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Organisms evolve as compromises, and many of these com-
promises can be expressed in terms of energy efficiency. For
example, a compromise between rate of information process-
ing and the energy consumed might explain certain neurophys-
iological and neuroanatomical observations (e.g., average firing
frequency and number of neurons). Using this perspective re-
veals that the randomness injected into neural processing by
the statistical uncertainty of synaptic transmission optimizes
one kind of information processing relative to energy use. A
critical hypothesis and insight is that neuronal information pro-
cessing is appropriately measured, first, by considering den-
drosomatic summation as a Shannon-type channel (1948) and,
second, by considering such uncertain synaptic transmission
as part of the dendrosomatic computation rather than as part of

axonal information transmission. Using such a model of neural
computation and matching the information gathered by den-
dritic summation to the axonal information transmitted, H(p*),
conditions are defined that guarantee synaptic failures can
improve the energetic efficiency of neurons. Further develop-
ment provides a general expression relating optimal failure rate,
f, to average firing rate, p*, and is consistent with physiologi-
cally observed values. The expression providing this relation-
ship, f � 4�H(p*), generalizes across activity levels and is inde-
pendent of the number of inputs to a neuron.
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This paper interrelates three topics: synaptic failure rates, den-
drosomatic information processing, and neuronal energy use. As
an introduction we briefly address each topic.

In the hippocampus and in neocortex, excitatory synaptic con-
nections dominate and are remarkably unreliable. Each synapse
transmits, at most, a single standardized package called a quan-
tum (�104 neurotransmitter molecules). When an action poten-
tial arrives presynaptically, the probability of evoking the release
of one such quantal package is reported to range from 0.25 to 0.5
with 0.5 being less common and 0.25 being quite common (Thom-
son, 2000), especially when one takes into account the spontane-
ous rates of neurons (Stevens and Wang, 1994; Destexhe and
Paré, 1999). The failure of quantal synaptic transmission is a
random process (Katz, 1966) and is counterintuitive when it
exists under physiological conditions. After all, why go to all the
trouble, and expense, of transmitting an action potential if a
synapse does not use it. The observation of synaptic failures is
particularly puzzling in light of observations outside of neocortex
showing failure-free, excitatory synaptic transmission can exist in
the brain (Paulsen and Heggelund, 1994, 1996; Bellingham et al.,
1998). One insight that clarifies this puzzle is that systems with
low failure rates tend to form clusters of synapses on a single
postsynaptic target neurons that are boutons terminaux, whereas

those that fail are predominantly forming en passage synapses
with multiple (thousands or tens of thousands) of postsynaptic
neurons. For en passage systems, a particular spike works at some
synapses but not at others. Thus, in such en passage situations,
failure at the axon hillock is not equivalent to random synaptic
failure because a large number of synapses will transmit, just not
a large percentage. Still failures have the feeling of inefficiency.
Here we show that the quantal failures can be viewed as an energy
efficiency mechanism relative to the information that survives
neuronal information processing. That is, under certain circum-
stances failures will not lower the transmitted computational
information of a postsynaptic neuron, but they will lower energy
consumption and heat production. The relationship between en-
ergy and information has, at least implicitly, been an issue in
physics since the time of Maxwell (Leff and Rex, 1990). Today
this relationship continues to be discussed particularly because
energy consumption, or heat generation, may place the ultimate
limits on manmade computation. In the context of biological
computation, such issues also seem particularly relevant because
of the large fraction of our caloric intake that goes directly and
indirectly toward maintaining brain function (Sokoloff, 1989;
Attwell and Laughlin, 2001). Indeed because of such costs, we
proceed under the hypothesis that, microscopically, natural selec-
tion has approximately optimized energy use as well as informa-
tion processing in constructing the way neurons compute and
communicate. Recent successes and interest arising from this
hypothesis of a joint optimization (Levy and Baxter, 1996;
Laughlin et al., 1998; Andreou, 1999; Abshire and Andreou,
2001; Balasubramanian et al., 2001, Schreiber et al., 2001) encour-
age us to continue examining the possibility that neuronal com-
munication and computation are efficient when considered in the
dual context of energy and information rather than either context
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alone. Particularly encouraging is the energy audit of Attwell and
Laughlin (2001). This work concludes that �85% of the energy
consumed by the neocortical neuropil goes toward recovering
from the ion fluxes that are, in effect, all of the computation and
communication within the neocortex.

MEASURING INFORMATION
At the level of an individual neuron, neuronal computation can be
sensibly quantified by viewing a computational transformation as a com-
munication system. The aptness of using information-theoretic ideas for
analyzing analog computation was pointed out by von Neumann (see
Bremermann, 1982) and by Bremermann (1982) and is one of several
possible measures that seems worth calculating to quantify analog com-
putation. Although they give us no details, most simply an analog
computation is just a transformation as X 3 f(X) so that mutual infor-
mation, I(X; f(X)), is obviously relevant and can be aptly called the
information available from neuronal integration.

As is traditional (Shannon, 1948), mutual information is defined as:

I�X;Y� �
def

Exy�log
P�XY�

P�X�P�Y��� H�X� � H�X�Y� � H�Y� � H�Y�X�,

where

H�X� �
def

H�P�X�� � ��
x

P�X� log P�X�

and

H�X�Y� �
def

��
y

P�Y � y��
x

P�X�Y � y� log P�X�Y � y�

are Shannon entropies, and logarithms are base two.
When the conditional entropy is zero (e.g., H(X�Y)), then mutual

information, I(X;Y), equals the entropy H(X). Because this is true for
neocortical axons (Mackenzie and Murphy, 1998; Cox et al., 2000;
Goldfinger, 2000), we were able to use entropy rather than mutual
information when studying axons.

