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Abstract

We have previously shown that gene-expression alterations in normal-appearing bronchial 

epithelial cells can serve as a lung cancer detection biomarker in smokers. Given that microRNAs 

regulate airway gene-expression responses to smoking, we evaluated whether microRNA-

Principal Investigator: John Travaline; Co-Investigators: Peter Bercz, Wissam Chatila, Brian Civic, Francis Cordova, Gerard Criner, 
Gilbert D’Alonzo, Victor Kim, Samuel Krachman, Albert Mamary, Nathaniel Marchetti, Aditi Satti, Kartik Shenoy, Irene Permet 
Swift, Maria-Elena Vega Sanchez, Sheila Weaver, Nicholas Panetta, Parag Desai, Fred Kueppers, Namrata Patel, Kathleeen Brennan, 
Alex Swift, David Ciccolella, Fred Jaffe, Jamie Lee Garfield; Study Coordinators: Carla Grabianowski, Carolina Aguiar
University of Alabama, Birmingham, AL
Principal Investigator: Mark Dransfield; Study Coordinators: Sherry Tidwell
University of British Columbia, Vancouver, BC, Canada
Principal Investigator: Stephen Lam; Co-Investigators: Annette McWilliams; Study Coordinators: Sharon Gee
University of California- Davis, Sacramento, CA
Principal Investigator: Richart Harper; Co-Investigators: Ken Yoneda, Jason Adams, Katherine Cayetano, Andrew Chan, Heba Ismail, 
Charles Poon, Rokhsara Rafii, Christian Sebat, Yasmeen Shaw, Matthew Sisitki, Will Tseng; Study Coordinators: Maya Juarez, 
Kaitlyn Kirk, Claire O’Brien
University of Missouri, Columbia, MO
Principal Investigator: Vamsi Guntur; Co-Investigators: Normand Caron, Harjyot Sohal, Casey Stahlheber, Danish Thameem, Shilpa 
Patel, Ousama Dabbagh, Rajiv Dhand, Rachel Kingree, Yuji Oba, Jason Goodin; Study Coordinators: Marta Fuemmeler, Angie Vick, 
Michel O’Donnell
University of Pennsylvania, Philadelphia, PA
Principal Investigator: Anil Vachani; Co-Investigators: Andrew Haas Colin Gillespie, Daniel Sterman,; Study Coordinators: Kristina 
Maletteri, Karen Dengel
University of Virginia, Charlottesville, VA
Principal Investigator: George Verghese; Co-Investigators: Cynthia Brown, Elizabeth Gay, Borna Mehrad, Manojkumar Patel, Mark 
Robbins, C. Edward Rose, Max Weder, Kyle Enfield; Study Coordinators: Peggy Doherty
University of Wisconsin, Madison, WI
Principal Investigator: Scott Ferguson; Co-Investigators: Mark Regan, Jennifer Bierach; Study Coordinators: Michele Wolff
Vanderbilt University, Nashville, TN
Principal Investigator: Pierre Massion; Co-Investigators: Alison Miller; Study Coordinators: Gabe Garcia, Anna Ostrander, Wendy 
Cooper, Willie Hudson
Virginia Commonwealth University, Richmond, VA
Principal Investigator: Wes Shepherd; Co-Investigators: Hans Lee, Rajiv Malhotra, Ashutosh Sachdeva; Study Coordinators: Christine 
DeWilde, Anna Priday
William Jennings Bryan Dorn VAMC
Principal Investigator: Brian Smith and Andrea Mass; Study Coordinators: Justin Reynolds, Andrea Peterson, Isaac Holmes
Yale University, New Haven, CT
Principal Investigator: Gaetane Michaud; Co-Investigators: Daniel Boffa, Frank Detterbeck, Kelsey Johnson, Anthony Kim, Jonathan 
Puchalski, Lynn Tanoue, Kyle Bramley; Study Coordinators: Christina Carbone

Pavel et al. Page 2

Cancer Prev Res (Phila). Author manuscript; available in PMC 2019 September 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



expression is also altered in the bronchial epithelium of smokers with lung cancer. Using epithelial 

brushings from the mainstem bronchus of patients undergoing bronchoscopy for suspected lung 

cancer (as part of the AEGIS-1/2; clinical trials), we profiled microRNA-expression via small-

