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Abstract

We address the challenge of detecting the contribution of noncoding mutations to disease with a 

deep-learning-based framework that predicts specific regulatory effects and the deleterious impact 

of genetic variants. Applying this framework to 1,790 Autism Spectrum Disorder (ASD) simplex 

families reveals disease causality of noncoding mutations: ASD probands harbor both 

transcriptional and post-transcriptional regulation-disrupting de novo mutations of significantly 

higher functional impact than unaffected siblings. Further analysis suggests involvement of 

noncoding mutations in synaptic transmission and neuronal development, and taken together with 

prior studies reveal a convergent genetic landscape of coding and noncoding mutations in ASD. 

We demonstrate that sequences carrying prioritized proband mutations possess allele-specific 

regulatory activity, and highlight a link between noncoding mutations and IQ heterogeneity in 

ASD probands. Our predictive genomics framework illuminates the role of noncoding mutations 

in ASD, prioritizes high impact mutations for further study, and is broadly applicable to complex 

human diseases.
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Introduction

Great progress has been made in the past decade in understanding autism spectrum disorder 

(ASD) genetics, establishing de novo mutations, including copy number variants (CNVs) 

and point mutations that likely disrupt protein coding genes, as important causes of ASD1,2. 

Yet all known ASD-associated genes together explain a small fraction of new cases, and it is 

estimated that overall de novo protein coding mutations, including CNVs, contribute to no 

more than 30% of simplex ASD cases2,3. The vast majority of identified de novo mutations 

are located within intronic and intergenic regions, yet little is known regarding their 

contribution to the genetic architecture of ASD or in disease pathogenesis more generally.

A potential role for noncoding mutations in complex human diseases including ASD has 

long been speculated. Human regulatory regions show signs of negative selection4, 

suggesting mutations within these regions lead to deleterious effects, and studies of inherited 

common variants have shown enriched disease association in noncoding regions5. 

Furthermore, noncoding mutations affecting gene expression have been discovered to cause 

Mendelian diseases6 and shown to be enriched in cancer7. Expression dosage effects have 

also been suggested as underlying the link between CNVs and ASD8. Recently, parentally-

inherited structural noncoding variants have been linked to ASD9. Also, on a small cohort of 

ASD families, some trends with limited sets of mutations have been reported10–12. Likewise, 

despite the major role RNA-binding proteins (RBPs) play in post-transcriptional regulation, 

little is known of the pathogenic effect of noncoding mutations affecting RBPs outside of the 

canonical splice sites. Thus, noncoding mutations could be a cause of ASD, yet no 

conclusive connection of regulatory de novo noncoding mutations, either transcriptional or 

post-transcriptional, to ASD etiology has been established.

Recent developments make it possible to perform large-scale studies that reliably identify 

noncoding de novo mutations at whole genome scale. The Simons Simplex Collection (SSC) 

whole genome sequencing (WGS) data for 1,790 families differs from many previous large-

scale studies in design by including matched unaffected siblings3,13–16. These provide 

critical background controls for detecting excess of proband mutations, as it is otherwise 

hard to distinguish disease-relevant excess of mutations from irrelevant biological and 

technical variation, such as genetic background differences or artificial biases from 

sequencing, variant calling, and filtering procedures.

However, even with study designs using matched control individuals, detecting the de novo 
noncoding contribution is still challenging, and establishing the role of the vast noncoding 

space in the genetic basis of autism remains elusive. Two recent studies17,18 demonstrated 

that even when considering a wide variety of possible functional annotation categories (e.g. 

mutations in known regulatory sites, mutations at the location of known histone marks, 

mutations near ASD- or disease-relevant gene sets), no significant noncoding ASD-proband-

specific signal was observed, and that approach would require a very large cohort to detect 

signal17. This is consistent with the expectation that noncoding mutations, in contrast to 

loss-of-function coding mutations, can vary highly in functional impact, with potentially 

only a small fraction of variants having strong effect size. Thus, the challenge is to move 
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beyond simple mutation counts, which are susceptible to both statistical power challenges 

and confounding factors, such as the rise in mutation counts with parental age. This 

difficulty is shared in other psychiatric diseases with complex genetic bases, such as 

intellectual disabilities and schizophrenia. In fact, little is known about the contribution of 

noncoding rare variants or de novo mutations to human diseases beyond the less common 

cases with Mendelian inheritance patterns.