Previously (Levy and Baxter, 1996) we noted that, solely in the context
of signaling information capacity, or equivalently representational capac-
ity, information alone is not optimized by neocortical neurons. In the
neocortex, where the maximum spike frequency of a pyramidal neuron is
�400 Hz, the average rate of axonal spiking is 10–20 Hz, not the 200 Hz
optimal for information transmission alone. At the other extreme, there
would be no energetic cost if a neuron did not exist, so energy alone is not
optimally conserved. However, forming the ratio of information trans-
mitted by an axon to the energy it consumes (a measure whose ultimate
dimension is bits per joule) leads to an optimal spike rate value that fits
with observed values of spike rates and energy consumption (Levy and
Baxter, 1996). This particular optimization is critical to what follows.

The information flow for a single neuron is depicted in Figure 1 A. The
notation and its biological correspondence are as follows. The random
multivariate binary input to a neuron is X, and the output of this neuron
is Z, a univariate random binary variable, {no spike, spike} � {0, 1}. The
spike generator, which in our model absorbs many dendritic nonlineari-
ties, determines when dendrosomatic excitation exceeds threshold. Then
Z � 1, and the spike is conducted by the axon away from the neuron,
eventually arriving presynaptically as Z	 where the cycle begins again.
Our specific interest here is the computational transformation that in-
cludes the quantal release process. As depicted in Figure 1 A, input
signals to a neuron undergo three information-losing transformations
before the transformation by the spike generator: (1) quantal release–
failure, (2) quantal amplitude variation, and (3) dendrosomatic summa-
tion. The release–failure process (Fig. 1 B) produces a new binary ran-
dom variate �(Xi ). The probability of a quantal failure is denoted by f,
whereas the probability of a successful quantal release is denoted by s,
and f � 1 � s. The random variate Qi denotes the amplitude of the i th

input when release occurs. Using this notation, the information passing
through the computation is explicitly expressed as the mutual informa-
tion I C

�
def I(X; 
 � (Xi )Qi ) � H(X) � H(X�
i �(Xi )Qi ). Also, the lack of

spontaneous spikes and the faithful conduction of neocortical axons
implies Z � Z	 so that I(Z;Z	) � H(P(Z)), as mentioned earlier.

It is also useful to introduce the notation for the energy-optimal
capacity of the axon, C E, which occurs at maxP(Z�1)[H(P(Z))/axonal
energy use], and as well p* the value of P(Z � 1) that produces C E. From
our earlier calculations (Levy and Baxter, 1996) and from neurophysio-
logical observations of sensory and association cortex, p* ranges from
.025 to 0.05 per minimum interspike interval (approximated as 2.5 msec
for a synaptically driven pyramidal neuron (Levy and Baxter, 1996)).
This produces C E values ranging from 0.169 to 0.286 bits per 2.5 msec.
Importantly, we will suppose that both input and output neurons adhere
to the same optimum.

We explicitly assume that there is an inconsequential information loss
by the spike generator and that the cost of generating extra spikes is
negligible. This later assumption is justified by the energy audit of
Attwell and Laughlin (2001). Attwell and Laughlin (2001) showed that
the energetic costs associated with action potential production in a
functioning brain are highest in axons, with �47% of the total energy
consumed (which is in agreement with Levy and Baxter, 1996) The next
highest cost is associated with dendritic excitation, which is �34% of the
total energy consumed. A relatively small amount goes to the presynaptic
aspects of synaptic transmission. Perhaps the lowest cost (which is neg-
ligible) is associated with the cell body because cell bodies have such
small surface areas relative to axons and dendrites. In our model, we
assume that the spike generator is part of the cell body. Therefore, the
cost of generating extra spikes is negligible, whereas the cost of conduct-
ing the spike down the axon is quite high. Regardless of that cost,
information must still be transmitted. That is, even if one were compelled
to postulate failure at the spike generator, one is still left with an average
axonal usage (firing) rate of p*. Thus, it is our explicit hypothesis that
information is transmitted at the optimal rate, H(p*), and we are now in
a position to be much more explicit about energetically efficient
computation.

Conjecture. Maximize the computational information developed by a
neuron and its inputs to no more than the limit imposed by the infor-
mation capacity of the axon whose capacity is set by optimizing the
energy efficiency of its signaling.

That is, if the axonal transmitting system is energy optimized to H(p*),
then this rate is an upperbound constraint on the computational infor-
mation that can be transmitted given the hypothesized spike-generating
process. Moreover, when failure rates are zero, the computational infor-
mation will always have a potential to be greater than H(p*) because this
is the amount that would be available after noise free processing by a
neuron with more than just a single input. Because failure rates are not
zero, this conjecture leads to the hypothesis that failure rates reduce the
energy consumption of computation while not wasting any of (that is,
while using all of) the axonal capacity.

Quantal failures are an excellent mechanism to create this matching
because of the energy they save. [If every successive step from the arrival
of an action potential presynaptically down to the depolarization of the
cell body is energy consuming (Attwell and Laughlin, 2001) then a
mechanism that eliminates as many of these steps as possible will save the
most energy. Specifically, failure of synaptic transmission saves the cost
of vesicle recycling, transmitter reuptake and repackaging, and most of all
it saves on the cost of postsynaptic depolarization.] Moreover, because
both the information of computation and of optimal channel use are both
controlled by p*, we can determine a failure rate that brings computa-
tional information exactly to its maximally transmittable rate. This fail-
ure rate then saves as much energy as possible while still allowing the
neuron to develop the maximally transmittable information. Curiously
the optimal failure rate quickly becomes independent of the number of
inputs, and it is in the range of number of inputs that neocortical (and
indeed, many other neurons) operate.