RNA sequencing from 347 current and former smokers for which gene-expression data was also 

available. Patients were followed for one year post-bronchoscopy until a final diagnosis of lung 

cancer (n=194) or benign disease (n=153) was made. Following removal of 6 low-quality samples, 

we used 138 patients (AEGIS-1) as a discovery set to identify four microRNAs (miR-146a-5p, 

miR-324–5p, miR-223–3p, miR-223–5p) that were down-regulated in the bronchial airway of lung 

cancer patients (ANOVA p<0.002, FDR<0.2). The expression of these microRNAs is significantly 

more negatively-correlated with the expression of their mRNA-targets than with the expression of 

other non-target genes (K-S p<0.05). Further, these mRNA-targets are enriched among genes 

whose expression is elevated in cancer patients (GSEA FDR<0.001). Finally, we found that the 

addition of miR-146a-5p to an existing mRNA-biomarker for lung cancer significantly improves 

its performance (AUC) in the 203 samples (AEGIS-1/2) serving an independent test set (DeLong 

p<0.05). Our findings suggest that there are microRNAs whose expression is altered in the 

cytologically-normal bronchial epithelium of smokers with lung cancer, and that they may regulate 

cancer-associated gene expression differences.

Keywords

Lung cancer; Airway; Biomarker; microRNA; Sequencing

Introduction

Lung cancer remains the leading cause of cancer death in the US and the world due, in large 

part, to our inability to detect the disease at its earliest and curable stage. Once a pulmonary 

lesion is identified, physicians must decide between CT surveillance vs. airway/lung biopsy. 

When biopsy is required, the approach can include bronchoscopy, transthoracic needle 

biopsy (TTNB), or surgical lung biopsy (SLB). The choice among these procedures is 

determined on the basis of considerations such as lesion size and location, the presence of 

adenopathy, the risk associated with the procedure, and local expertise. While bronchoscopy 

is relatively safe (less than 1% of procedures complicated by pneumothorax1), this 

procedure is limited by its sensitivity (from 34 to 88%), depending on the location and size 

of the lesion2. Even with newer bronchoscopic guidance techniques, the sensitivity for the 

detection of lung cancer is below 70% for peripheral lesions3.

A nondiagnostic bronchoscopy in this setting leads to a clinical dilemma as to which of 

these patients should undergo further invasive diagnostic testing (TTNB or SLB). To 

facilitate this clinical decision, we recently developed and validated a gene expression-based 

classifier that distinguishes between smokers with and without lung cancer using mRNA 

isolated from cytologically normal cells in the mainstem bronchus4,5. We demonstrated that 

this biomarker can improve the diagnostic sensitivity of bronchoscopy for lung cancer 

detection.
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The ability to identify gene expression changes associated with cancer status in the normal 

appearing airway supports the idea of an airway molecular field of injury spanning the 

respiratory tract6. In this current study, we extend the field of injury concept to microRNAs. 

MicroRNAs are a class of small, noncoding RNAs that repress gene expression and protein 

translation of their targets by complementary binding to the 3’ UTR of RNA transcripts. In 

addition, compared to mRNAs, microRNAs are thought to be more stable molecules, 

making them more easily measured in degraded tissues7. Previous studies have shown that 

smoking alters the expression of microRNAs in the bronchial airway epithelium8,9. We 

hypothesize that similar to mRNA, there might also be microRNA expression changes 

associated with the presence of lung cancer in bronchial epithelium from the mainstem 

bronchus that may play a role in regulating cancer-associated gene expression differences, 

and that integrating microRNA with gene expression could improve lung cancer detection.

Materials and Methods

Selection of patients

As previously described, over 1000 current and former smokers undergoing bronchoscopy 

for suspected lung cancer were enrolled in the Airway Epithelial Gene Expression in the 

Diagnosis of Lung Cancer (AEGIS) trials, two independent, prospective, multicenter, 

observational studies (registered as NCT01309087 and NCT00746759)4,5. Exclusion criteria 

for patients enrolled in AEGIS trials were age less than 21 years, no history of smoking 

(defined as having smoked <100 cigarettes), and a concurrent cancer diagnosis or history of 

lung cancer. All study protocols were approved by the institutional review board at each 

medical center and written informed consent was obtained from all patients prior to 

enrollment. Patients were followed prospectively for up to one year post bronchoscopy until 

a final diagnosis was obtained.

