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Abstract

Image synthesis learns a transformation from the intensity features of an input image to yield a 

different tissue contrast of the output image. This process has been shown to have application in 

many medical image analysis tasks including imputation, registration, and segmentation. To carry 

out synthesis, the intensities of the input images are typically scaled—i.e., normalized—both in 

training to learn the transformation and in testing when applying the transformation, but it is not 

presently known what type of input scaling is optimal. In this paper, we consider seven different 

intensity normalization algorithms and three different synthesis methods to evaluate the impact of 

normalization. Our experiments demonstrate that intensity normalization as a preprocessing step 

improves the synthesis results across all investigated synthesis algorithms. Furthermore, we show 

evidence that suggests intensity normalization is vital for successful deep learning-based MR 

image synthesis.
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1. INTRODUCTION

For magnetic resonance (MR) images, we can view image synthesis as learning an intensity 

transformation between two differing contrast images, e.g., from T1-weighted (T1-w) to T2-

weighted (T2-w) or FLuid Attenuated Inversion Recovery (FLAIR). Synthesis can generate 

contrasts not present in the data set—i.e., image imputation—which are useful for image 

processing applications such as registration and segmentation.1,2 The transformation need 

not be limited to MR images; an example application is MR to computed tomography (CT) 

registration where it has been shown to improve accuracy when the moving image is 

synthesized to match the target image’s contrast.3 Other examples include multi-contrast 
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skull-stripping for MR brain images,4 which performs better with synthesized T2-w images 

when the original T2-w images are unavailable.

Methods to carry out image synthesis include sparse recovery-based methods,5 random 

forest regression,6,7registration,8,9 and deep learning.10,11 Evidence suggests that accurate 

synthesis is heavily dependent on a standard intensity scale across the sample of images used 

in the training procedure. That is to successfully train a synthesis algorithm the training and 

testing data must have similar intensity properties (e.g., the mean intensity of white matter 

should be the same for all input images). This is a problem in MR synthesis since MR 

images do not have a standard intensity scale.

In this paper, we explore seven methods to normalize the intensity distribution of a sample 

of MR brain images within each of three contrasts (T1-w, T2-w, and FLAIR). We then 

quantitatively compare their performance in the task of synthesizing T2-w and FLAIR 

images from T1-w contrasts using three synthesis algorithms. We show results that suggest 

intensity normalization as a preprocessing step is crucial for consistent MR image synthesis.

2. METHODS

In this section, we first describe the seven intensity normalization algorithms considered in 

this paper, namely: 1) Z-score, 2) Fuzzy C-Means (FCM)-based, 3) Gaussian mixture model 

(GMM) based, 4) Kernel Density Estimate (KDE) based, 5) Piecewise linear histogram 

matching (HM),12,13 6) WhiteStripe,14 and 7) RAVEL.15 We then describe three different 

synthesis routines: 1) polynomial regression, 2) random forest regression, and 3) deep neural 

network based synthesis. For the following subsections, let I(x) be the MR brain image 

under consideration where x ∈ [0,N]×[0,M]×[0,L] ⊂ ℕ3 for N,M,L ∈ ℕ, the dimensions of 

I, and let B ⊂ I be the corresponding brain mask (i.e., the set of indices corresponding to the 

location of the brain in I).

2.1 Normalization

In the following sections, we will briefly overview the intensity normalization algorithms 

used in this experiment. Code for the following intensity normalization algorithms is at: 

https://github.com/jcreinhold/intensity-normalization.

2.1.1 Z-score—Z-score normalization uses the brain mask B for the image I to determine 

the mean μzs and standard deviation σzs of the intensities inside the brain mask. Then the Z-

score normalized image is

Iz‐score(x) =
I(x) − μzs

σzs
.

2.1.2 FCM-based—FCM-based normalization uses fuzzy c-means to calculate a white 

matter (WM) mask of the image I. This WM mask is then used to normalize the entire image 

to the mean of the WM. The procedure is as follows. Let W ⊂ B be the WM mask for the 
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image I, i.e., W is the set of indices corresponding to the location of the WM in the image I. 

Then the WM mean is μfcm = 1
W ∑w ∈ W I(w). and the FCM-based normalized image is

Ifcm(x) =
c1 ⋅ I(x)

μfcm
,

where c1 ∈ ℝ>0 is a constant that determines the WM mean after normalization. In this 

experiment, we use three-class fuzzy c-means to get a segmentation of the WM over the 

brain mask B for the T1-w image and we arbitrarily set c1 = 1000.

