewer short intervals than are present in the data. In contrast, the plots for the deep EC neurons show lack of fit for the short intervals,
which suggests that the model predicts more short intervals than were present in the data. The relative scarcity of short intervals is most likely to be
attributable to the pronounced refractory period of most deep EC neurons (Frank et al., 2001). The bottom row shows the plots when the model includes
adaptive spatial and temporal components. When the model includes both components, the fit to the data is much improved, and, even when the model
distribution lies outside of the 95% confidence intervals, it is nevertheless much closer to them than without the temporal intensity function.
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temporal intensity functions or their average position information
measures. Thus, groups of CA1 neurons whose spatial intensity
functions increased were not, on average, either more or less
position specific than the other CA1 neurons whose spatial inten-
sity functions did not increase.

In contrast, the deep EC group, whose spatial intensity func-
tion increased in area by at least 20% (n � 14), differed from the
non-increasing group (n � 42) in two respects. First, the temporal
intensity functions differed (Fig. 9). We found that there was a
substantial difference in the trends for the burst-to-theta region of
the temporal intensity functions but no difference in the other
regions. The burst-to-theta region of the increasing area group
increased by an average of �3% over the course of 40 passes.
Although that increase was small and close to the error levels seen
in the simulations, it was very different than the 14% decrease
seen in the non-increasing group. We verified that this difference
was significant by examining the error from groups of 14 simu-
lated cells drawn from the 100 simulations in which the burst-to-
theta region changed. We found that the error levels for these
smaller groups were generally small (�5%), and, when the errors
were larger, they once again resulted from the algorithm under-
estimating the magnitude of the real trend. Thus, the increasing
and non-increasing groups differed significantly in the amount of
change seen in the burst-to-theta region of the temporal intensity
function.

Second, there was a relationship between patterns of receptive
field plasticity and position information for deep EC neurons.
Figure 10 shows examples of two deep EC neurons whose spatial
intensity functions increased in area by at least 20% over the
course of 40 passes and two deep EC neurons whose spatial
intensity functions did not increase. Those neurons with an in-
creasing spatial intensity function had smaller and more concen-
trated spatial receptive fields than non-increasing neurons. We
quantified the spatial specificity by computing the mean and SEs
for the position information for each group. The mean position
information coefficient was significantly higher for the neurons in
the increasing group (mean � SE, increasing group, 1.50 � 0.17
bits per spike; non-increasing group, 0.87 � 0.10 bits per spike;

p � 0.005; paired t test). These differences, and the differences in
the temporal intensity function discussed above, were significant
for all percentages tested (10, 15, 20, and 25%) across all combi-
nations of learning rates, except when both the smallest spatial
and smallest temporal learning rates were used. In that case, the
relationship between spatial area change and position informa-
tion approached but did not reach significance, suggesting that
the lowest learning rates may not be high enough to accurately
track receptive field changes. To ensure that the observed differ-
ence was not related to the quality of the recordings, we also
examined the distributions of spike waveform amplitude for the
two groups. There was no difference between the groups (median
amplitudes, increasing group, 86 �V; non-increasing group, 97
�V; p 
 0.2; Wilcoxon rank sum test). Videos 3 and 4 show two
deep EC neurons, one with a spatial intensity function showing
increasing spatial area and the other showing a decreasing spatial
area.

DISCUSSION
We constructed a point process adaptive filter to estimate a
dynamic firing rate function from a neural spike train and to
therefore track rapid changes in neural receptive fields. At every
step of the recursive update algorithm, we compare the expected
probability of observing a spike with whether or not one was
observed. At observation times when a spike occurs, the firing
estimate is increased significantly, and, at all other observation
times, it is decreased by a much smaller amount. With reasonable
choices for learning rates, the end result is that the algorithm
produces an accurate dynamic estimate of receptive field
structure.

Simulation results
Our analysis of the behavior of the algorithm suggested that it was
consistently well behaved across a wide range of learning rates,
but that, not surprisingly, higher learning rates were required to
track fast changes in the spatial and temporal learning rates.
Higher values of the learning rate make the algorithm more
“local” in that the estimate of the intensity functions at any given