To address this challenge, we used a systematic approach (Fig. 1a) that reliably identifies 

impactful noncoding mutations, analogous to using the genetic codon code to distinguish 

non-synonymous from synonymous protein coding mutations. This enables comparison of 

mutational burden between probands and siblings not simply in terms of number of 

mutations, but in terms of their functional impact. Specifically, we used biochemical data 

demarcating DNA and RNA binding protein interactions to train and deploy a deep 

convolutional-neural-network-based framework that predicts the functional and disease 

impact of de novo mutations in the SSC, with models trained for DNA and RNA. Our 

framework estimates, with single nucleotide resolution, the quantitative impact of each 

variant on 2,002 specific transcriptional and 232 specific post-transcriptional regulatory 

features, including histone marks, transcription factors and RNA-binding protein (RBP) 

profiles.

Using this approach, we discovered, at both DNA and RNA regulation levels, a significantly 

(multiple-hypothesis corrected) elevated burden of disruptive transcriptional-regulatory 

disrupting (TRD) and RBP-regulatory disrupting (RRD) proband mutations in ASD, 

providing evidence for causality of noncoding regulatory de novo mutations in autism. 

Notably, the functional impact difference between proband and sibling mutations is 

significant when considering de novo mutations genome-wide, with elevated effect sizes 

observed around loss-of-function intolerant genes (ExAC19). We also identify specific 

pathways and tissues affected by these mutations, experimentally verify the differential 

regulatory effect of prioritized variants, and explore a link between the noncoding mutations 

and IQ in ASD. We provide an interactive interface to explore de novo mutation impact 

predictions for the biomedical research community at hb.flatironinstitute.org/ASDbrowser.

Results

Contribution of transcriptional and post-transcriptional regulatory mutations to ASD

Analysis of the noncoding mutation contribution to ASD is challenging due to the difficulty 

of assessing which noncoding mutations are functional, and further, which of those 

contribute to the disease phenotype. For predicting the regulatory impact of noncoding 

mutations, we constructed a deep convolutional network-based framework to directly model 

the functional impact of each mutation and provide a biochemical interpretation including 

the disruption of transcription factor binding and chromatin mark establishment at the DNA 

level and of RBP binding at the RNA level (Supplementary Fig. 1, 2). At the DNA level, the 

framework includes cell-type specific transcriptional regulatory effect models from over 

2,000 genome-wide histone marks, transcription factor binding and chromatin accessibility 

profiles (from ENCODE and Roadmap Epigenomics projects20,21), extending the deep 

learning-based method that we described previously10 with redesigned architecture (leading 
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to significantly improved performance, p=6.7×10−123, Wilcoxon rank-sum test, 

Supplementary Fig. 2). At the RNA level, our deep learning-based method was trained on 

the precise biochemical profiles of over 230 RBP-RNA interactions (derived from CLIP 

data); such data can identify a wide range of post-transcriptional regulatory binding sites, 

including those involved in RNA splicing, localization and stability22. At both 

transcriptional and post-transcriptional levels, our models are accurate and robust in whole 

chromosome holdout evaluations (Supplementary Fig. 1b). Our models utilize a large 

sequence context to provide single nucleotide resolution to our predictions, while also 

capturing dependencies and interactions between various biochemical factors (e.g. histone 

marks or RBPs). This approach is data-driven, does not rely on known sequence 

information, such as transcription factor binding motifs, and it can predict impact of any 

mutation regardless of whether it has been previously observed, which is essential for the 

analysis of ASD de novo mutations. Finally, to link the biochemical disruption caused by a 

variant with phenotypic impact, we trained a regularized linear model using a set of curated 

human disease regulatory noncoding mutations6 (HGMD) and rare variants from healthy 

individuals in the 1000 Genomes populations23 to generate a predicted disease impact score 

(DIS) for each autism mutation independently based on its predicted transcriptional and 

post-transcriptional regulatory effects.