In this study, we profiled microRNA expression via small RNA sequencing for 347 AEGIS 

patients. In choosing patients to include in our study, we were limited by patients with a 

benign diagnosis and matched them approximately 1:1 with patients diagnosed with lung 

cancer. Moreover, we attempted to balance the cases and controls for smoking status, 

cumulative smoke exposure (pack-years), gender, and age. For all of the samples selected for 

small RNA sequencing, gene expression profiling of the large RNA fraction had been 

performed previously using Affymetrix Human Gene 1.0 ST arrays4,5 and was available for 

data integration.

We assigned 138 (~ 40%) samples from AEGIS-1 to be used as a discovery set (Table 1); 

these samples were drawn exclusively from the training set previously used to develop the 

gene expression classifier4,5. The remaining 203 samples comprise our test set (Table 1) and 

consist exclusively of samples from the AEGIS-1 (n = 133) and AEGIS-2 (n=70) test sets 

that were previously used to validate the gene expression classifier5.

High-throughput sequencing of small RNA

Based on our previous work on the effect of multiplexing on microRNA expression 

quantitation10, we sequenced 347 samples in three batches by multiplexing 12 samples per 
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lane on an Illumina HiSeq 2000. 200 ng of total RNA from each sample was used for library 

preparation. The TruSeq Small RNA Sample Prep Kit (Illumina) was used for the first batch, 

while the NEBNext Multiplex Small RNA Library Prep Set (Illumina) was used for the 

second and third batches. RNA adapters were ligated to 3’ and 5’ ends of the RNA and the 

adapter-ligated RNA was reverse transcribed into single-stranded cDNA. The RNA 3’ 

adapter was designed to target microRNAs and other small RNAs that have a 3’ hydroxyl 

group resulting from enzymatic cleavage by Dicer or other RNA processing enzymes. The 

cDNA was then amplified by PCR, using a common primer and a primer containing one of 

12 index sequences. The introduction of the six-base index tag at the PCR step allowed 

multiplexed sequencing of different samples in a single lane of a flowcell. A 0.5% PhiX 

spike-in was also added in all lanes for quality control. Each multiplexed library was 

hybridized to one lane of the four 8-lane High-Output single-read flow cells on a cBot 

Cluster Generation System (Illumina) using TruSeq Single-Read Cluster Kit (Illumina). The 

clustered flowcell was loaded onto a HiSeq 2000 sequencer for a multiplexed sequencing 

run which consists of a standard 36-cycle sequencing read with the addition of a 7-cycle 

index read.

MicroRNA alignment and quality control

To estimate microRNA expression we used a small RNA sequencing pipeline previously 

described10. Briefly, the 3′ adapter sequence was trimmed using the FASTX toolkit. Reads 

longer than 15 nt were aligned to hg19 using Bowtie v0.12.7 11 allowing up to one mismatch 

and alignment to up to 10 genomic locations. MicroRNA expression was quantified by 

counting the number of reads aligning to mature microRNA loci (miRBase v20) using 

Bedtools v2.9.012,13. MicroRNA counts within each sample were normalized to log2 RPM 

values by adding a pseudocount of one to each microRNA, dividing by the total number of 

reads that aligned to all microRNA loci within that sample, multiplying by 1 × 106, and then 

applying a log2 transformation10. The log2 RPM expression values follow a normal 

distribution by an Anderson-Darling test14 (p = 2.2 × 10−16).

Next, we examined the distribution of read lengths present in each sample to ensure that the 

sequences we observed were of the proper length for microRNA. The read length 

distribution ought to follow a normal distribution with a mean of 22 bases. We filtered out 

samples whose distribution had an abundance of reads well below or above the mean of 22 

bases (with less than one million reads aligned to 22 read length), indicating that the sample 

was not properly sequenced, the adapters were improperly trimmed, or the sample was of 

poor quality. Six such samples were removed, leaving 341 samples included in the 

downstream analysis. Additionally, we removed microRNA loci with a low number of 

aligned reads (less than 20 on average). A total of 463 microRNA loci passed our filter and 

were included in the analysis. Lastly, we applied ComBat15 to normalize the microRNA 

expression in the three different batches. Large scale variability in microRNA expression 

was examined by Principal Components Analysis (PCA). No outlier samples were detected 

using the first two principal components, and there were no apparent global differences in 

miRNA expression between samples from AEGIS-1 and AEGIS-2 (Supplementary Figure 

1).
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Data availability

Raw FASTQ files as well as the normalized microRNA expression data are available on 

Gene Expression Omnibus (GEO) under the GEO accession number GSE93284. We used 

mRNA data from Whitney et al.4,5 and Silvestri et al.4,5 (GSE66499).