In sum, it is our explicit hypothesis that neural computation, as well as
neural communication, can be measured from the Shannon perspective
of sources and channels. In pursuing an overall analysis, we have opted
to partition function. As a result of this partitioning, the physical corre-
spondence between source or channel changes as the separate parts or
functions of a neuron are sequentially analyzed. For example, in our
previous work an axon is a channel, whereas here the set of axons going
into a neuron are an information source. Here the synapses and dendritic
summation process are analyzed as if they are a channel. But as we shall
see, they will also be viewed as a source for the next stage. But first, let
us develop some quantitative intuition by considering a bounding case.

Special case. f � 0 and Qi � 1 for all i. If we consider the case with a
zero failure probability and all Qi � 1 then I C � H(
 Xi ) � H(
 Xi�X),
and we easily obtain H(
 Xi ) as an upper bound on the mutual informa-
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tion of the computation. This upper bound occurs when the second term
is zero, i.e. in the failure-free, noise-free situation with all quanta the
same size. Appealing to the central limit theorem, this entropy is well
approximated by the entropy of a normal distribution. Therefore, if we
suppose each of the n inputs is an independent Bernoulli process with the
same parameter p � p*, we get:

H�
 Xi � �
1
2 log2�2�enp*�1 � p*�� � 6.5 bits for n � 104 and p* � 0.05,

where this value of p* comes from the Levy and Baxter (1996) calcula-
tions as well as the actual observed value of average firing rates in
neocortex. Although 6.5 bits is a tremendous drop from H(X), which
under these assumptions is 2860 bits (10,000 inputs each with 0.286 bits),
this 6.5 bits is still a very large number of bits to be transmitted per
computational interval compared to the energy-efficient channel capacity
of H(p*) � 0.286 bits.

The reason why 6.5 bits is a tremendous excess arises when we consider
Shannon’s source/channel theorems. These say that the channel limits the
maximum transmittable information to its capacity. As a result, any
energy that goes toward producing I(X; 
 Xi ) that exceeds the channel
capacity H(p*) is wasted information. This idea is at the heart of the
analysis that follows. Because the total information of the computation is
many times the energy-efficient channel capacity, much waste is possible.
Indeed, even if we dispense with the independence assumption (while
still supposing some kind of central limit result holds for the summed
inputs) and suppose that statistical dependence of the inputs is so bad
that every 100 inputs act like 1 input, an approximation that strikes us as
more than extreme, there still are too many bits (�3.2 bits) being
generated by the computation compared with what can be transmitted.
Thus, the computation is not going to be energy-efficient if it takes
energy (and it does) to develop this excess, nontransmittable computa-
tional information.

RESULTS
We now begin the formal analysis that substantiates and quanti-
fies the conjecture and that brings to light a set of assumptions
making the conjecture true.

Assumptions
A0: A computation by an excitatory neuron is the summation of
its inputs every computational interval. The mutual information
of such information processing is closely approximated as:

IC � I�X; �
i

��Xi�Qi�.

A1: Axons are binary signaling devices carrying independent
spikes and used at their energy optimum; that is, each axon is
used at the information rate CE bits per computational interval,
which implies firing probability p*.

A2: The number of inputs to a neuron is not too small—say
n � 2/p*. Clearly this is true in neocortex; see Fig. 3 for evalua-
tion of this assumption.

A3: With the proviso that A1 and A2 must be obeyed, a process
requiring less energy is preferred to a process requiring more
energy.

A4: The spike generator at the initial segment, which incorpo-
rates generic nonlinearities operating on the linear dendritic
summation, creates a bitwise code suitable for the axonal channel,
and this encoding is nearly perfect in using the information
received from the dendrosomatic computation. That is, as an

Figure 1. Partitioning communication and
computation for a single neuron and its in-
puts. A, The presynaptic axonal inputs to the
postsynaptic neuron is a multivariate binary
vector, X � [X1 , X2 , . . ., Xn]. Each input, Xi ,
is subject to quantal failures, the result of
which is denoted by � (Xi ), another binary
vector that is then scaled by quantal ampli-
tude, Qi. Thus, each input provides excitation
�(Xi )Qi. The dendrosomatic summation,

i �(Xi )Qi is the endpoint of the computa-
tional process, and this sum is the input to the
spike generator. Without specifying any par-
ticular subcellular locale, we absorb generic
nonlinearities that precede the spike genera-
tor into the spike generator, g (
i �(Xi )Qi ).
The spike generator output is a binary vari-
able, Z, which is faithfully transmitted down
the axon as Z	. This Z	 is just another Xi
elsewhere in the network. In neocortex, ex-
perimental evidence indicates that axonal
conduction is, essentially, information loss-
less, as a result I(Z; Z	) � H(Z). The infor-
mation transmitted through synapses and den-
drosomatic summation is measured by the
mutual information I(X; 
 �(Xi )Qi ) �
H(X) � H(X�
i �(Xi )Qi ). Given the assump-
tions in the text combined with one of Shan-
non’s source-channel theorems implies that,
H(X) � H(X�
i �(Xi )Qi ) � H(p*), where
H(p*) is the energy-efficient maximum value
of H(Z). B, The model of failure prone syn-
aptic transmission. An input value of 0, i.e., no
spike, always yields an output value of 0, i.e.,
no transmitter release. An input value of 1, an
axonal spike, produces an output value of 1,
transmitter release, with probability success
s � 1 � f. A failure occurs when an input value
of 1 produces an output value of 0. The prob-
ability of failure is denoted by f.
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information source the spike generator produces information at a
rate of nearly H(p*).

From these assumptions we have a lemma.
Lemma 1: IC � H(p*). That is, the only way to use an axon at

its energy optimal rate, H(p*), is to provide at least that much
information to it for possible transmission.

Proof by contradiction: Providing anything less would mean
that the axon could be run at a lower rate than implied by p* and
as a result save energy while failing to obtain its optimal efficiency
which contradicts (A1).