Figure 5. Examples of instantaneous esti-
mates of the spatial and temporal intensity
functions from two CA1 neurons. Each col-
umn represents the functions for a single
neuron. The spatial receptive fields of these
two neurons are both sharply peaked, al-
though their widths differ. The temporal in-
tensity functions for the two neurons are
very different, suggesting that the interspike
interval structure of their spike trains differ.
The neuron whose intensity function is
shown on the lef t, for example, has a very
large peak at �5 msec, indicating that this
neuron has a strong tendency to fire in
bursts. The intensity function on the right has
two peaks at low intervals, suggesting that
this neuron fires in three spike bursts. In
addition, this intensity function has sharp
peaks at �110 and 220 msec, indicating that
the neuron fires frequently at the period of
the theta rhythm and on alternating periods
of the theta rhythm. These peaks correspond
to interspike intervals that occurred fre-
quently, and the peaks were present through-

out the run, suggesting that they are consistent features of the temporal intensity function. These plots provide an easily interpretable summary of the
firing properties of the neurons at each moment in time, and videos that show the evolution of these functions provide a powerful tool for examining
the evolution of receptive fields.
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time will depend more on the very recent observations than on
the more remote observations. In our analyses, we found that,
even with a learning rate high enough to track very fast changes,
the algorithm was nevertheless able to track smaller changes.

Accurately estimating dynamic spatial and temporal intensity
functions from a spike train is a nontrivial operation, and our
algorithm performed well for a wide variety of simulated patterns
of plasticity. The tracking of the spatial intensity function was
very accurate in that the deviations between the actual and
estimated trends were generally small. Thus, this algorithm can
be used to estimate the instantaneous structure of spatial recep-
tive fields. The tracking of the temporal statistics was slightly less
accurate, but, importantly, when the estimate of the algorithm
reflected a change of 10% or more, a change of that magnitude or
larger was always present in the actual temporal intensity
function.

When we examined simulations in which multiple variables
were changing simultaneously, we found that the tracking of the
temporal functions was very accurate, with errors that were
consistently in the direction of conservative estimates. We believe

that these complex situations effectively disambiguated spatial
and temporal changes and that the algorithm was therefore able
to accurately estimate the trends in both functions. Overall, the
simulation results indicate that the algorithm can track simulta-
neous changes in both the spatial and temporal intensity func-
tions and that, when the changes are large, any errors tend to be
conservative. Thus, this indicates that our algorithm can be used
to estimate dynamic spatial and temporal intensity functions from
real neural data.

Goodness-of-fit tests
Using the KS plots, we determined that an adaptive model with
only a spatial component was not able to accurately describe the
evolution of the firing rate of CA1 or deep EC neurons. Adding
an adaptive temporal component greatly improved the fit, indi-
cating that the spike trains that would be produced by the model
were very similar to those generated by the neurons. That tem-
poral component was therefore able to capture a great deal of the
temporal structure of the spike trains, including the refractory
period, bursting, and theta rhythmicity. This result is consistent

Figure 6. Mean and SEs for the estimates of the spatial and temporal statistics for CA1 neurons. The black line in each plot represents the trajectory
of the mean for the statistics, and the gray lines represent the mean � SE. The units on the x-axis are passes, in which one pass corresponds to the animal
moving from one end of the U track to the other. The values on the y-axis are, for all statistics except the spatial mean and skewness, normalized to
express the change in terms of the proportion of the initial value. The spatial means have been adjusted to start at 0 cm. A, The trajectories of the statistics
for the spatial function. The area shows a clear and consistent increasing trend while the mean moves backwards over time. The scale also shows a clear
decreasing trend, indicating that, even as the spatial intensity function increases in area, it decreases in extent, suggesting that, on average, CA1 activity
becomes more spatially localized over time. Finally, the skewness measure had a consistently negative value but did not show a trend. These results are
generally consistent with previous findings for CA1 cells. B, The trends for the temporal statistics. The burst (1–21 msec) region and the theta to two-theta
regions (150–300 msec) showed little change, and the burst-to-theta region (21–75 msec) showed a small initial increase, followed by a return to baseline.
In contrast, the theta region (75–150 msec) showed a rapid increase of �10%. That increase is consistent with the predictions of the model proposed
by Mehta et al. (2000).
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with our previous findings for nonadapting or static models, in
which including non-Poisson temporal structure improved the
model fit to the data (Barbieri et al., 2001; Kass and Ventura,
2001). We should note that to obtain a better model it may be
necessary to include other variables, such as velocity (McNaugh-
ton et al., 1983), and spatiotemporal interactions, such as phase
precession (O’Keefe and Recce, 1993). Nevertheless, because it
would be very difficult to estimate the changing spatial and tem-
poral structure of CA1 and deep EC neural spike trains using
histogram-based methods, we suggest that adaptive models may
provide a more accurate account of the nature of receptive field
plasticity in these regions.