Differential expression analysis

To identify smoking-associated microRNAs, while correcting for covariates, we applied an 

F-test (anova R function)16 between a multiple linear regression (lm R function), with 

microRNA expression as the response variable, and smoking status, age, gender, cancer 

status, and pack-years as independent variables, and another multiple linear regression that 

did not include the smoking status as an independent variable.

Similarly, to identify microRNAs with cancer-associated expression patterns in the discovery 

cohort, while correcting for covariates, we applied an F-test between a multiple linear 

regression, with microRNA expression as the response variable, and cancer status, age, 

gender, smoking status, and pack-years as independent variables, and another multiple linear 

regression that did not include the cancer status as an independent variable.

The p-values were adjusted for false discovery rate using Benjamini-Hochberg FDR17, and 

are denoted with q-value.

Identifying microRNA-mRNA relationships

We analyzed the correlations between the differentially expressed microRNAs and their 

targets as predicted in the Targetscan database18. We included the conserved targets as 

defined in TargetScan 5 and 6 (8mer >= 0.8; 7mer-m8 >= 1.3; 7mer-1A >= 1.6). The 

probability of conserved targeting19 has the advantage of identifying targeting interactions 

that are not only more likely to be effective but also those that are more likely to be 

consequential. Correlation coefficients were calculated using Pearson’s product-moment 

coefficient. For each microRNA, we compared the resulting distribution of correlation 

coefficients to the distribution of correlation coefficients between the microRNA and all the 

genes that have not been predicted to be targeted by it in Targetscan, using the Kolmogorov-

Smirnov (KS) test. Next, we tested whether the negatively correlated targets (correlation 

FDR<0.1) of each differentially expressed microRNA were enriched among the genes 

whose expression is associated with cancer status by Gene Set Enrichment Analysis 

(GSEA)20. For this enrichment analysis, genes were ranked by the t-statistic of a multiple 

linear regression, with microRNA expression as the response variable, and cancer status, 

age, gender, smoking status, and pack-years as independent variables.

Incorporating microRNA expression into the mRNA classifier

First, we calculated the prediction score of the mRNA classifier4,5. Then, for each cancer-

associated microRNA, we integrated the mRNA classifier score with the microRNA’s 

expression using logistic regression (glmnet R package). The coefficients of the logistic 

regression, corresponding to the intercept (α0 = 1.8480041), weight of the classifier score 

(α1 = 4.3879703), and weight of the microRNA’s expression (α2 = −0.3724577), were 

determined in the discovery set and the performance of the fully specified model was 
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evaluated in the independent test set samples. Classification performance was assessed using 

the area under the receiver operating characteristic curve (ROC AUC). The statistical 

significance of the AUC improvement was computed by DeLong test21 from the pROC R 

package22.

Results

Patient Population

microRNA expression was profiled via small RNA sequencing for 347 patients (194 cancer-

positive and 153 cancer-negative subjects) participating in the AEGIS-1 and AEGIS-2 trials. 

Of the 347 microRNA samples, 341 passed the sequencing quality control filter10. The 

characteristics of the discovery set (138 samples) and the test set (203 samples) are shown in 

Table 1. Except for cancer status, the other clinical variables are not significantly different 

between the training and test sets. We also found significant associations between cancer 

status and age and lesion size in the discovery set and with pack-years and lesion size in the 

test set (Supplementary Table 1).

Identifying smoking-associated microRNAs in airway epithelium

Previous work has shown that cigarette smoke creates a molecular field of injury throughout 

the airway, and specifically that microRNA expression is altered with tobacco smoke 

exposure9,23–28. We therefore used the ability to detect microRNAs with smoking-status 

associated expression as a positive control for the quality of the microRNA expression data.

