The Journal of Neuroscience, December 15, 2002, 22(24):10811-10818

Isolation of Relevant Visual Features from Random Stimuli for

Cortical Complex Cells
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A crucial step in understanding the function of a neural circuit in
visual processing is to know what stimulus features are repre-
sented in the spiking activity of the neurons. For neurons with
complex, nonlinear response properties, characterization of
feature representation requires measurement of their responses
to a large ensemble of visual stimuli and an analysis technique
that allows identification of relevant features in the stimuli. In the
present study, we recorded the responses of complex cells in
the primary visual cortex of the cat to spatiotemporal random-
bar stimuli and applied spike-triggered correlation analysis of
the stimulus ensemble. For each complex cell, we were able to
isolate a small number of relevant features from a large number

of null features in the random-bar stimuli. Using these features
as visual stimuli, we found that each relevant feature excited the
neuron effectively in isolation and contributed to the response
additively when combined with other features. In contrast, the
null features evoked little or no response in isolation and divi-
sively suppressed the responses to relevant features. Thus, for
each cortical complex cell, visual inputs can be decomposed
into two distinct types of features (relevant and null), and addi-
tive and divisive interactions between these features may con-
stitute the basic operations in visual cortical processing.
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An important goal in studying the receptive-field properties of
visual neurons is to understand how they respond to complex
spatiotemporal inputs, including those encountered in natural
scenes. To analyze the responses to complex stimuli, a useful
approach is to decompose the stimuli into a set of basic features
(basis set) and to characterize how each feature contributes to the
neuronal response. Several methods have been used to define
basis sets for the efficient representation of visual stimuli, includ-
ing principal component analysis (PCA), independent component
analysis (Bell and Sejnowski, 1997; van Hateren and Ruderman,
1998), and/or analysis based on sparse coding (Olshausen and
Field, 1996). For studying the response properties of a given
visual neuron, it is desirable to construct a basis set so that the
neuron responds to only a small number of visual features in the
set. The segregation between a small number of “relevant” visual
features and a large number of “irrelevant” features can greatly
facilitate experimental characterization of the visual neuron.
For neurons with a linear stimulus-response relationship, rel-
evant visual features can be identified by estimating their linear
receptive fields using a spike-triggered average of the stimulus
ensemble (also called “reverse correlation”) (de Boer and
Kuyper, 1968). This method has been widely used to measure the
spatiotemporal receptive fields of neurons in the early visual
pathway (Jones and Palmer, 1987; Reid et al., 1997); the resulting
receptive fields can largely account for the neuronal responses to
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complex spatiotemporal stimuli (Brodie et al., 1978; Dan et al,,
1996). However, in the visual cortex most of the neurons are
complex cells with nonlinear stimulus-response relationships that
cannot be characterized with the spike-triggered average. In the
present study, we have used spike-triggered correlation analysis of
the stimulus ensemble (de Ruyter van Steveninck and Bialek,
1988; Yamada and Lewis, 1999; Brenner et al., 2000) to construct
the basis set for each complex cell. We found that visual features
in such a set are clearly segregated into two categories: a small
number of relevant features and a large number of null features.
Using visual stimuli consisting of either a single feature or a
combination of features, we directly measured the contribution of
each type of feature to the cortical responses.

MATERIALS AND METHODS

Physiological preparation. Adult cats (2-3 kg) were initially anesthetized
with isoflurane (3%, with O,) followed by sodium pentothal (10 mg/kg,
i.v., supplemented as needed). During recording, anesthesia was main-
tained with sodium pentothal (3 mg - kg ~*' - hr ~%, i.v.), and paralysis was
maintained with pancuronium bromide (0.1-0.2 mg-kg ' +hr ', i.v.).
The pupils were dilated with 1% atropine sulfate, nictitating membranes
were retracted with 2.5% phenylephrine hydrochloride, and the eyes
were mechanically stabilized and optimally refracted. End-expiratory
CO, was maintained at 4%, the core body temperature was kept at 38°C,
and the electrocardiogram and EEG were monitored continuously. All
experimental procedures were performed as approved by the Animal
Care and Use Committee at the University of California, Berkeley.