2.1.3 GMM-based—GMM-based normalization fits a mixture of three normal 

distributions to the histogram of intensities inside the brain mask. The mean μgmm of the 

mixture component associated with the WM is then used in the same way as the FCM-based 

method, so the GMM-based normalized image is

Igmm(x) =
c2 ⋅ I(x)
μgmm

,

where c2 = 1000 is a constant that determines the WM mean after normalization. The WM 

mean μgmm is determined by picking the mixture component with the maximum intensity 

mean for T1-w images, the middle intensity mean for FLAIR images, and the minimum 

intensity mean for T2-w images.

2.1.4 Kernel Density Estimate-based—KDE-based normalization estimates the 

empirical probability density function (pdf) of the intensities of I over the brain mask B 
using the method of kernel density estimation. In our experiment, we use a Gaussian kernel. 

The kernel density estimate provides a smooth version of the histogram which allows us to 

more robustly pick the maxima associated with the WM via a peak finding algorithm. The 

found WM peak ρ is then used to normalize the entire image, in much the same way as 

FCM-based normalization. Namely,

Ikde(x) =
c3 ⋅ I(x)

ρ ,

where c3 = 1000 is a constant that determines the WM peak after normaalization. The WM 

peak is determined in T1-w and FLAIR by picking the peak associated with the greatest 

intensity (for FLAIR, this is due to the inability to distinguish between the WM and GM 

peaks) and for T2-w images the WM peak is determined by the highest peak.

2.1.5 Piecewise Linear Histogram Matching—Piecewise linear histogram 

matching12 (which we denote as HM for brevity) addresses the normalization problem by 

learning a standard histogram for a set of contrast images and linearly mapping the 

intensities of each image to this standard histogram. The standard histogram is learned 

through averaging pre-defined landmarks of interest on the histogram of a set of images. In 
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Shah et al.,13 the authors demonstrate good results with this method by defining landmarks 

as intensity percentiles at 1,10,20,...,90,99 percent (where the intensity values below 1% and 

above 99% are extrapolated from the [1,10] and [90,99] percent intervals). We use these 

landmarks in our method and arbitrarily set the range of the standard scale to [1,100]. The 

intensity values of the set of images are then mapped piecewise linearly to the learned 

standard histogram along the landmarks. For further detail into the method see Nyúl et al.12 

and Shah et al.13

2.1.6 WhiteStripe—WhiteStripe intensity normalization14 performs a Z-score 

normalization based on the intensity values of normal appearing white matter (NAWM). The 

NAWM is found by smoothing the histogram of the image and selecting the highest intensity 

peak for T1-w images (the peaks for the other contrasts are determined in the same way as 

described in the KDE section). Let μws be the intensity associated with this peak. The “white 

stripe” is then defined as the 10% segment of intensity values around μws. That is, let F(x) be 

the cdf of the specific MR image I(x) inside its brain mask B, and define τ = 5%. Then, the 

white stripe Ωτ is defined as the set

Ωτ = I(x) F−1 F μws − τ < I(x) < F−1 F μws + τ .

Let σws be the sample standard deviation associated with Ωτ. Then the WhiteStripe 

normalized image is

Iws(x) =
I(x) − μws

σws
.

2.1.7 RAVEL—RAVEL normalization15 adds an additional normalization step to 

WhiteStripe by removing unwanted technical variation (defined below) from a sample of m 
images. Following the notation in the original paper,15 the method assumes that 

cerebrospinal fluid (CSF) is associated with technical variation, and—after WhiteStripe 

normalization—the CSF intensities can be written as

Vc = γZ⊤ + R,

where Vc is an n × m matrix of CSF intensityEes, γZT represents the unknown technical 

variation, and R is a matrix of the residuals. The n CSF intensity values in Vc are determined 

by deformably co-registering the images, finding a CSF mask for each deformably registered 

image, and taking the intersection across all the masks.

We then use singular value decomposition to write Vc = UΣW⊤. Then W is an m × m matrix 

of right singular vectors and we can use b ≤ m right singular vectors to form a linear basis 

for the unwanted factors Z,16 where b is the unknown true rank of Vc. That is, we use Wb as 

a surrogate for Z, where Wb is the subset of b columns of W collected into a matrix. We then 
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do voxel-wise linear regression to estimate the coefficients γ. The RAVEL normalized 

image is then defined as

Iravel(x) = Iws(x) − γxWb
⊤,

where γx are the coefficients of unwanted variation associated with the voxel x found 

through linear regression. In our experiments, we follow the original paper15 and fix b = 1*. 