A set of 28 microRNAs were previously identified as modulators of smoking-related gene 

expression changes in airway epithelium9, with most of them (n=23) being down-regulated 

in current smokers compared to never smokers. We found that the microRNAs previously 

identified as being repressed by smoking were significantly enriched among the microRNAs 

that were most down-regulated in current smokers from AEGIS (GSEA q<0.001), as shown 

in Figure 1.

In addition, using our data we identified significantly differentially expressed microRNAs 

between current and former smokers by linear regression. We found 135 smoking-associated 

microRNAs by p<0.05 (Supplementary Table 2). The top 30 differentially expressed 

microRNAs in the discovery set (q<0.01) are shown in Supplementary Figure 2. Among 

these, we found microRNAs whose expression has been previously associated with smoking, 

such as miR-218, miR-365, miR-30a and miR-99a9.

We also evaluated the relationship between bronchial microRNA expression and other 

potentially relevant clinical variables such as gender, age and pack years (Supplementary 

Tables 3, 4, 5). We found that in addition to smoking status, gender is also associated with 

microRNA expression (85 differentially expressed microRNAs, p<0.05).

Cancer-associated microRNA alterations in the bronchial airway epithelium

Using the discovery set (n=138), we identified 42 microRNAs that showed differential 

expression between patients with and without cancer by linear regression at a liberal p-value 

threshold of p < 0.05 (Supplementary Table 6). Of these, four microRNA isoforms showed 
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evidence of differential expression at FDR < 0.2 (p<0.002). These four are: miR-146a-5p, 

miR-324–5p, miR-223–3p, miR-223–5p. The expression profiles of these four microRNAs 

are shown in Figure 2. Each of these miRNA has previously been reported to have tumor-

suppressor-like activity29–32. Consistent with the potential for these microRNA to function 

as tumor suppressors, we find that the four differentially expressed microRNA isoforms are 

down-regulated in the bronchial airway of patients with lung cancer.

Cancer associated microRNAs as potential regulators of the airway gene-expression 
alterations

MicroRNAs often lead to the degradation of the mRNAs to which they bind. Therefore, we 

sought to determine if the expression of these microRNAs was negatively correlated with the 

expression of their gene targets. We found that the distribution of the correlation coefficients 

of each cancer-associated microRNA and its predicted mRNA targets (binding site predicted 

targets from Targetscan) is significantly more negative than the distribution of correlation 

coefficients for non-target genes (p<10−9 for each microRNA) (Figure 3).

To begin to understand the potential biological impact of the cancer-associated expression of 

these microRNAs, we investigated whether the expression of their gene targets are 

associated with cancer. From the predicted targets (Targetscan), we identified the genes 

whose expression is significantly negatively correlated (correlation q<0.1) with the cognate 

microRNA. The negatively correlated predicted targets of each of the four microRNAs were 

significantly enriched amongst the genes whose expression increased in the airway 

epithelium of patients with cancer relative to those with a benign diagnosis (GSEA q<0.001) 

(Figure 4).

In addition, the set of genes predicted to be regulated by these four microRNAs (n=254 in 

total; Targetscan binding-site predicted targets and negatively correlated microRNA – 

mRNA expression) is enriched by DAVID33 for cancer-associated pathways, such as 

signaling pathways regulating pluripotency of stem cells (p=0.001), pathways in cancer 

(p=0.007), the TGF-beta signaling pathway (p=0.035) and the Ras signaling pathway 

(p=0.043).

microRNA expression adds to mRNA in the detection of lung cancer

We next sought to assess whether bronchial microRNA expression could add to the 

performance of a mRNA biomarker for lung cancer we previously identified4. Using the 

training set samples, we used logistic regression to build five cancer-prediction models: one 

model contained the mRNA biomarker score alone, the other four models contained the 

mRNA biomarker score in combination with one of the four microRNAs we identified as 

having significant cancer-associated expression. Next, we compared the ROC-curve AUC of 

the mRNA biomarker alone to the four microRNA-containing models using a test set (Table 

1; Supplementary Table 1) comprised of AEGIS-1 and AEGIS-2 samples that are 

independent of the AEGIS-1 samples used to identify the four microRNAs with cancer 

associated expression and independent of the samples used to develop the mRNA biomarker. 