Recording. Extracellular recordings were made with tungsten elec-
trodes (A-M Systems, Carlsborg, WA). Unit isolation was based on the
cluster analysis of waveforms and the presence of a refractory period
determined from the autocorrelograms. Cells were classified as simple if
their receptive fields had clear on and off subregions (Hubel and Wiesel,
1962) and if the ratio of the first harmonic to the DC component of the
response to an optimally oriented drifting grating was >1 (Skottun et al.,
1991). All other cells were classified as complex. Among the 61 complex
cells recorded, one was excluded from analysis because of its low firing
rate in response to random-bar stimuli (<1 spike per second).

Visual stimulation. Visual stimuli were generated with a personal
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computer and presented with a Barco monitor (size, 40 X 30 cm; refresh
rate, 120 Hz; maximum luminance, 80 cd/m 2). Luminance nonlinearities
were corrected using software written in our laboratory. The random-bar
stimuli were presented in a rectangular patch covering the receptive field
of each cell. This patch was divided into 16 bars aligned to the optimal
orientation of the cell; the length of the bars was equal to or slightly
longer than the receptive field. The contrast of each bar was temporally
modulated according to a pseudorandom binary m-sequence (Sutter,
1987) (luminance, +39 cd/m? from the mean of 40 cd/m?). The full
m-sequence was 32,767 frames long and was updated every other frame,
for an effective frame rate of 60 Hz. To measure the contrast-response
functions of individual features (see Fig. 5), we randomly interleaved
short movies (16 frames per movie) of relevant and null features, each at
a range of contrasts (positive and negative, see below for definition of
contrast), with no gap between movies. To measure the interaction
between two relevant features (see Fig. 6), we generated a set of short
movies containing all possible linear combinations of the two features.
The number of repetitions for each short movie varied between 1 and
120, which was proportional to the probability of the corresponding
feature contrast in the random-bar stimuli (for example, the probability
of a high contrast for a given feature in the random-bar stimuli is
generally lower than the probability of a low contrast for the same
feature; thus, the movie of the feature at the high contrast was repeated
fewer times). Note that in each movie, which contains either a single
feature or a combination of features, the luminance of each bar must be
between —1 and 1 (corresponding to 0 and 80 cd/m?, respectively), which
limits the maximum contrast of each feature that can be presented (the
definition of contrast is described below).

Spike-triggered correlation analysis. In general, if certain features in the
visual stimuli affect the firing probability of the cell, the spike-triggered
stimulus ensemble should exhibit a different probability distribution from
the entire stimulus ensemble (see Fig. 1B; compare the distribution of
the filled circles and the distribution of all of the circles). Although a
change in the probability distribution can be reflected in a change in the
first-order (mean), second-order (variance), or higher-order moments,
the correlation analysis aims to identify features with changed variance.
Because PCA results in a set of components with their variance ranking
from the highest to the lowest, it is ideally suited for the identification of
features with outstanding variance. Practically, identification of relevant
features was achieved by finding eigenvalues of the spike-triggered cor-
relation matrix that were significantly different from the eigenvalues of
the control correlation matrix (computed by randomly sampling the
entire stimulus ensemble). For each cell, responses to three to four
repeats of the random-bar stimuli (~9 min) were used for spike-triggered
correlation analysis. Each pattern in the stimulus ensemble consisted of
luminance at 16 bar positions at 16 frames (assuming that neuronal
spiking probability depends only on the immediate stimulus history
within 16 frames, lasting for 268 msec), which was uniquely specified by
256 parameters. The spike-triggered correlation matrix, [C,, ,] (m,n =1,
2, ..., 256) was computed as follows:

1 N
Cm,n = X] ;Sm(l)sn(l)y

where S,,(/) and S,(i) are the mth and nth parameters of the stimulus
pattern preceding the ith spike, respectively, and N is the total number of
spikes in the response. The resulting matrix is closely related to the
second-order Wiener kernel (Wiener, 1958; Marmeralis and Marmeralis,
1978) of the neuron. Eigenvalues and eigenvectors of this spike-triggered
correlation matrix were then computed. To compute each control corre-
lation matrix, we generated a random spike train with the same number
of spikes as in the recorded response but with random spike timing; the
correlation matrix was computed based on this simulated random spike
train. Because subsequent experiments required fast identification of the
significant eigenvectors, we computed only five control correlation ma-
trices for each cell during the experiments; the confidence interval for
the control eigenvalues was set at mean * 5.2 SD (corresponding to p <
10 ~*). Eigenvectors with eigenvalues outside of the control confidence
interval were considered significant. Subsequent offline analyses with 100
control matrices confirmed that the significant eigenvectors were identi-
fied reliably using only five control matrices.