For deformable registration, we use SyN17to register all images to one image in the data set.

2.2 Synthesis

Image synthesis can be described as a regression on the intensities of the images, i.e., 

learning a parametric or non-parametric mapping from one contrasts intensity distribution to 

another contrasts intensity distribution. In this section we describe three methods of image 

synthesis: 1) polynomial regression (PR), 2) random forest regression (RF), and 3) deep 

neural network (DNN)-based synthesis.

2.2.1 Polynomial Regression—For polynomial regression, we randomly select 

100,000 voxels inside the brain mask. For the source images, we extracted patches around 

each of these voxels where the patches include the center voxel and its six neighbors. For the 

target images, we extract only the corresponding center voxel. We extract the patches in this 

way across all images, so for M images we have an (M · 100,000) × 7 feature matrix for the 

source images and an (M · 100,000) × 1 feature matrix for the target images. We use a third-

order polynomial as the regressor to learn the mapping from the source feature matrix to the 

target feature matrix. We use this naïve model to provide a low-variance baseline for image 

synthesis methods.

2.2.2 Random Forest Regression—Similar to polynomial regression, in random 

forest regression—inspired by Jog, et al.6—we randomly select 100,000 voxels inside the 

brain mask. For the source images, we extracted patches that comprise the center voxel, its 

six neighbors, and the voxels in the six primary directions at 3, 5, and 7 voxels away from 

the center. For the target images, we extract only the corresponding center voxel. We extract 

the patches in this way across all images, so for M images we have an (M · 100,000) × 25 

feature matrix for the source images and an (M · 100,000) × 1 feature matrix for the target 

images. For the random forest regressor that learns the mapping between the source feature 

matrix and the target feature matrix, we set the number of trees to 60 and the number of 

samples in a leaf node to 5.

2.2.3 DNN—We use a 4-level U-net18 and extract 128×128 patches from axial, sagittal, 

and coronal orientations to learn the synthesis. Patches are extracted in this fashion for data 

augmentation. We use instance normalization and leaky ReLUs with parameter 0.2 as the 

activation function since Z-score, WhiteStripe, and RAVEL allow for negative values in the 

images. The architecture follows Zhao, et al.19 who used a similar structure for a synthesis 

*The first right singular vector is highly correlated (>95%) with the mean intensity of the csf.15
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task. We trained the network for 100 epochs for all sets of normalized images excluding the 

unnormalized images with which we trained the DNN for 400 epochs. This discrepancy in 

the number of epochs used is due to a failure of convergence observed in the first 100 epochs 

for the unnormalized images.

2.3 Quality Assessment

We use three different metrics to quantitatively determine the performance of the synthesis 

result. Note that all three metrics compare the result to the ground truth images which were 

not used in training any synthesis methods. The metrics are: 1) normalized cross-correlation 

(NCC), 2) mean structural similarity (MSSIM),20 and 3) mutual information (MI). We use 

these metrics as opposed to MSE or PSNR as the data have been scaled to different ranges, 

making MSE and PSNR not easily comparable across normalization routines.

3. RESULTS

For evaluation, we use 18 data sets from the Kirby-21 data set.21 All of the subjects for the 

data sets are verified to be healthy subjects. From these 18 data sets, we use the T1-w, T2-w, 

and FLAIR images. All the images are resampled to 1mm3, bias field corrected with N4,22 

and each T2-w and FLAIR image is affinely registered to the corresponding T1-w image 

with the ANTs package.23 The brain mask for the images are found with ROBEX24 and the 

mask is used during normalization and applied to the images before synthesis such that the 

background is zero in all the images.

We split the data into two sets of nine for training and nine for testing. Bar charts in Figs. 1 

and 2 show the mean and the bootstrapped 95% confidence interval of the T1-to-FLAIR and 

T1-to-T2 synthesis, respectively, for the quality metrics averaged over all testing data sets, 

for every normalization scheme and synthesis algorithm. We use the Wilcoxon signed-rank 

test to compare the distributions of each normalized method, for all metrics, against the 

corresponding unnormalized results per synthesis algorithm. We use a statistical significance 

level of α = 0.05 and show that this threshold is met in Figs. 1 and 2 with an asterisk above 

the corresponding bar. Figures 3 and 4 show results for the various synthesis algorithms with 

unnormalized training data (denoted raw) and normalized training data use the FCM 

approach.