In considering the goodness-of-fit of this model, it is important
to consider the possibility that we over-fit the spike train. To avoid
that problem, we chose to widely space the control points. If we
had spaced the control points closely together and used high
learning rates, we could have produced a model that over-fit the
data, in that there would be a sharp peak in the spatial and
temporal intensity functions at the location and interspike inter-
val corresponding to each spike. That type of model could accu-
rately describe the spike train by specifying a very high firing rate
at the exact time and location of each spike and a very low rate
elsewhere, but the resulting rate curve would not provide any
insights into the changing relationship between firing rate and the
variables of interest: location and interspike interval. Fortunately,
even in that case, an analysis of the dynamics of the model will not
tend to produce misleading results, because it would be essen-
tially the same as analyzing the original spike train.

Receptive field plasticity in CA1
We found that not only did the spatial firing properties of CA1
neurons change over time, but so too did the interspike interval
properties of the neurons. Our findings for CA1 receptive field
plasticity were generally consistent with those reported previously
(Mehta et al., 1997, 2000; Shen et al., 1997; Ekstrom et al., 2001).
We found that the spatial intensity function tended to shift
backward along the direction of motion and increased in size with
experience. We also found that the scale decreased substantially
over time, suggesting that the overall distribution of firing nar-
rows over time, even as the overall width of the place field as
measured in previous studies increases. These results suggest that

the precision of spatial coding in CA1 increases with experience.
In addition, we found that the spatial intensity functions were
negatively skewed and that skew remained approximately con-
stant over time.

Mehta et al. (2000) reported that place field skew developed
over the first few passes though the environment. The difference
between those results and the findings presented here is likely to
be attributable to two factors. First, Mehta et al. reported that the
majority of the skewness change occurred between the first and
second passes through the environment. We did not have data
from the animal’s first pass through the environment, so those
changes were not available to us. Second, we restricted the region
over which we measured skewness because we found that small
outliers had a large effect on the skewness measure. That restric-
tion may also have contributed to this result. Because the data
analyzed here are not directly comparable with those analyzed by
Mehta et al. (2000), these results should not be seen as contrary
to previous findings.

The changes in the spatial intensity function were accompanied
by an increase in the theta region of the temporal intensity
function while all other regions remained essentially constant,
indicating that the neurons fired progressively more often at ISIs
close to the period of the theta rhythm. That is consistent with the
model of Mehta et al. (2000), in that the model predicted that the
expansion and skewing of the place field in the direction opposite
the animal’s direction of movement would result in a greater
tendency to fire at theta intervals near the beginning of the place
field. We also found that the time course of those changes was
faster than the changes in the spatial area but slower than the
changes in skewness reported previously, indicating that there are
different time scales for different aspects receptive field plasticity
in CA1 and suggesting that there may be different mechanisms as
well.

Receptive field plasticity in the deep EC
Our findings concerning receptive field plasticity in the deep EC
contrast with those for CA1. While CA1 spatial receptive fields
tended to increase in area, deep EC receptive fields generally
decreased in area. That decrease was seen both in the spatial
intensity function and most dramatically in the 21 to 75 msec
region of the temporal intensity function. Thus, not only were the

Figure 7. Examples of instantaneous esti-
mates of the spatial and temporal intensity
functions from two deep EC neurons. Each
column represents the functions for a single
neuron. The spatial intensity functions illus-
trate the variety of spatial receptive fields
shapes found in the deep EC. The temporal
intensity functions of deep EC neurons re-
flected the very small number of intervals
�10 msec and generally had a peak near 120
msec, the period of the theta rhythm. Once
again, the variability present in the portion of
the temporal intensity function correspond-
ing to larger ISIs (
300 msec) is attributable
to the infrequent sampling of this region.

Frank et al. • Contrasting Patterns of Plasticity in CA1 and the EC J. Neurosci., May 1, 2002, 22(9):3817–3830 3827



dynamics of the spatial intensity function different between CA1
and the deep EC, but so too were the dynamics of the temporal
intensity function. Those differences, when combined with the
contrasting patterns of spatial coding seen in CA1 and the deep
EC (Frank et al., 2000, 2002), indicate that substantial processing
takes place in the circuitry between CA1 and the deep EC.

The overall decrease seen in the activity of deep EC cells is
consistent with previous observations from other types of tasks in
which repeated presentations of the same stimulus lead to a
reduction in response in the EC and other temporal lobe regions
in both rats and monkeys (Miller et al., 1991; Li et al., 1993; Fahy
et al., 1993; Miller and Desimone, 1994; Zhu et al., 1995; Suzuki
et al., 1997; Young et al., 1997; Xiang and Brown, 1998, 1999).
Thus, similar processes may mediate the reduction in response in
spatial, as well as nonspatial, tasks.