An important question is how the constraints of the above method
affect the outcome of the analysis. For example, the eigenvectors must be
orthogonal, which could affect the visual features identified. As shown in
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Figure 4, the two significant eigenvectors for most complex cells exhib-
ited similar spatial frequencies; one might suspect that the ~90° spatial
phase difference between them resulted from the orthogonality between
the two vectors. However, this is not the case. First, both vectors are
spatiotemporal patterns. The fact that the dot product of them is 0
(summed over all temporal delays) does not uniquely specify their spatial
relationship at each temporal delay. Second, two Gabor functions (which
were used to fit the spatial profiles of the vectors in Fig. 4) with a 90°
phase difference are generally not orthogonal to each other. Even if the
two vectors are orthogonal at each temporal delay (which is not imposed
by the method), their phase difference still may not be 90°. Thus, the
spatial phase relationship we have shown is not a trivial consequence of
the method but is a reflection of the response property of complex cells.
Another question is whether this method allows identification of visual
features that are not orthogonal to each other. Generally, even if the
features are not orthogonal, this method can still be used to identify
linear combinations of the features. Subsequently, the relationship be-
tween the visual features and the neuronal response may be revealed by
measuring the joint contrast-response function of the significant eigen-
vectors (see Fig. 6A4). Finally, although PCA is a linear method for
decomposing each stimulus into the sum of multiple eigenvectors, it does
not require additive interaction between different eigenvectors in the
response of the neuron. Even if the cell does not sum the responses to
different features, this method can still identify either the individual
features or linear combinations of them. The type of interaction between
visual features can then be determined through analysis of the joint
contrast-response function. These points can be demonstrated using
simulated responses of model cells with the feature selectivity described
above (data not shown). Finally, it is important to keep in mind that this
method does not necessarily identify all of the features that affect the
responses of the neuron, especially those that contribute weakly to the
response.

Contrast-response function. For measuring the contrast-response func-
tions, the contrast of the kth eigenvector in the stimulus, Vy, is defined as
the dot product between the stimulus vector and the eigenvector, as
follows:

16 16

1
6 2 2 Vaxnsed),

t=1 x=1

where —1 = S(x,f) = 1 represents luminance at the tth temporal frame in
the xth bar position of the stimulus pattern. Because the eigenvectors are
normal:

16 16

2 E Vo)l =1,

t=1 x=1

the scaling factor 1/16 in the definition ensures that the contrast of each
stimulus pattern is bound between —1 and 1. In the joint contrast—
response function, the contrasts of both eigenvectors (Figs. 64,B, 74,
contrast 1 and contrast 2) are defined the same as above.

Estimation of upper limit for correlation coefficient. To estimate the
upper limit for the correlation coefficient between the predicted and
measured contrast—response functions of relevant visual features (see
Fig. 6), we simulated the functions measured from a finite number of
repeats using a parametric bootstrap (Efron and Tibshirani, 1993).
Briefly, for each stimulus that was repeated L times in the experiment
with recorded responses ry, r,, ..., r; we simulated the response by
drawing random samples (r,’, 7>/, ..., ri', from a Gaussian distribution
with the same mean and variance as the recorded responses (1, 75, . . . ,
r) and computed the average of the simulated responses, as follows:

1

L
>
i=1

=

Repeating this step for all of the contrast levels resulted in a simulated
contrast-response function with a noise level comparable with that
measured experimentally. We then computed the mean * 95% confi-
dence interval (obtained from 500 simulations) of the correlation coef-
ficient between contrast-response functions obtained in different trials of
the simulation. This was used as an estimate of the upper limit for the
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Figure 1. Illustration of a spike-triggered correlation analysis. 4, Spa-
tiotemporal random-bar stimuli (fop) and the spike train response (bot-
tom). Each bracket indicates a spatiotemporal stimulus pattern preceding
a spike (for actual analysis, each pattern contained 16 rather than 3
frames). B, Schematic representation of the spike-triggered stimulus en-
semble (filled circles) and the entire stimulus ensemble (open and filled
circles) in a multidimensional parameter space. Each axis (black arrows)
represents luminance at a particular bar position and time frame, and
each point represents a stimulus pattern. Note that the actual stimulus
ensemble is represented in a 256-dimensional space (16 frames by 16
bars). a—c indicate stimulus patterns shown in 4. The gray arrow indicates
an eigenvector of the spike-triggered ensemble with its eigenvalue (vari-
ance) greater than the eigenvalues of the entire ensemble.

correlation coefficient between the predicted and measured contrast—
response functions set by noise in the measured responses.

RESULTS

Segregation between two types of visual features

Single-unit recordings were made from complex cells in the
striate cortex of anesthetized adult cats. The stimuli consisted of
16 bars along the preferred orientation of the cell, with each bar
varying randomly between light and dark at 60 Hz (Fig. 14). To
construct a basis set for each neuron that isolates the relevant
visual features, we collected the spatiotemporal visual signals
within a window of 268 msec (16 frames) before each spike and
performed principal component analysis of this spike-triggered
stimulus ensemble (Fig. 1B, filled circle) (see Materials and Meth-
ods). Unlike the spike-triggered average, which is the mean of the
spike-triggered stimulus ensemble, the present method identifies
a set of visual features (represented by eigenvectors of the spike-
triggered correlation matrix) that account for different amounts
of variance (the corresponding eigenvalues) in the ensemble. A
visual feature with an outstanding variance (significantly larger or
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smaller than the variance of the control ensemble) (Fig. 1B, open
circle) is directly relevant to the spiking response of the neuron.

Figure 24 shows the 30 largest eigenvalues of the spike-
triggered correlation matrix for a complex cell. Two eigenvalues
(filled circles) conspicuously stood out from the rest (open circles),
suggesting that the corresponding visual features (eigenvectors)
are particularly relevant to the cell. The dashed lines indicate the
confidence interval for eigenvalues of the control stimulus ensem-
ble, sampled randomly from the random-bar stimuli (see Materi-
als and Methods). The first two eigenvalues of the spike-triggered
ensemble were well above the control, indicating significance of
the corresponding eigenvectors. Figure 2B shows three eigenvec-
tors, two corresponding to the significant eigenvalues (first and
second) and one to a nonsignificant eigenvalue (nth). Although
the spatiotemporal structure of the nonsignificant eigenvector
appeared to be random, the significant eigenvectors had spatially
separate on and off subregions evolving smoothly over time. To
further confirm the distinction between these two types of eig-
envectors, we compared both their eigenvalues and the correla-
tion in their structures (which is a measure of nonrandomness) for
a population of complex cells (n = 60). Figure 2C shows the
distributions of the significant and nonsignificant eigenvalues;
Figure 2D shows the distributions of the correlation of the eig-
envectors (legend to Fig. 2). The two types of eigenvectors
showed little overlap in both properties, indicating an unambig-
uous segregation between them.

For most (47 of 60) of the complex cells studied, we found two
significant eigenvectors (Fig. 3), corresponding to the two largest
eigenvalues. These two eigenvectors exhibited separate on and off
spatial subregions (Fig. 2B), resembling the receptive fields of
simple cells. The relationship between the two vectors was re-
vealed by fitting their spatial profiles at the peak temporal delay
(~40 msec preceding spike) with Gabor functions (Fig. 44). In
all cases, the Gabor fits for the two vectors exhibited similar
spatial frequencies but a difference of ~90° in phase (Fig. 4B),
reminiscent of the relationship between different subunits in the
energy model for complex cells (Movshon et al., 1978; Pollen and
Ronner, 1981; Adelson and Bergen, 1985; Heeger, 1991). As
explained in detail in Materials and Methods, this phase relation-
ship reflects the response property of complex cells and is not a
trivial consequence of the orthogonality between eigenvectors,
which is imposed by the method. In a few cases (3 of 60), we found
only one significant eigenvector for each complex cell; these
vectors also exhibited spatiotemporal profiles resembling simple-
cell receptive fields. In the remaining cases, more than two
eigenvalues reached significance. However, these additional eig-
envectors (corresponding to third, fourth, ..., largest eigenval-
ues) tended to exhibit much less spatiotemporal structure than the
first two eigenvectors, and their eigenvalues were much smaller,
suggesting less functional importance.