The experiments show that synthesis results are robust to the choice of normalization 

algorithm, which are stable around the same levels across all metrics. This qualitative result, 

observed in Figs. 1 and 2, is reinforced with statistical tests. We use the Wilcoxon signed-

rank test (with Bonferroni correction) to show statistically significant difference between 

any of the presented normalization algorithms for each metric (α = 0.05); however, no 

normalization algorithm consistently met this threshold for any metric with any synthesis 

algorithm in either T1-to-FLAIR or T1-to-T2 synthesis. An interesting finding is that—in 

T1-to-T2 synthesis—the random forest regressor qualitatively performs more robustly on 

unnormalized data, but both the DNN and polynomial regression methods fail; in terms of 

NCC, the DNN synthesis has zero mean because of negative correlation in some of the 

testing results.
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Failure cases of synthesis in T1-to-FLAIR and T1-to-T2 unnormalized images are shown in 

Figs. 3 and 4, respectively, which can be compared to the successfully synthesized FCM-

normalized images in the same figures. We discuss in the following section.

4. DISCUSSION AND CONCLUSION

We have shown that: 1) synthesis methods are substantially improved with the addition of an 

intensity normalization pre-processing step, especially DNN synthesis; 2) synthesis is robust 

to the choice of normalization method as we see no statistically significant difference in the 

presented normalization methods.

The failure cases shown in Figs. 3 and 4 results from the histogram of a particular input T1-

w image being different than the majority of T1-w images the model was trained on. In this 

case, the problem histogram is compressed such that the grey matter peak was nearly aligned 

with the average location of the WM peaks for all but one of the training set (where the 

outlier on the training set also has the grey matter peak in the vicinity of the WM peak 

average for the training set).

The fact that we fail to synthesize unnormalized images correctly in the best case scenario—

all of our training and testing images came from the same cohort acquired on the same 

scanner with the same pulse sequence and all of the images are of healthy patients—points 

to the importance of intensity normalization as a preprocessing step in any synthesis 

pipeline. While the highlighted failure case is remarkable, the synthesized versions of the 

remaining images also exhibit more subtle failure. Specifically, we see poor correspondence 

in intensities between slices. That is, if you scan through the images on the plane through 

which the image was synthesized (in this case axial), the result appears like a reasonable 

synthesis; however, when the image is viewed in the saggital plane we see significant 

variation in the intensities of neighboring slices and this variation is not observed in the 

synthesis results of normalized images (see Fig. 5 for an example). While this slice-to-slice 

variation is partly due to using a 2D synthesis method, 2D synthesis is commonly used in 

state-of-the-art synthesis methods.2,10,11 Since the DNN performs better across all metrics 

when the images are normalized, normalization is suggested as a pre-processing step before 

training or testing any sort of patch-based DNN.
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Figure 1. T1-to-FLAIR Quality Metrics:
Raw corresponds to synthesis using unnormalized images, ZS to Z-score normalized images, 

and WS to WhiteStripe normalized images. Statistical significance (denoted by *) for each 

experiment is compared to Raw (p < 0.05). The error bars represent the 95% confidence 

interval.
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Figure 2. T1-to-T2 Quality Metrics:
Raw corresponds to synthesis using unnormalized images, ZS to Z-score normalized images, 

and WS to WhiteStripe normalized images. Statistical significance (denoted by *) for each 

experiment is compared to Raw (p < 0.05). The error bars represent the 95% confidence 

interval.
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Figure 3. T1-to-FLAIR Synthesis results:
Shown are the results of synthesis using unnormalized (top row) and FCM normalized 

images (bottom row). The unnormalized DNN result represents a failure of image synthesis.
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Figure 4. T1-to-T2 Synthesis results:
Shown are the results of synthesis using unnormalized (top row) and FCM normalized 

images (bottom row). The unnormalized DNN result represents a failure of image synthesis.
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Figure 5. T1-to-FLAIR DNN Synthesis
Shown from left to right are the results of DNN synthesis using FCM normalized images, 

unnormalized images, and the ground truth.

Reinhold et al. Page 14

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2019 September 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	INTRODUCTION
	METHODS
	Normalization
	Z-score
	FCM-based
	GMM-based
	Kernel Density Estimate-based
	Piecewise Linear Histogram Matching
	WhiteStripe
	RAVEL

	Synthesis
	Polynomial Regression
	Random Forest Regression
	DNN

	Quality Assessment

	RESULTS
	DISCUSSION AND CONCLUSION
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.