Furthermore, Miller and Desimone (1994), in an experiment in
which recordings were made from primate inferotemporal (IT)
cortex in animals performing a serial match-to-sample task,
showed that, although the majority of IT neurons showed decre-
mental responses, a subset of them showed incremental responses

to the second presentation if it was a match to the sample
stimulus. That suggests that there is a correlation between recep-
tive field plasticity and neural coding properties. We therefore
examined our data for a similar correlation.

We found that those deep EC neurons that showed a substan-
tial increase in spatial area differed from other deep EC neurons
in two ways. First, whereas the temporal intensity functions of the
non-increasing group showed a dramatic decline in the burst-to-
theta (21–75 msec) region, those of the increasing area group did
not show that decline. Very little is known about the deep EC, so
it is difficult to attribute that change to a specific mechanism, but,
nonetheless, these findings suggest that receptive field plasticity
in the deep EC is associated with a mechanism that selectively
changes the propensity of deep EC neurons to fire at those ISIs.

Second, we found that the activity of deep EC cells whose
spatial intensity function tended to increase in area was signifi-
cantly more place specific than that of deep EC cells with a
non-increasing spatial intensity function. It is important to note
that there is no reason that increasing spatial area should be
associated with position specificity; an increase in area can result

Figure 8. Mean and SEs for the estimates of the spatial and temporal statistics for CA1 neurons. The black line in each plot represents the trajectory
of the mean for the statistics, and the gray lines represent the mean � SE. A, The trajectories for the statistics of the spatial function. Unlike CA1 neurons,
the spatial intensity functions of deep EC neurons tended to decrease in area by �6% over the course of 40 passes. The mean of the spatial intensity
function also showed no tendency to move backward, and no trends were found for the skewness. There was also a decrease of �7% in the scale,
suggesting that the fields become somewhat more concentrated over time. B, The trajectories for the statistics of the temporal function. All regions of
the temporal intensity function showed decreases, but the decrease was significant only for the burst-to-theta region in which the decrease averaged 9%.
Thus, the decrease in the spatial area of the intensity function was associated with a relatively large decrease in the burst-to-theta region of the intensity
function. When the model was run without a temporal intensity function, the spatial area decreased by �15%, indicating that the combination of spatial
and temporal function declines results in the decrease of �15% in the firing rate of these neurons over 40 passes through the environment.
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in either diminished or increased spatial specificity depending on
where the increase occurs. Thus, these deep EC neurons resemble
CA1 neurons in terms of both their relatively high position
specificity and the plasticity seen in their spatial receptive fields.

Because cells in the subiculum, the other major hippocampal
region input to the deep EC, show only weakly place-specific
firing (Barnes et al., 1990; Sharp and Green, 1994; Sharp, 1997
1999), the relationship between spatial coding and receptive field

Figure 9. The temporal intensity functions for the increasing and non-increasing groups of deep EC neurons. Deep EC neurons were split into two
groups based on the change observed in their spatial intensity function, one whose spatial area increased by at least 20% and another whose spatial area
increased by �20% or decreased. A, The temporal intensity functions for the increasing group. B, The temporal intensity functions for the non-increasing
group. Once again, the burst-to-theta (21–75 msec) region showed by far the greatest changes, with a small but nonsignificant increase in the case of the
increasing group and a large, significant decrease of �14% for the decreasing group. Thus, the difference in spatial receptive field change between these
two groups are associated primarily with changes in the propensity for these neurons to fire in intervals of 21 to 75 msec. Unfortunately, little is known
about the physiology of neural circuitry in the deep EC, so these results are, at present, difficult to relate to a specific mechanism.

Figure 10. Examples of instantaneous recep-
tive fields from deep EC neurons with increasing
(lef t column) and non-increasing (right column)
spatial intensity function areas. Each plot repre-
sents the spatial intensity function of a single
deep EC neuron. On average, the neurons with
increasing spatial intensity functions had more
restricted spatial receptive fields than neurons
with non-increasing spatial intensity functions.
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plasticity in the deep EC may reflect differences in the amount of
direct CA1 input that these deep EC cells receive. This subpopu-
lation may be important in transmitting information about the
animal’s spatial location to other brain regions as opposed to
other deep EC neurons that represent relationships among spa-
tially distinct positions (Frank et al., 2000).
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