Responses of cortical neurons to individual

visual features

The clear segregation between the significant and nonsignificant
eigenvalues suggests that the corresponding eigenvectors contrib-
ute differently to the cortical responses. To test this idea directly,
we measured the responses of each complex cell to individual
vectors in both categories. Each vector (a 268 msec movie) was
presented at a range of positive and negative contrasts (see
Materials and Methods for the definition of contrast), and the
peristimulus time histograms (PSTHs) of the cell were measured
(Fig. 54). Note that only the last bin (indicated by an arrow) of
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Figure 2. Distinction between the sig- A
nificant and nonsignificant eigenvec-
tors. A, The 30 largest eigenvalues of
the spike-triggered correlation matrix
of a complex cell. Dashed line, Control
confidence interval (p = 10 %) ob-
tained by random sampling of the en-
tire stimulus ensemble (100 repeats;
see Materials and Methods). Filled cir-
cles, Eigenvalues that are significantly
different from the control; open circles,
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nonsignificant eigenvalues. B, Two sig-
nificant eigenvectors (first and second) Y 10 20
and one nonsignificant eigenvector
(nth; n = 15 in this case) whose eigen-
values are indicated by the large circles
in A. Arrow, 40 msec (the delay at
which the spatial profiles of the eigen-
vectors are shown in Fig. 44). Calibra-
tion: 1°, 100 msec. C, Distributions of
significant (sig.; solid line) and nonsig-
nificant (nonsig.; dashed line) eigenval-
ues from 60 complex cells. Each eigen-
value was normalized by the mean
eigenvalue of the cell. D, Distribution
of temporal correlation in significant
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shown here was measured by the autocorrelation at the delay of 1 frame (16.7 msec) normalized by the autocorrelation at 0 delay, as follows:

16 16
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where V(x,t) represents the luminance value of the eigenvector at pixel x and temporal delay ¢ (see Materials and Methods). This value provides a measure
of the nonrandomness of the eigenvector structure between 0 (completely random) and 1 (temporally uniform).
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Figure 3. Distribution of the number of significant eigenvectors found
for each cell, from a total of 60 complex cells.

each PSTH reflects the neuronal response to the complete spa-
tiotemporal visual feature represented by the eigenvector; its
amplitude was used to measure the contrast-response function.
Figure 5B shows the contrast-response functions of a complex
cell for two significant eigenvectors and one nonsignificant eigen-
vector. For each significant eigenvector, the response increased
with the absolute value of the contrast at both positive and
negative polarities, consistent with the known polarity invariance
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Figure 4. Relationship between the two most significant eigenvectors. A4,
Spatial profiles (solid lines) of the two significant eigenvectors shown in
Figure 2B at 40 msec from spiking (arrows) and their Gabor fits (dashed
lines). The two Gabor fits had a phase difference of 90.4°. Dotted line
represents mean luminance. B, Distribution of the spatial phase difference
between the two significant eigenvectors of each complex cell.

of complex cells (Hubel and Wiesel, 1962). The nonsignificant
eigenvector, however, evoked no contrast-dependent response.
We fitted the left and right sides of each contrast-response
function separately with a power function, y(x) = Blx|”, where x
and y represent the vector contrast and the neuronal response,
respectively, and 8 and vy are free parameters. For the significant
eigenvectors, the exponent y was found to be 2.7 = 0.1 (SEM; n =
34), similar to the exponent of contrast-response functions mea-
sured with drifting gratings (Albrecht and Geisler, 1991; Anzai et
al,, 1999). The ratio between the response at maximal vector
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contrast and that at zero contrast was 96.6 *= 11.8. Thus, visual
features represented by the significant eigenvectors can each drive
the cortical neuron effectively in a contrast-dependent manner;
they are referred to as relevant features. For the nonsignificant
eigenvectors, the ratio between the responses at maximal and
zero contrasts was 3.8 = 0.9 (n = 24), much lower than that for
the significant eigenvectors. Thus, visual features represented by
the nonsignificant eigenvectors evoked little contrast-dependent
response and were therefore termed null features.