The importance of this lemma is the following: no process that
is part of the computational transformation or part of energy
saving in the computation or part of interfering fluctuations
arising within the computation should drive IC below H(p*). In
particular, this lemma dictates that quantal failures, as an energy
saving device, will be used (or failure rates will be increased) only
when IC is strictly greater than H(p*).

With this lemma and assuming increased synaptic excitation
leads to monotonically increasing energy consumption (Attwell
and Laughlin, 2001), we can prove a theorem that leads to an
optimal failure rate. Thus, the averaged summed postsynaptic
activation, E[
i �(Xi )Qi], should be as small as possible because
of energy savings (A3), whereas (A2) maintains n and (A1)
maintains p*. This restricted minimization of average synaptic
activation implies processes, including synaptic failures, that re-
duce energy use. But when operating on the energy-efficient side
of the depolarization versus information curve, reducing the
average summed activation monotonically reduces IC as well as
reducing energetic costs with this reduction of IC unrestricted
until Lemma 1 takes force. That is, this reduction of IC should go
as far as possible because of A3-(energy saving) but no lower than
H(p*) because of the lemma. As a result, energy optimal compu-
tation is characterized by:

IC � CE � H� p*�,

an equality that we call “Theorem G.” Accepting Theorem G
leads to the following corollary about synaptic failures:

Corollary F
Provided np* � 2, neuronal computation is made more energy-
efficient by a process of random synaptic failures (see Appendix
and below).

Obviously failures are in the class of processes that lower
average postsynaptic excitation in part because IC is reduced
uniformly as f increases and, in part, because the associated
energy consumption is also reduced uniformly. Just below and in
the appendix we prove a quantified version of Corollary F that
shows that the failure rate f producing this optimization is ap-
proximated purely as a function of p*; specifically,

Quantified Corollary F

f � �1
4�

H�p*�

.

Figure 2A illustrates the existence of a unique, optimal failure
rate by showing the intersection between C �, the energy-efficient
capacity of the axon, with IC, the information of the computation.
Here we have used n � 104, p* � 0.041. From another perspec-
tive, Figure 2B shows how one might take some physiologically
appropriate failure rate, f � 0.7, and determine the optimal p. In
either case we note the single intersection of the two monotonic
curves.

The generality of what this figure shows is established in the
Appendix. Specifically, Appendix Part A assumes equal Qi values,
whereas Parts B and C allow for Qi to vary; they show:

�
1
2

log� f � � I�X; 
i��Xi�Qi�.

Because Theorem G requires I(X, 
i �(Xi )Qi ) � H(p*), the two
results combine, yielding

f � �1
4�

H�p*�

,

a statement that is notable for its lack of dependence on n, the
number of inputs to a neuron. This lack of dependence, illus-
trated for one set of values in Figure 3, endows the optimization
with a certain robustness. Moreover, the predicted values of f also
seem about right. For example, p* � 0.05, implies f � 0.67,
whereas other values can be read off of Figure 4. So, by choosing
a physiologically observed p*, the relationship produces failure
rates in the physiologically observed range. Thus, on these two
accounts (the robustness and the prediction of one physiological
observation from another nominally independent experimental

Figure 2. A, The optimal failure rate (1 � s) of theorem G and corollary
F is obtained by noting the intersection of the two curves, I C (the
computational information) and C E � H(p*) (the output channel capac-
ity). At higher values of s, any input information greater than H(p*) that
survives the input-based computational process of summation is wasted
because the information rate out cannot exceed H(p*), the output axonal
energy-efficient channel capacity. These values define an overcapacity
region. For lower values of s, neuronal integration is unable to provide
enough information to the spike generator to fully use the available rate
of the axon. This is the undercapacity region. Of course, changing p*
changes the optimal failure rate because the C E curve will shift. These
curves also reveal that a slight relaxation of assumption A4 will not change
the intersection value of s very much (e.g., a 10% information loss at the
spike generator produces a 
3% change in the value of s). The success
rate s equals one minus the failure rate. The optimal success rate is
demarcated by the vertical dotted line. In this figure the output channel
capacity, H(p*), uses p* � 0.041; n � 10,000 inputs. B, An alternative
perspective. Assuming the failure rate is given as 0.7 by physiological
measurements, then we could determine p*, the p that matches compu-
tational information I C to the energy-efficient channel capacity. Again the
vertical dotted line indicates the predicted value; n � 10,000. Both A and
B are calculated using the binomial probabilities of the Appendix.
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observation), we reap further rewards from the analysis of micro-
scopic neural function in terms of energy-efficient information.

The more involved proof of Appendix Part B sheds light on the
size of one source of randomness (quantal size) relative to an-
other (failure rate). Taking the SD of quantal size to be 12.5% of
the mean quantal size leads to an adjustment of about s/65 in the
implied values of f. For example, suppose no variation in Qi

produces an optimal failure rate of 70%, then taking variation of
Qi into account adjusts this value up to 70.46%. Clearly the effect
of quantal size variation is inconsequential relative to the failure
process itself.