With these approaches, we systematically assessed the functional impact of de novo 
mutations on regulatory factor binding and chromatin properties, using data derived from 

7,097 whole genomes from the SSC cohort with our framework (total 127,140 non-repeat 

region SNVs, Supplementary Table 1). When considering all de novo mutations, we 

observed a significantly higher functional impact in probands compared to unaffected 

siblings, independently at the transcriptional (p=9.4×10−3, one-side Wilcoxon rank-sum test 

for all; FDR=0.033, corrected for all mutation sets tested) and post-transcriptional 

(p=2.4×10−4, FDR=0.0049) levels (Fig. 1b, all variants). This analysis is sensitive enough to 

discover noncoding contribution even if a very small fraction of the noncoding mutations are 

impactful (see power analysis in Supplementary Fig. 3). Furthermore, our finding is robust 

and significant directly at the level of biochemical disruptions predicted by DNA and RNA 

deep learning models as well as with alternative DIS training sets (Supplementary Fig. 4–5) 

or with inclusion or exclusion of protein coding regions (Supplementary Fig. 6–7).

Werling et al.17 raised the challenge of detecting any significant proband-specific signal even 

with highly specific subsets of genes or genomic regions, and correspondingly emphasized 

the need for proper multiple hypothesis correction; this challenge was still not resolved by a 

larger ASD cohort in a follow-up study18. Notably, our result above does not rely on any 

selection of variant subsets (e.g. those near predicted ASD-associated genes), is significant 

even after multiple hypothesis correction, and, unlike the mutation counts, the predicted 

mutation effects are not correlated with parental age (Supplementary Fig. 8), a confounding 

factor of mutation count-based analysis.

To gain further insight into the ASD noncoding regulatory landscape, we conducted a 

comprehensive analysis, with full multiple hypothesis correction for all combinations of 14 

gene-sets previously used in Werling et al.17 and 10 genomic regions tested (e.g. TSS or 

exon proximal). When restricted to genomic regions of higher regulatory potential (i.e. near 
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TSS or alternatively spliced exons), we observed an increased dysregulation effect size (Fig. 

1b–c, all genes, TRD p=5.6×10−4, FDR=0.0056; RRD p=2.2×10−4, FDR=0.0048). Among 

gene sets, we observed an elevated proband burden of high effect mutations close to loss-of-

function (LoF) intolerant genes (pLI > 0.9 from ExAC, 3,230 genes, TRD p=2.6×10−3, 

FDR=0.013; RRD p=1.1×10−3, FDR=0.0078) (Fig. 1b–c, Supplementary Fig. 9), suggesting 

LoF intolerant genes are highly vulnerable to noncoding disruptive mutations in ASD. This 

is consistent with the enrichment of coding loss-of-function mutations among the LoF 

intolerant genes in the SSC cohort24, indicating ASD signal convergence of noncoding and 

coding de novo mutations. Furthermore, we also find convergent signal at both 

transcriptional and post-transcriptional levels, thus providing further evidence for the causal 

role of noncoding effects in ASD (full analysis p-values and FDRs are available in 

Supplementary Table 2). We observe these signals consistently across SSC cohort subsets 

that were sequenced in different phases (Supplementary Fig. 10).

Tissue specificity and functional landscape of noncoding ASD-associated de novo 
mutations

Although one of the hallmarks of autism is altered brain development, a comprehensive 

tissue association has not been established for de novo noncoding variants. To explore the 

proband-specific tissue signal, we systematically tested the variant effects for tissue-specific 

genes derived from all 53 GTEx tissues and cell types25. We observed a consistent 

significant proband-specific mutation effect associated with brain tissues, with brain regions 

constituting the top 11 ranked tissues (by difference in proband vs sibling noncoding 

mutation effect) (Fig. 2a, all with FDR < 0.05). This provides strong evidence that high 

impact variants from the noncoding genome of ASD probands likely disrupt brain-specific 

gene regulation, consistent with previous findings for protein coding mutations30.

We next investigated the underlying processes and pathways impacted by de novo noncoding 

mutations in ASD. Such analysis is challenging because in addition to the variability in 

functional impact of mutations, ASD probands appear highly heterogeneous in underlying 

causal genetic perturbations26 and single mutations could cause a widespread effect on 

downstream genes. Thus to detect genes and pathways relevant to the pathogenicity of ASD 

TRD and RRD mutations, we developed a network-based statistical approach, NDEA 

(Network-neighborhood Differential Enrichment Analysis) (Supplementary Fig. 11). We 

used a brain-specific functional network that probabilistically integrates a large compendium 

of public omics data (e.g. expression, PPI, motifs) to represent how likely two genes are to 

act together in a biological process27. When applied to ASD de novo mutations, the NDEA 

approach identifies genes whose functional network neighborhood is significantly enriched 

for genes with stronger predicted disease impact in proband mutations compared to sibling 

mutations (Supplementary Table 3).