Additive interaction between relevant visual features

Each spatiotemporal random-bar pattern can be decomposed into
a combination of relevant and null features in the basis set. To
understand cortical responses to arbitrary random-bar stimuli, it
is necessary to characterize not only the contrast-response func-
tions for individual features (Fig. 5) but also the interaction
between features. First, we measured the responses of each com-
plex cell to combinations of relevant features. For each neuron
with two significant eigenvectors, we constructed a set of visual
stimuli, each of which was a 268 msec movie consisting of a linear
combination of the two significant eigenvectors. Figure 6.4 shows
the responses of a complex cell at various combinations of the two
vectors, which is referred to as the joint contrast-response func-
tion (see Materials and Methods). The response increased with
the absolute value of contrast of either vector independently of
their polarities, consistent with the contrast-response functions
measured with individual vectors (Fig. 5B). Note that each com-
bination of the two vectors also exhibited spatially separate on
and off subregions (small outer plots), with the spatial phase
shifting with the relative weights of the two vectors. The approx-
imate circular symmetry of the joint contrast-response function
indicates that the response is insensitive to the spatial phase of
the stimuli, a well known property of cortical complex cells
(Hubel and Wiesel, 1962; Movshon et al., 1978).

The approximate circular symmetry of the joint contrast-re-
sponse function also suggests additive interaction between the
two significant eigenvectors. To examine this idea quantitatively,
we predicted the response to each combination of the two vectors
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2nd Figure 5. Responses of a complex cell
120 (different from that shown in Fig. 2) to

individual features. A4, Responses to two

significant eigenvectors (first and sec-
ond) and one nonsignificant eigenvector
(nth, randomly chosen for each cell; n =
8 in this case). The fop panel of each row

m
=1

Response (spikes/s)

01 0 01 shows the eigenvector presented at a
range of positive (right) and negative
120 nth (left) contrasts. Calibration: 1°, 100

msec. The PSTH in response to each

stimulus is plotted below, with the arrow

60 indicating the last time bin of the PSTH.

B, Contrast-response function (ampli-

tude of the last bin in each PSTH) for

0 | T each vector (bars) and the fit of each side
01 0 0.1 with a power function (/ine). Error bars
Contrast indicate SEM.

by summing the response to each vector at the corresponding
contrast. As shown in Figure 6B, this prediction reproduced well
the overall profile of the measured contrast-response function.
Figure 6C shows the predicted responses (Fig. 6B) plotted against
the measured responses (Fig. 6A4) at corresponding contrasts; the
correlation coefficient between them was found to be 0.84. To
determine whether the difference between the predicted and the
measured responses was attributable to systematic errors of the
additive model or to the noise in the measured responses, we
estimated the upper limit of the correlation coefficient set by
noise in the responses. A contrast-response function measured in
a single experiment was simulated with a Monte Carlo method,
taking into consideration the variability of the measurement (see
Materials and Methods); the contrast-response functions simu-
lated in different trials were compared. As shown in Figure 6D,
the correlation between the responses simulated in different trials
(correlation coefficient, 0.87) was comparable with that between
the predicted and measured responses, indicating that the addi-
tive model is consistent with the experimental results within the
limit set by noise. Figure 6 E summarizes the correlation coeffi-
cients between the measured and the predicted contrast-response
functions for the 13 complex cells analyzed. In 12 of the cells, the
correlation coefficient was not significantly different from that
between simulated responses (p > 0.05), indicating that the
model based on additive interaction provides an adequate de-
scription of the cortical responses to combinations of relevant
visual features.