DISCUSSION
In addition to the five assumptions listed on page 11, we made two
other implicit assumptions in the analysis. First, we assumed
additivity of synaptic events. While this assumption may seem
unreasonable, recent work (Magee, 1999, 2000; Andrásfalvy and
Magee, 2001) and (Cook and Johnston, 1997, 1999; Poolos and
Jonston, 1999) make even a linear additivity assumption reason-
able. The observations of Destexhe and Paré (1999), showing a
very limited range of excitation, also makes a linear assumption a
good approximation. Even so, we have explicitly incorporated any
nonlinearities that might operate on this sum and then group this
nonlinearity with the spike generator. Second, we have assumed
binary signaling. Very high temporal resolution, in excess of
2–104 Hz, would allow an interspike interval code that outper-
forms the energetic efficiency of a binary code. Our unpublished
calculations (which of necessity must guess at spike timing preci-
sion including spike generation precision, spike conduction
dither, and spike time decoding precision; specifically, a value of
10�4 msec was assumed) indicate a p* for such an interspike
interval code would be �50% greater than the p* associated with
binary coding as well as being more energetically efficient. How-
ever, we suspect such codes exist only in early sensory processing
and at the input to cerebellar granule cells. Systems, such as
considered here, with single quantum synapses, quantal failures,
and 10–20 Hz average firing rates, would seem to suffer inordi-
nately using interspike interval codes; a quantal failure can cause
two errors per failure and observed firing rates are suboptimal for
interspike interval code but fit the binary hypothesis.

The relationship f � 4�H(p*) partially confirms, but even more
so, corrects the intuition that led us to do this analysis. That is, we
had thought that the excess information in the dendrosomatic
computation could sustain synaptic failures and still be large
enough to fully use the energy-efficient capacity of the axon, CE.
However, this same intuitive thinking also said that the more
information a neuron receives, i.e., as either p* or as n grows, the
more a failure rate can be increased, and this thought is wrong
with regard to both variables.

First, the relationship f � 4�H(p*) tells us that the optimal
failure rate actually decreases as p* increases, so intuitive think-
ing had it backwards. We had thought in terms of the postsynaptic
neuron adding up its inputs. In this case, the probability of spikes
is like peaches and dollars, the more you possess the less each one
is worth to you. This viewpoint led to the intuition that, when
there are more spikes, any one of them can be more readily
discarded; i.e., f can be safely increased when p increases. How-
ever, this intuition ignored the output spike generator that neu-
ronal integration must supply with information. Here at the
generator (and its axon and each of its synapses) the probability
of spikes is very different than peaches and dollars: because the
curve for binary entropy, H(p), increases as p increases from 0 to
1/2, increasing probability effectively increases the average worth
of each spike and, as well, nonspikes; so it is more costly to
discard one. This result, one that only became clear to us by
quantifying the relationships, leads to optimal failure rates that
are a decreasing function of p*.

Second, in the neocortically relevant situation, where n is in the
thousands, if not tens of thousands, changing n has essentially no
effect on the optimal failure rate (Fig. 3). Indeed, the lower
bound, (A3), is so generous relative to actual neocortical connec-
tivity, that there is no way to limit connectivity (and thus, no way
to optimize it) based on saving energy in the dendrosomatic

Figure 4. Optimal failure rate as a function of spike probability in one
computational interval. The optimal failure rate decreases monotonically
as firing probability increases so that this theory accommodates a wide
range of firing levels. The vicinity of physiological p* (0.025–0.05 for
nonmotor neocortex and limbic cortex) predicts physiologically observed
failure rates. The dashed line plots f � (1/4)H(p*), whereas the solid line is
calculated without the Gaussian approximations described in the Appen-
dix. Note the good quality of the approximation in the region of interest
(p* � .05), although for very active neurons the approximation will
overestimate the optimal failure rate. More important than this small
approximation error, we would still restrict this theory to places where
information theoretic principles, as opposed to decision theoretic or
control theoretic principles, best characterize information processing.

Figure 3. At the optimal failure rate, matching I C to C E is increasingly
robust as number of inputs, n, increases. Nevertheless I C, the mutual
information measure of computation, attains the approximate value of
output capacity, C E, for n as small as 200. Calculations used the binomial
distributions of the Appendix with failure rate fixed at 0.7 and p* set to
0.041. The dashed line indicates H(p*).
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computation modeled here. To say it another way, one should
look elsewhere to explain the constraints on connectivity [e.g.,
ideas about volume constraints as in Mitchison, 1991 or Ringo,
1991, or ideas about memory capacity (Treves and Rolls, 1992).]

Thus, we are forced to conclude that, to a good approximation,
once n times p* is large enough, IC depends only on the failure
rate, an observation that is visualized by comparing the I C curves
of Figures 2, A and B, and 3.

In sum, the failure channel can be viewed as a process for
lowering the energy consumption of neuronal information pro-
cessing, and synaptic failures do not hurt the information
throughput when the perspective is broad enough. More exactly,
the optimized failure channel decreases energy consumption by
synapses and by dendrites while still allowing the maximally
desirable amount of information processing. This result is
achieved when IC � CE � H(p*), and this condition implies the
optimal failure rate is solely a function of p*.

Finally, optimizations such as these support the long, strong
(Barlow, 1959; Rieke et al., 1999; Dayan and Abbott, 2001) and
now increasingly popular [e.g., inter alia (Bialek et al., 1991;
Tovee and Rolls, 1995; Theunissen and Miller, 1997; Victor, 2000;
Atwell and Laughlin, 2001), see also articles in Abbott and
Sejnowski (1999)] tradition of analyzing brain function using
Shannon’s ideas. Successful parametric optimizations like the
one presented here (and those produced in some of the previously
cited references), reinforce the validity of using entropy-based
measures to describe and analyze neuronal information process-
ing and communication. Such results also stimulate hypotheses
(Weibel et al., 1998): e.g., not only does natural selection take
such measures to heart but often does so in the context of energy
efficiency.

APPENDIX
In this part we relate the quantal failure rate, f, to H(p*), the
energy-efficient channel capacity. Parts A, B, and C produce
essentially the same result, but Parts A and C are simpler. Part A
develops the result when the failure process is assumed to be by
far the largest source of noise. Parts B and C relax this assump-
tion to include the effect of variable quantal size which (as shown
in Part B) turns out to be negligibly small. Throughout, we assume
all synaptic weights are identically equal to one. However, a small
number of multiple synapses can accommodate variable synaptic
strength without changing the result.