We found that adding miR-146a-5p to the mRNA biomarker significantly improved the 

AUC in the test set, from 0.66 to 0.71 (p=0.025). The AUC of biomarkers incorporating 
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either miR-324–5p or either of the two isoforms of miR-223 was not significantly different 

than the AUC of the mRNA biomarker alone (p>0.25) in the test set. The performance 

metrics of each microRNA combined with the mRNA biomarker are provided in 

Supplementary Table 7.

Discussion

We have previously identified bronchial airway gene expression differences between patients 

with and without lung cancer and shown that they can be used as a biomarker with clinical 

utility in the setting of patients with inconclusive results following bronchoscopy for suspect 

lung cancer4–6. In this study, we wished to determine if microRNA expression might also be 

altered in the normal-appearing epithelium of the mainstem bronchus, whether these 

microRNA expression differences might play a role in regulating the observed gene 

expression differences, and whether lung cancer associated microRNAs might have the 

potential to aid in the detection of disease.

We identified four microRNA isoforms (miR-146a-5p, miR-324–5p, miR-223–3p, 

miR-223–5p) that have altered expression in the airway epithelium of patients with lung 

cancer. That all four microRNAs have decreased expression in the bronchial airway of lung 

cancer patients is consistent with prior studies which have found microRNAs with cancer-

specific expression, mostly down-regulated, in tumors compared to normal tissue34. 

Intriguingly, all four of the microRNAs we identified have previously been implicated in 

tumor suppressive pathways. Specifically, miR-146a has been previously shown to inhibit 

cell growth, migration and EGFR signaling29,30,35, while inducing apoptosis. Furthermore, 

miR-146a/b expression levels have been shown to be significantly elevated during 

senescence (a cellular program that irreversibly arrests the proliferation of damaged cells)36. 

miR-223 has been shown to function as a tumor suppressor in the Lewis lung carcinoma cell 

line by targeting insulin-like growth factor-1 receptor and cyclin-dependent kinase-232; and 

miR-324 has been associated with nasopharyngeal cancer31. While microRNA expression 

differences have been well documented in tumors, our results are the first to demonstrate 

altered expression of not just these cancer-related microRNAs, but any microRNA in the 

bronchial airway of lung cancer patients.

We found that the expression of mRNAs which are predicted targets of these microRNAs is 

significantly negatively correlated suggesting that the expression of downstream genes is 

induced as a consequence of the cancer-dependent loss of microRNA expression. Moreover, 

predicted targets with negatively correlated expression profiles are enriched for genes 

involved in processes important for cancer, such as the pluripotency of stem cells, TGF-beta 

and Ras signaling pathways. Among the 50 significantly negatively correlated predicted 

targets of miR-146a-5p, we found APPL1. The protein encoded by APPL1 gene binds to 

many other proteins, including PIK3CA, RAB5A, DCC, AKT2, and adiponectin receptors, 

as well as proteins of the NuRD/MeCP1 complex – which are involved in cell proliferation 

and crosstalk between adiponectin and insulin signaling pathways37,38. Interestingly, we also 

observed a significantly negative correlation between miR-146a-5p and PIK3CA, suggesting 

that miR-146a-5p might modulate the PI3K/AKT pathway. In addition to the important role 

of PI3K/AKT pathway in cell death/survival, increased PI3K activity has been observed in 
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lung cancer39 and has been shown to occur early and potentially be reversible in the airway 

of smokers with premalignancy39,40. The anti-correlation of these differentially expressed 

bronchial microRNAs with cancer-associated mRNA targets suggest their role as lung 

cancer-associated regulators of gene expression, and that they could potentially serve as 

biomarkers of disease.

We assessed each differentially expressed microRNA’s ability to enhance the performance 

of an mRNA-based lung cancer biomarker and found that miR-146a-5p significantly 

improves performance. One possible explanation for why miR-223–3p and miR-223–5p did 

not improve biomarker performance is that one of their targets (SNCA) is already a 

component of the mRNA classifier, thus miR-223 expression might be substantially 

redundant with SNCA expression levels. If this hypothesis is correct, it would suggest that 

miR-146a adds to the biomarker’s performance because the mRNA biomarker does not 

already capture miR-146a-related expression information.