Divisive effect of the null features

Certain visual stimuli that do not evoke spiking responses on
their own may nevertheless modulate cortical responses to other
stimuli. Such nonlinear effects are well known for stimuli at
nonpreferred orientations (Bonds, 1989) or nonclassical receptive
fields (Allman et al., 1985; Walker et al., 2000) of cortical neu-
rons. Here we tested whether the null features, which evoked little
response when presented in isolation (Fig. 5), can modulate the
cortical responses evoked by relevant features. The interaction
between the relevant and null features was revealed by comparing
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Figure 6. Interaction between relevant
visual features. A4, Joint contrast-re-
sponse function of a complex cell (differ-
ent from Figs. 2 and 5), in which the
amplitude of the response (color-coded,
with the scale shown on the right in units
of spikes per second) is plotted against
the contrasts of both relevant features.
The outer plots depict the stimulus pat-
terns corresponding to selected points
(indicated by arrows) in the contrast-re-
sponse function. Calibration: 1°, 100
msec. The range of contrast represented
in the center box is —0.33 to 0.33; the
contrast of each feature varied at a step
size of 0.033. Responses were measured
only at contrasts at which the luminance
signals in the movie do not exceed the
range of the monitor. Gray indicates
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response function based on additive
interaction between the two vectors. The
left and bottom histograms represent the
contrast-response functions for the first
and second eigenvectors, respectively,
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sponses across all values of contrast 2 (average across each row). Similarly, the contrast-response function for vector 2 (bottom histogram) was computed
by averaging the responses in A across all values of contrast 1. Prediction of the response at each combination of contrast 1 and contrast 2 was then made
by summing the value in each of the histograms at the corresponding contrast. Predictions were made only for contrasts at which the actual responses
were measured in A. C, Measured response in A plotted against the additive prediction in B at corresponding contrasts. Each circle represents data at
one pair of contrasts. D, Response from one simulation (4) plotted against that from another (B) (see Materials and Methods). E, Correlation coefficients
between simulated responses plotted against the correlation coefficient between the predicted and measured contrast-response functions for 13 complex
cells. Vertical bars, 95% confidence intervals of correlation coefficients between simulated responses, with the mean indicated by the point (the mean is
not in the middle of the bar, because the distribution of the correlation coefficient is skewed).

Figure 7. Suppressive effects of null fea- A
tures. A, Contrast-response functions of

a complex cell for the two relevant fea-
tures measured in the absence (left) or
presence (right) of null features, with a
luminance scale indicated in the middle
(in spikes per second). The range of con-
trast represented in the boxes is —0.33 to
0.33. Contrasts of both features varied at
a step size of 0.033. The black line in the
right plot delineates the range of contrasts
shown in the left plot. Higher contrasts
for the relevant features were possible in
the presence of null features, because the
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superposition of certain null features can reduce the extreme luminance values in the short movie to levels within the monitor limit. B, Responses in the
left plot versus the responses in the right plot in A at corresponding contrasts (in spikes per second). Each circle represents data at one pair of contrasts.

The slope of the linear regression (dashed line) is 0.24.

the responses of each complex cell to relevant features alone (Fig.
6A) and to the random-bar stimuli (Fig. 14) that contain both the
relevant and the null features. Figure 74 shows the joint contrast—
response function of a complex cell for the two relevant features,
either in the absence (left) or presence (right) of null features.
Although the two contrast-response functions exhibited similar
shapes, the amplitude of the response to the random-bar stimuli
was much lower (Fig. 7B), indicating a suppressive effect of the
null features. Similar suppressive effects were observed for all of
the cells examined.

The simplest models for this type of suppression are subtrac-
tive and divisive, and we evaluated both models in describing the
effects of the null features. First, we fitted the contrast-response
function for each relevant feature, either in the presence or in the

absence of null features, with power functions (Fig. 5B). The
average scaling factor of the fit (8) was found to be 0.01 = 0.002
(n = 52) in the presence of the null features and 0.03 = 0.005 in
the absence of them. The average exponents (y) were 2.65 = 0.13
(n = 52) and 2.95 = 0.13 in the presence and absence of the null
features, respectively. Although the null features reduced the
scaling by a factor of ~3 (p < 0.0005; paired ¢ test), they did not
change the exponent systematically (p > 0.10). This is consistent
with the observation that the null features changed the amplitude
but not the shape of the contrast-response functions (Fig. 74),
suggesting a divisive effect. To compare directly the divisive and
the subtractive models, we used both models to predict the joint
contrast-response function measured in the presence of null
features (Fig. 74, right plot) from the function in the absence of
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Figure 8. Comparison between the subtractive and divisive models for
null features. Correlation coefficients between the measured responses
and the prediction based on the divisive model were plotted against the
correlation coefficients between the measured responses and the predic-
tion based on the subtractive model. Each point represents the result of
one cell. Error bar, 95% confidence interval, estimated using nonpara-
metric bootstrap (see Materials and Methods for the Monte Carlo
method used in the analysis).