Part A
A neuron receives an n-dimensional binary input vector X.
Each component of the input vector, Xi , is a Bernoulli random
variable, P(Xi � 1) � p*. Define y � 
 Xi as a realization of the
random variables summed (without quantal failures). The fail-
ure process, �(), produces a new random variable denoted
�(Xi ). Then denote y � � 
 �(Xi ) as a realization of the
summed input subject to the failure process. The quantal
success rate, the complement of the failure rate, is P(�(Xi ) �
1�Xi � 1) �

def s � 1 � f and the other characteristic of such
synapses is P(�(Xi ) � 0�Xi � 0) � 1. We want to examine the
mutual information between X and 
 �(Xi ), when Theorem G
is obeyed. That is, when I (X; 
 �(Xi)) � H(p*).

First note that because the failure channel at one synapse
operates independently of all other inputs defined by X and

because the sums 
 Xi � y partition the X values and that P(

�(Xi)�X � x where x f 
 Xi � y) � P(
 �(Xi)�
 Xi � y), then

H�� ��Xi��X� � H�� ��Xi��� Xi�

so that

I�X; � ��Xi�� � I�� Xi ; � ��Xi��.

We assume that 
 Xi can be modeled as a Poisson random
variable with parameter � � np, where n is the number of inputs
(e.g., n � 10,000 and p � 0.05 so � � 500). That is,

P�� Xi � y� �
e���y

y!

and, likewise when the failure mechanism is inserted:

P�� ��Xi� � y�� � e��s
��s�y�

y�!
,

another outcome evolving from the fact that quantal failures
occur independently at each activated synapse. On the other
hand, the summed response conditioned on 
 Xi is binomial with
parameters (y, s); that is,

P�
 ��Xi� � y��
 Xi � y� �
y!

� y � y��!y�!
sy�

�1 � s�y�y� .

But this inconvenient form, with its normalization term depend-
ing on the conditioning variable can be reversed. Using the
definition of conditional probabilities and our knowledge of the
marginals: Thus,

P�
 Xi � y�
 ��Xii� � y�� � e���1�s�
���1 � s��y�y�

�y � y��!

�
e���1�s����1 � s��t

t!

where t � y � y �, and note that t � 0 because of the way the
failure channel works (i.e., y � y �).

Now it can be seen that both P(
 Xi � y �) and P(Y � y�

�(Xi) � y�) are Poisson distributions with parameters � and
�(1 � s), respectively. Greatly simplifying further calculations,
this second Poisson parameter is independent of its conditioning
variable y�, and is particularly easy to conditionally average
because all summations occur over the same range; i.e., note that:

P�� Xi � y�� ��Xii� � y�� � P�� Xi � y, � ��Xi�

� y��� ��Xi� � y�� � P�t�� ��Xi� � y��

�
e��(1�s)���1 � s��t

t!
with t � �0, 1, 2, . . .� regardless of y�.

To compute I(
 Xi ; 
 �(Xi )) we will use the relation:

I�� Xi ; � ��Xi�� � H�� Xi� � H�� Xi��i ��Xi��

and the normal approximation for the entropy; that is, for a
Poisson distribution with parameter (i.e., variance) � large
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enough, the entropy is very nearly log2 �2�e�. So for the two-
distributions with the parameters � and �(1 � s), respectively,
subtracting one entropy from the other yields

I��Xi�� ��Xi�� � �
1
2

log2�1 � s� � �
1
2

log2� f �.

Thus, I(
Xi�
 �(Xi)) matches the energy-efficient channel capac-
ity p* when f � (1/4)H(p*). So the quantal failure rate is uniquely
determined by p* and is independent of the number of inputs n
provided that n is sufficiently large. [In fact, sufficiently large is
not very large at all. When the Poisson parameter is two, the
relative error of the normal approximation is 
4% (Frank and
Öhrvik, 1994).] Furthermore, because H(p) 	 1 the quantal
failure rate has the lower bound, f � 0.25.

Part B
The following mathematical development accounts for the vari-
ation in synaptic excitation caused by the failure channel and plus
the variance in quantal size. A number of approximations are
involved, but they are all of the same type. That is, we will go back
and forth between discrete and continuous distributions (and
back and forth between summation and integration) with the
justification that if two distributions are approximated by the
same normal distribution, they can be used to approximate each
other.

Each successful transmission, �(Xi ) � 1, results in a quantal
event size Qi � qi.

The number of synapses is n, and the failure rate is f � 1 � s,
where s is the success rate. Each input is governed by a Bernoulli
variable p.

X � {0,1}n, the vector of inputs; �(X) � {0,1}n, the vector of
active inputs passing through the failure channel; 
 Xi � {0, 1, . . .,
n}, the number of active input axons; 
 �(Xi) � {0, 1, . . ., n}, the
number of successful transmitting synapses; Qi � {0, 1, . . ., m}, a
quantal event with a discrete random amplitude; 
 �(Xi)Qi � {0,
1, . . ., n�m} the sum of the quantal responses with quantal am-
plitude variation.

Upper case indicates a random variable and lower case a
specific realization of the corresponding random variable. The
actual (biological) sequences of variables and transformation is:

X 3 ��X� 3 �
��X1�Q1···
��Xi�Qi···
��Xn�Qn

	 3 � ��Xi�Qi (B.1.1)

Because the Qi are independent of i and identically distributed,
there is a mutual information equivalent sequence:

X 3 ��X� 3 � ��Xi� 3 � ��Xi�Qi , (B.1.2)

which is what we will use to calculate:

I�X;� ��XiQi� � H�� ��Xi�Qi� � H�� ��Xi�Qi�X�.
(B.1.3)

Part B.1
Find H (
 �(Xi )Qi). To get H(
 �(Xi)Qi ), we need P(
 �(Xi)Qi),
which we get via P(
 �(Xi)Qi � h) � 
k P(
 �(Xi)Qi � h�

�(Xi) � y�) P(
 �(Xi) � y�) and some approximations.