In this study, we demonstrate for the first time the presence of a microRNA field of injury in 

the bronchial airway for lung cancer. We identify microRNAs that are known to play a role 

in cancer-related processes, and importantly, we demonstrate that a multi ‘omics data 

integration approach may improve lung cancer detection.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Enrichment of known smoking related microRNAs by GSEA.
A set of 23 previously described microRNAs that are expressed at lower levels in bronchial 

airway samples from current smokers are significantly enriched among the microRNAs most 

repressed among current smokers in the current dataset (q<0.001). The red to blue bar shows 

all 463 miRNA ranked from most induced in smokers to most repressed (as shown in the 

distribution of t-statistics at the bottom); while the vertical black lines show the position, 

within this ranked list, of the 23 microRNAs previously found by microarray to have 

decreased expression in the bronchial airway of smokers. The green line is the running 

enrichment score which has a significantly negative minimum, indicating that the previously 

reported microRNAs are among the microRNA most repressed among current smokers in 

the current small RNA sequencing dataset.
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Figure 2. microRNAs significantly differentially expressed in bronchial epithelium between 
patients with and without lung cancer.
(a) Expression of hsa-miR-146a-5p (p=0.0008, q=0.125) (b) Expression of hsa-miR-324–5p 

(p=0.0007, q=0.125) (c) Expression of hsa-miR-223–3p (p=0.0007, q=0.125) (d) Expression 

of hsa-miR-223–5p (p=0.0016, q=0.184).
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Figure 3. MicroRNAs with cancer-associated expression are negatively correlated with their 
predicted targets.
The distribution of microRNA-mRNA correlations for each microRNA and its predicted 

targets is shown with a solid line. The null distribution of microRNA-mRNA correlations for 

each microRNA and all non-targets is shown with a dashed line. The difference between the 

two distributions was tested using the Kolmogorov-Smirnov test.

Pavel et al. Page 15

Cancer Prev Res (Phila). Author manuscript; available in PMC 2019 September 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. The negatively correlated and predicted gene targets of the four differentially 
expressed microRNAs are enriched among genes that are expressed more highly in the bronchial 
airway of patients with cancer:
the distribution of gene sets consisting of negatively correlated and predicted targets of (a) 
miR-146a-5p (50 genes); (b) miR-324–5p (43 genes) (c) miR-223–3p (89 genes) (d) 
miR-223–5p (72 genes) were examined in a list of genes ranked in the discovery set (n=138) 

by the association of their expression levels with cancer status in bronchial airway samples 

using GSEA. All of these gene sets are significantly enriched among the genes most induced 

in the bronchial airway of patients with lung cancer (GSEA q<0.001 for each). The red to 

blue bar shows all genes ranked from most induced in the bronchial airway of patients with 
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cancer to most repressed (as shown in the distribution of t-statistics at the bottom); while the 

set of vertical black lines in each panel shows the position of the predicted gene targets of 

each of the microRNAs whose expression is significantly negatively correlated with that 

microRNA. The green line is the running enrichment score which has a significantly positive 

maximum in each panel, indicating that these genes are enriched among the genes most 

induced in patients with cancer.
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Table 1.

Patient demographics.

Discovery set n=138 Test set n=203

Cancer Status (n) * Lung Cancer 88 103

Benign Disease 50 100

Gender (n)
Females 62 84

Males 76 119

Age (SD; n) 59 (11; 138) 59 (10; 203)

Smoking Status (n)
Current 46 88

Former 92 115

Cumulative Smoke Exposure - pack-yr. (SD; n) 36 (24; 137) 37 (29; 199)

Race (n)

White 109 149

Black 24 46

Unknown 5 8

Lesion Size (n)

<3cm 52 71

>=3cm 58 91

Infiltrate 15 31

Unknown 13 10

Histology (n)

NSCLC 72 79

NSCLC Stage

I 11 16

II 3 5

III 15 19

IV 29 26

Not specified 14 13

NSCLC Subtype Adenocarcinoma 31 34

Squamous 27 25

Large-cell 2 4

Not specified 12 16

SCLC 16 21

SCLC Stage Limited 4 8

Extensive 8 12

Not specified 4 1

Uncertain Histology 0 3

Diagnosis of Benign Disease (n)

Resolution or Stability 11 26

Alternative Diagnosis 39 74

Type of Alternative Diagnosis

Sarcoidosis 9 17

Inflammation 3 2

Fibrosis 1 1

Infection 8 14

Other 18 40
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n indicates number of patients with available clinical data; SD indicates standard deviation

*
p-value < 0.05.
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