Globally, NDEA enrichment analysis pointed to a proband-specific role for noncoding 

mutations in affecting neuronal development, including in synaptic transmission and 

chromatin regulation (Fig. 2b, Supplementary Table 4), consistent with processes previously 

associated with ASD based on protein coding variants2, 30. Genes with significant NDEA 

enrichment were specifically involved in neurogenesis and grouped into two functionally 
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coherent clusters with Louvain community detection algorithm (Fig. 2c, Supplementary 

Table 5). The synaptic cluster is enriched in ion channels and receptors involved in 

neurogenesis (p=5.6×10−38), synaptic signaling (p=4.8×10−35) and synapse organization 

(p=1.5×10−18), including previously known ASD-associated genes such as those involved in 

synapse organization SHANK2, NLGN2, NRXN2, synaptic signaling NTRK2 and NTRK3, 

ion channels CACNA1A/C/E/G, KCNQ2, and neurotransmission SYNGAP1, GABRB3, 

GRIA1, GRIN2A28. The synapse cluster is also significantly enriched for plasma membrane 

proteins (p=3.9×10−24). In contrast, the chromatin cluster, representing chromatin regulation 

related processes, displayed an overrepresentation of nucleoplasm (p=2.1×10−9) proteins, 

with diverse functional roles including covalent chromatin modification (p=2.5×10−9), 

chromatin organization (5.2×10−8) and regulation of neurogenesis (p=6.4×10−5). The 

chromatin cluster also includes many known ASD-associated genes such as chromatin 

remodeling protein CHD8, chromatin modifiers KMT2A, KDM6B, and Parkinson’s disease 

causal mutation gene PINK129 which is also associated with ASD28 (Supplementary Table 

3). Overall, our results demonstrate pathway-level TRD and RRD mutation burden and 

identify distinct network level hot spots for high impact de novo mutations.

Next, we examined the genetic landscape of ASD-associated de novo noncoding and coding 

mutations. Specifically, in addition to the network analysis of noncoding mutations at the 

transcriptional and post-transitional level, we also applied it to the de novo coding 

mutations2. We compared the gene-specific NDEA statistic of elevated proband-specific 

noncoding mutation effect burden to that of the coding mutations, finding a significant 

positive correlation for both TRD and RRD (p=0.004 and Pearson’s r = 0.39 for TRD, 

p=0.042 and Pearson’s r = 0.30 for RRD; two-sided permutation test). Moreover, by network 

analysis, TRD and RRD are themselves significantly correlated (p=0.034 two-sided 

permutation test). This demonstrates that coding and noncoding mutations affect overlapping 

processes and pathways, indicating a convergent genetic landscape, and highlights the 

potential of ASD gene discovery by combining coding and noncoding mutations.

Experimental study of ASD noncoding mutation effects on gene regulation

Our analysis identified new candidate noncoding disease mutations with potential impact on 

ASD through regulation of gene expression. In order to add further evidence to a set of high 

confidence causal mutations, we experimentally studied allele-specific effects of predicted 

high-impact mutations in cell-based assays. For TRD mutations, fifty nine genomic regions 

showed strong transcriptional activity with 96% proband variants (57 variants) showing 

robust differential activity (Fig. 3, Methods); demonstrating that our prioritized de novo 
TRD mutations do indeed lie in regions with transcriptional regulatory potential and the 

predicted effects translate to measurable allele-specific expression effects. Among these 

genes with the demonstrated strong differential activity mutations, NEUROG1 encodes an 

important regulator of initiation of neuronal differentiation and in the NDEA analysis had 

significant network neighborhood proband excess (p=8.5×10−4), and DLGAP2 encodes a 

guanylate kinase localized to the post-synaptic density in neurons. Mutations near HES1 and 

FEZF1 also carried significant differential effect on activator activities: neurogenin, HES, 

and FEZF family transcription factors act in concert during development, both receiving and 

sending inputs to Wnt and Notch signaling in the developing central nervous system and 
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interestingly, the gut, to control stem cell fate decisions30–34; and Wnt and Notch pathways 

have been previously associated with autism26,35. SDC2 encodes a synaptic syndecan 

protein involved in dendritic spine formation and synaptic maturation, and a structural 

variant near the 3’ end of the gene was reported in an autistic individual (reviewed in Saied-

Santiago, 201736). Thus, our method identified alleles of high predicted impact that do 

indeed show changes in transcriptional regulatory activity in cells. Since many autism genes 

are under strong evolutionary selection, only effects exerted through (more subtle) gene 

expression changes may be observable because complete loss of function mutations may be 

lethal. This implies that further study of the prioritized noncoding regulatory mutations 

should yield insights into the range of dysregulations associated with autism.