null features (Fig. 74, left plot). Each model contained a single
free parameter (a scaling factor for the divisive model and a
subtractive constant for the subtractive model) to ensure the
fairness of the comparison. We found that for all of the cells
analyzed (n = 13), the divisive model performed significantly
better than the subtractive model (p < 0.02), as measured by the
correlation coefficient between the predicted and measured re-
sponses (Fig. 8). Finally, we also fitted the predicted response
based on the subtractive model with power functions. We found
that the mean exponent of the fit was 5.60 = 1.07 (n = 52),
significantly larger than that for the measured responses (p <
0.005; paired ¢ test). Together, these results support a divisive
rather than a subtractive model for the suppressive effect of the
null features.

DISCUSSION

In the present study, we have found that for each complex cell,
visual inputs can be decomposed into two types of visual features,
each having a distinct effect on the response of the cell. The two
relevant features found for most complex cells resemble the
receptive fields of simple cells, with a phase difference of ~90° in
their spatial profiles; their contrast-response functions exhibited
contrast polarity invariance and expansive nonlinearity reminis-
cent of a squaring function. Thus, the additive interaction be-
tween these relevant features corresponds closely to the energy
model for complex cells (Movshon et al., 1978; Pollen and Ron-
ner, 1981; Adelson and Bergen, 1985; Heeger, 1991). Although
the energy model is well known, it has not been tested quantita-
tively with complex spatiotemporal stimuli in previous studies.
The main difficulty in testing this model with complex stimuli
comes from the fact that the parameters describing the underlying
subunits of the energy model (simple-cell receptive fields) could
not be determined easily for each cell. In the present study,
relevant visual features were identified with spike-triggered cor-
relation analysis, which allowed us to measure the contribution of
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each feature to the cortical response directly and to demonstrate
the additive interaction between them (Fig. 6). This result is also
consistent with the finding that neural networks trained to predict
the responses of complex cells to random-bar stimuli contained
additive subunits resembling simple cells (Lau et al., 2002).

Divisive interactions have also been used to model the re-
sponses of both simple and complex cells (Heeger, 1992; Caran-
dini et al., 1997); they can account for the suppressive effects of
visual stimuli at nonpreferred orientations or nonclassical recep-
tive fields of the cortical neurons. Such divisive suppression may
reduce the redundancy in information carried by neighboring
neurons and enhance the efficiency of coding for natural scenes
(Schwartz and Simoncelli, 2001). Here, identification of a small
number of relevant features for each cell allows us to specify the
additive components in the visual inputs and to predict their
contributions to the neuronal response. The number of null
features that contribute to the suppression of cortical responses
may be considerably larger. A similar spike-triggered analysis
technique may be used to identify the null features that contribute
maximally to the divisive suppression of the responses (Schwartz
et al., 2001).

For sensory neurons with nonlinear stimulus—response rela-
tionships, it is often difficult to know a priori what visual stimuli
are relevant for probing the response properties (Touryan and
Dan, 2001). In the present study, we first isolated relevant fea-
tures from null features for each cell using spike-triggered corre-
lation analysis of the responses to a large ensemble of random
spatiotemporal stimuli. This allowed us to construct new visual
stimuli for each cell to measure the contribution of each type of
features to the cortical response efficiently. Although this method
has been used here to analyze the responses to random-bar
stimuli, it is also applicable to studying cortical responses to more
complex stimuli that vary in both dimensions of space (although
with an increased number of parameters this analysis will require
more data). Such a two-step approach may also prove to be useful
for understanding the response properties of nonlinear neurons in
other cortical areas and other sensory modalities.
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