The first approximation
When nps is large and ps is small, approximate the discrete
distribution P(
 �(Xi ) � y �) � (y �

n ) (ps)y �

(1 � ps)n�y �

by the
continuous distribution

�
e�y�

�y��nps�1

Gamma�nps�
(B.1.4)

because each is nearly normally distributed and has the same
mean and nearly the same variance.

To take quantal sizes into account, start with the assumption
that, the single event, Qi , is distributed as a Poisson that is large
enough to be nearly normal and that has the same shape. We can
do this if the value of the random variable at the mean and at one
SD on either side of the mean yields the same approximate
relationship (it will) while the Poisson parameter is large enough
for the normal approximation. For now let P(Qi � q) � e�
 
q/q!.
As noted below experimental observations allow us to place a
value of approximately 64 on 
. Note that the approximation of
quantal amplitude is usually assumed to be normal, but here we
assume a Poisson distribution of about the same shape. Indeed,
the normal assumption produces biologically impossible negative
values that the Poisson approximation avoids. Now note that the
Qi are independent of each other and the Xi values, so P(XiQi �
qi�Xi � 1) � P(Qi � qi ), and when we sum the independent events
another Poisson distribution occurs:

P�� ��Xi�Qi � h�� ��Xi� � y�� �
e�
y�

�
y��h

h!
.

(B.1.5)

Now following Bayes’s procedure using these two approximations
(B.1.1 and B.1.2):

P�� ��Xi� iQi � h, � ��Xi� � y��

� P�� ��Xi�Qi � h�� ��Xi� � y�� � P�� ��Xi� � y��

�
e��
�1�y�

�y��h�nps�1 
h

h!Gamma�nps�
, (B.1.6)

where the approximation is caused by the approximation noted in
B.1.1. This joint distribution is then marginated, by summing over
y� via another approximation (*see B.1. footnote just below), to
yield a negative binomial distribution with h � {0, 1, . . .}

P�� ��Xi�Qi � h� � �nps � h � 1
h �� 



 � 1�
h� 1


 � 1�
nps

.

(B.1.7)

This marginal distribution has mean � nps�(
/
 � 1)(1/
 �
1)�1 � 
 nps, and variance � mean�(1/
 � 1)�1 � 
(
 � 1)nps.
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Because the negative binomial is nearly a Gaussian under
parameterizations of interest here, H(
�(Xi)Qi ) � 1/2 log
2�e
(
 � 1)nps.

Part B.1. footnote
*Approximate the summation (i.e., the margination) with the
integration



y��0

� e�
y�
�
 y��h

h!
�

e�y�
�y��nps�1

Gamma�nps�
dy� �


y��0

� e��
�1�y�

h�y��h�nps�1

h!Gamma�nps�
dy�

�

h

h!Gamma�nps��
 � 1�h�nps�1
e��
�1�y�
��
 � 1�

� �y���h�nps�1dy�.

Now let t � (
 � 1)y�, then dt/dy� � 
 � 1 and dy� � dt/
 � 1
and substitute to get a recognizable integral:

�

h

h!Gamma�nps��
 � 1�h�nps

t�0

�

e�tt h�nps�1dt

�
1

h!Gamma�nps�
� � 1


 � 1�
nps

� � 



 � 1�
h

Gamma�h � nps�

Part B.2

H�� ��Xi�Qi�X�

To find H(
 �(Xi)Qi�X) we need P(
 �(Xi)Qi�X � x).
Because the Qi are independent of the particular i that generate

them and only depend on how many synapses transmitted,

P� � ��Xi�Qi � h�X � x� � �
y�

P� �
j�1

y�

Qj � h, �
xi�x

��Xi� � y��X � x� . (B.2.1)

Via the earlier description of the signal flow of computation, we
can use the Markov property of conditional probabilities to write:

P� �
j�1

y�

Qj � h, � ��Xi� � y��X � x� � �
y�

P��
j�1

y�

Qj � h, � ��Xi� � y��X � x, �
xi�x

Xi � y�
� �

y�

P� �
j�1

y�

Qj � h, � ��Xi� � y�� �
xi�x

Xi � y�
� �

y�

P� �
j�1

y�

Qj � h��
xi�x

Xi � y, �
xi�x

��Xi� � y��
P� �

xi�x

��Xi� � y���
xi�x

Xi � y�
� �

y�

P��
j�1

y�

Qj � h��
xi�x

��Xi� � y��P��
xi�x

��Xi� � y�� �
xi � x

Xi � y�,

where the last two steps follow by the definition of conditional
probability, multiplying and dividing by the joint probability and
then using Markov’s idea again.

Now apply to this last result the quantal size approximation
already introduced, approximate summation by integration,
and replace a binomial distribution by a gamma distribution
where they both are nearly approximating the same normal
distribution.

P�� ��Xi�Qi � h�X � x� � �
y��0

� e�
y�
�
 y��h

h!