In addition, as a case study for prioritized RRD mutations, we experimentally validated the 

effect of an ASD proband de novo noncoding mutation laying outside of a canonical splice 

site that we predicted to disrupt splicing of SMEK1 (ExAC pLI=1.0; Supplementary Fig. 

12), Smek1 has previously been shown to regulate cortical neurogenesis through the Wnt 

signaling pathway37. For this mutation, we observed a >40% reduction in the inclusion of 

the exon for the ASD proband allele compared to the sibling allele in a minigene assay 

(Methods), in agreement with the high predicted RRD impact. This demonstrates the highly 

disruptive biochemical impact a non-splice site de novo mutation can have on RNA splicing.

The individual level clinical relevance of the noncoding de novo mutations

The majority of ASD probands in the SSC do not have a de novo LoF coding mutation1,2 

and noncoding mutations outnumber LoF coding mutations by over 500 fold18. While 

individual impact of noncoding mutations may vary, as a group noncoding mutations could 

have significant clinical impact. Indeed, we observed a significant increase in ASD risk for 

individuals with higher burden of impactful de novo mutations (Supplementary Fig. 9, mean 

DIS per individual, Wilcoxon rank sum test one-sided p=1.4×10−3), with 25% of the SSC 

ASD probands incurring an aggregate noncoding ASD risk of 1.2 (odds ratio).

Furthermore, the overall contribution of de novo noncoding mutations (explaining 4.3% of 

the SSC ASD cases) is comparable to that of loss-of-function coding mutations (5.4%) and 

to that of missense mutations (3.1%) (Supplementary Fig. 13). This analysis leverages the 

power of the quad simplex design of the SSC cohort, enabling the estimation of causal 

contribution of each mutation category by correcting for the background occurrence rate 

among unaffected siblings (see Methods). Thus, our results demonstrate that noncoding de 
novo mutations have clinical relevance, although not all ASD probands will have impactful 

noncoding mutations (even in aggregate), and future work will be required to characterize 

their clinical impact and relationship to phenotypes.

One interesting direction is in association of impacts of noncoding mutations to specific 

phenotypes, such as IQ heterogeneity among ASD probands. Intellectual disability is 

estimated to impact 40–60% of autistic children38, and ASD individuals can over-inherit 

common variants associated with education attainment39. For de novo noncoding mutations 

analyzed in this study, we observe a significant association between noncoding mutations 

and IQ in ASD individuals. Specifically, lower IQ ASD individuals have a higher burden of 

RRDs in intronic regions flanking alternatively spliced exons of ExAC LoF intolerant genes. 
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This provides genetic evidence that aberrant splicing can contribute to the phenotypic 

heterogeneity observed among ASD probands (Supplementary Fig. 14, p=1.5×10−3), and 

should be taken into account when projecting clinical outcomes.

Discussion

Even with great strides in understanding the causes of ASD by sequencing and phenotyping 

of multiple cohorts in the recent years, much of the genetic basis underlying autism remains 

undiscovered. While a number of coding variants have been associated with ASD, no 

systematic evidence of de novo noncoding effect has been observed. Here we present a novel 

deep-learning based approach for quantitatively assessing the impact of noncoding 

mutations on human disease. Our approach addresses the statistical challenge of detecting 

the contribution of noncoding mutations by predicting their specific effects on 

transcriptional and post-transcriptional levels. This approach is general and can be applied to 

study contributions of noncoding mutations to any complex disease or phenotype.

Here, we apply our strategy to ASD using the 1,790 whole genome sequenced families from 

the Simons Simplex Collection, and for the first time demonstrate significant proband-

specific signal in regulatory de novo noncoding space. Importantly, we independently detect 

this signal not only at the transcriptional level, but also find significant proband-specific 

RRD burden. Previously, there’s been limited evidence for disease contribution of mutations 

disrupting post-transcriptional mechanisms outside of the canonical splice sites. We 

demonstrate significant ASD disease association at the de novo mutation level for variants 

impacting a large collection of RBPs regulating post-transcriptional regulation. Overall, our 

results suggest that both transcriptional and posttranscriptional mechanisms play a 

significant role in ASD etiology and possibly other complex diseases.

Notably, our study reveals important biological convergences among genetic dysregulations 

associated with ASD. Our analyses of the disease impact of both DNA and RNA effect 

mutations point to similar sets of impacted genes and pathways, indicating that the effects of 

regulatory mutations are convergent. Furthermore, high-impact noncoding regions we find in 

ASD probands impact the same genes previously found to be impacted by ASD LoF coding 

mutations. This convergence provides support for the causal contribution of noncoding 

regulatory mutations to ASD etiology.

Our analyses also demonstrate the potential of predicting disease phenotypes from genetic 

information, including de novo noncoding mutations. We provide a resource for further 

research into understanding the mechanism of noncoding impact on ASD, including 

computationally prioritized TRD and RRD mutations with strong predicted regulatory 

effects, as well as potentially disease contributing ASD proband mutations with 

experimentally confirmed effects (Supplementary Table 1,6 and hb.flatironinstitute.org/

ASDbrowser). However, there remains much room for further progress in this important 

area. We expect continuing development of noncoding mutation effect prediction methods 

will further improve the power of WGS studies in discovering the biological mechanisms of 

noncoding mutation contribution to autism and other complex human diseases.
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Methods

De novo mutation calling and filtering

The Simons Simplex Collection WGS data was made available via Simons Foundation 

Autism Research Initiative (SFARI), and was processed to generate variant calls via the 

standard GATK pipeline. The Simons Simplex Collection WGS data can be requested 

through SFARI Base (https://www.sfari.org/resource/sfari-base/), with the condition that the 

use of the data is limited to projects related to advancing the field of autism and related 

neurodevelopmental disorder research (questions on SSC consents should be directed to 

collections@sfari.org). To call de novo single nucleotide substitutions, inherited mutations 

were removed, and candidate de novo mutations were selected from the GATK variant calls 

where the alleles were not present in parents and the parents were homozygous with the 

same allele. DNMFilter classifier was then used to score each candidate de novo mutation 

and a threshold of probability > 0.75 was applied for SSC phase1–2 and probability > 0.5 

cutoff for phase3 to obtain a comparable number of high-confidence DNM calls across 

phases.

The DNMFilter40 classifier was trained with an expanded training set combining the original 

training standards with the verified DNMs from the SSC pilot WGS studies for the initial 40 

SSC families. For final analysis, de novo mutation calls within the low complexity repeat 

regions from UCSC browser table RepeatMasker41 were removed. Also, DNMs appearing in 

multiple SSC families (i.e. non-singleton DNMs) or individuals with outlier numbers of 

mutations (> 3 standard deviation more than average) were excluded from the analysis.

Overall genome-wide, we detect 77.7 mutations per individual with Ti/Tv ratio 2.01 with 

95% CI [2.00, 2.03] (78.7 for probands with Ti/Tv = 2.02 [1.99, 2.04], 76.7 for siblings with 

Ti/Tv=2.01 [1.99, 2.03]), with no significant difference in mutation substitution patterns 

between proband and sibling (Supplementary Fig. 15). The WGS DNM calls were compared 

against exome sequencing de novo mutations calls and previously validated SSC de novo 
mutations42: 87.9% of the exome sequencing mutations calls and 90.3% of the validated 

mutations were rediscovered in our mutation calls.

Training of DNA transcriptional regulatory effects and RNA posttranscriptional effects 
models

For training the transcriptional regulatory effects model, training labels, such as histone 

marks, transcription factors, and DNase I profiles, were processed from uniformly processed 

ENCODE and Roadmap Epigenomics data releases. The training procedure is as described 

in Zhou and Troyanskaya21 with the following modifications. The model architecture was 

extended to double the number of convolution layers for increased model depth (see 

Supplementary Note 1 for details). Similar to our previous model21, all layers except for the 

last linear layer were shared across all biochemical features. Input features were expanded to 

include all of the released Roadmap Epigenomics histone marks and DNase I profiles, 

resulting in 2,002 total features (Supplementary Table 7) compared to 919 original features.