�� xi

y� �sy�
�1 � s��y���xi

�

y��0

� e�
y�
�
 y��h

h!
e��y���1�s��1 y��1�s�1�s��1�xi

Gamma�s�1 � s��1 � xi�
dy�

�


h�
 �
1

1 � s�
�h�1��1�s�s �xi

Gamma��1 � s�s � xi�h! 

y�

e��y���
��1�s��1�

� ��
 �
1

1 � s�y��h�1��1�s�s �xi

dy�,

where the approximate equality arise just as in the previous
subsection. However, in contrast to the calculation of P(

�(Xi)Qi), for the case of replacing the binomial distribution, here
we must accommodate the mean and variance being different.
Thus, a more complicated gamma distribution is used. Still, the
integration is made easy by a change of variable.

t � ��
 �
1

1 � s� y�� , or

dt
dy� � 
 �

1
1 � s

, or dy� � �
 �
1

1 � s�
�1

dt,

which substitutes to give:

P�� ��Xi�Qi�X � x�

�

h�
 �

1
1 � s�

�h��1�s�s �xi

Gamma��1 � s�s � xi�h! 

t�0

�

e�tt h�1�(1�s)s�xi dt

�


h��
 � 1 � 
s�
1 � s ��h��1�s�s �xi

Gamma��1 � s�s � xi�h!
Gamma�h � �1 � s�s � xi�

� � 
�1 � s�
�
 � 1� � 
s�

h� 1 � s
�
 � 1� � 
s�

�1�s�s �xi

Gamma�h � �1 � s�s � xi�

Gamma��1 � s�s � xi�h!
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Once again, the resulting distribution, P(
 �(Xi)Qi�X � x), is a
negative binomial with mean:

�1 � s� � s � xi


�1 � s�

�
 � 1� � 
s

� �1 � s�

�
 � 1� � 
s�
� 
�1 � s�s � xi

and variance � mean � � 1 � s
�
 � 1� � 
s�

�1

� 
 � �
 � 1� �

�1 �

s

�
 � 1��s � xi .

Part B.3.
Now calculate the mutual information with normal approxima-
tions for each of the two negative binomials.

H� � ��Xi�Qi� � H� � ��Xi�Qi�X�
�

1
2

log 2�e�
 � 1�
nps � �
X�x

P�X

� x�
1
2

log 2�e�
 � 1�
�1 �

s

�
 � 1��s � xi

�
1
2

log np �
1
2

Ex�log �Xi� �
1
2

log�1 �

s

�
 � 1��.

Because the first two terms combine to approximately zero and
when


s
�
 � 1�

� s,

then

I�X; � ��Xi�Qi� � �
1
2

log�1 � s� � �
1
2

log� f �.

But I(X; 
 �(Xi )Q) is set to H(p*) if we obey Theorem G. Then
H(p*) � �1/2 log(f), implying f � 2�2H(p*).

Two comments are in order.
The approximate E[log
Xi /np] � 0 is better as np gets larger

but is good enough down to np � 4 (Fig. 3). Second, the variance
of quantal amplitudes expresses itself in the term 
s/(
 � 1) as
opposed to just s when there is no quantal variance. That is, if we
leave out quantal amplitude variations, we get nearly the same
answer without even using these approximations.

The particular parameterization of 
 is arrived at from exper-
imental data. When k equals one, we have the distribution of
quantal amplitudes for a single quantum. From published reports
(Katz, 1966 their Fig. 30), we estimate that at 1 SD from the
mean, the value of the quantal amplitude changes �12.5%. Thus,
a Poisson distribution, with a nearly normal distribution of the
same shape, has a mean amplitude proportional to 
 � 64 and an
amplitude proportional to 72 at 1 SD from the mean. That is,
12.5% to either side of the mean value is �1 SD of quantal size
given the mean has a value of 
. With 
 � 64, 
/
 � 1 � 64/65,
which is reasonably close to one.

Part C
The following simple proof was suggested by Read Montague.

Let Y1 , Y2 , and Y3 be random variables formed from the sums:

Y1 � �
i

Xi,

Y2 � �
i

� �Xi� ,

Y3 � �
i

Qi� �Xi�,

where each Xi represents the activity of an input signal and is a
binary random variable with P(Xi � 1) � p and P(Xi � 0) � 1 �
p � q. The function �(Xi ) is associated with quantal failures such
that P(�(Xi) � 1�Xi � 1) � s, P(�(Xi ) � 0�Xi � 1) � 1 � s � f,
P(�(Xi ) � 0�Xi � 0) � 1, and P(�(Xi ) � 1�Xi � 0) � 0.

We will assume that the quantal amplitudes are Gaussian
distributed with mean � and variance 
2 and let such a Gaussian
distribution be denoted by P(Qi ) � N(�, 
2)dQi. Furthermore, we
will assume that the number of inputs (i.e., the number of terms
in the sums) is large enough such that P(Y1 ) � N(np, npq)dY1 and
P(Y2 ) � N(nps, nps)dY2.

We seek to determine the mutual information between Y3 and
Y1:

I�Y3; Y1� � �
Y1,Y3

P�Y1� P�Y3�Y1�log2�P�Y3�Y1�

P�Y3�
�.

To determine I(Y3 ; Y1), we compute P(Y3�Y1 ) as:

P�Y3�Y1� � 

Y2

P�Y3 , Y2�Y1�dY2

� 

Y2

P�Y3�Y2 , Y1� P�Y2�Y1�dY2

� 

Y2

P�Y3�Y2� P�Y2�Y1�dY2

� 

Y2

N��Y2 , 
 2Y2�dY3N�sY1 , sf Y1�dY2

� N�s�Y1 , nps�
 2 � f�2��dY3 ,

where we have used the approximation N(�Y2 , 
2Y2) � N(�Y2 ,
nps
2).

Then we compute P(Y3 ) as

P�Y3� � 

Y1

N��sY1 , nps�
 2 � f�2��dY3N�np, npq�dY1

� N�nps�, nps�
 2 � f�2 � qs�2��dY3 ,

which yields

I�Y3;Y1� �
1
2

log2�
 2 � f�2 � qs�2


 2 � f�2 �.
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If we let 
2 � �, p 

 1 (q � 1), and � �� 1, then we again obtain
the result of Appendix Part B.
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