For training the post-transcriptional regulatory effects model, we utilized the DeepSEA 

network architecture and training procedure with RNA-binding protein (RBP) profiles as 
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training labels (full list of parameters used in model is in Supplementary Note 1). We 

uniformly processed RNA features composed of 231 CLIP binding profiles for 82 unique 

RBPs (ENCODE and previously published CLIP datasets) and a branchpoint mapping 

profile as input features (full list of experimental features listed in Supplementary Table 8). 

CLIP data processing followed our previously detailed pipeline43, all CLIP peaks with p-

value < 0.1 were used for training with an additional filter requirement of two-fold 

enrichment over input for ENCODE eCLIP data. In contrast to the DeepSEA, only 

transcribed genic regions were considered as training labels for the post-transcriptional 

regulatory effects model. Specifically, all gene regions defined by Ensembl (mouse build 80, 

human build 75) were split into 50nt bins in the transcribed strand sequence. For each 

sequence bin, RBP profiles that overlapped more than half were assigned a positive label for 

the corresponding RBP model. Negative labels for a given RBP model were assigned to 

sequence bins where other RBP’s non-overlapping peaks were observed. Note that our deep 

learning models, both transcriptional and post-transcriptional, do not use any mutation data 

for training, thus it can predict impacts for any mutation regardless of whether it has been 

previously observed.

Disease impact score prediction

We used curated disease regulatory mutations and rare variants from healthy individuals to 

train a model that prioritizes likely disease-impacting mutations based on the predicted 

transcriptional or post-transcriptional regulatory impacts of these mutations. As positive 

examples, we used 4,401 regulatory noncoding mutations curated in the Human Gene 

Mutation Database (HGMD) with mutation type “regulatory” (DM, DM?, DFP, DP and FP). 

For negative examples of background mutations, we used 999,668 rare variants that were 

only observed once within the healthy individuals from the 1000 Genomes project23. We 

also showed that using common variants with AF>0.01 and location within 100kb to positive 

as negatives leads to similar conclusions (Supplementary Fig. 5). Absolute predicted 

probability differences computed by the convolutional network transcriptional regulatory 

effects model (described above) were used as input features for each of the 2,002 

transcriptional regulatory features and for the 232 post-transcriptional regulatory features in 

the disease impact model. Input features were standardized to unit variance and zero mean 

before being used for training. We separately trained a L2 regularized logistic regression 

model for transcriptional effect model (lambda=10) and post-transcriptional effect model 

(lambda=10, using only genic region variant examples) with the xgboost package (https://

github.com/dmlc/xgboost). The positive and negative training samples were separately 

weighted according to the inverse of the number of samples to address the label imbalance. 

The predicted probabilities are z-transformed to have mean 0 and standard deviation 1 across 

all proband and sibling mutations.

Gene sets and resources

All gene sets used are from Werling et al.17. The 14 gene-sets include GENCODE protein 

coding genes, Antisense, lincRNAs, Pseudogenes, genes with loss-of-function intolerance 

(pLI) score > 0.9 from ExAC19, predicted ASD risk genes (FDR < 0.3) from Sanders et al.8, 

FMRP target genes44, Genes associated with developmental delay45,46 andCHD8 target 

genes47,48. For genes with expression specific to each 53 GTEx tissue, we used expression 
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table from GTEx v7 (gene median TPM per tissue)25, we selected genes for which 

expression in a given tissue was five times higher than the median expression across all 

tissues.

We determined the representative TSS for each gene based on FANTOM CAGE 

transcription initiation counts relative to GENCODE gene models. Specifically, a CAGE 

peak is associated to a GENCODE gene if it is within 1000bp from a GENCODE v24 

annotated transcription start site49,50. Peaks within 1000bp to rRNA, snRNA, snoRNA or 

tRNA genes were removed to avoid confusion. Next, we selected the most abundant CAGE 

peak for each gene, and took the TSS position reported for the CAGE peak as the selected 

representative TSS for the Gene. For genes with no CAGE peaks assigned, we kept the 

GENCODE annotated gene start position as the representative TSS. FANTOM CAGE peak 

abundance data were downloaded at http://fantom.gsc.riken.jp/5/datafiles/latest/extra/

CAGE_peaks/ and the CAGE read counts were aggregated over all FANTOM 5 tissue or cell 

types. GENCODE v24 annotation lifted to GRCh37 coordinates were downloaded from 

http://www.gencodegenes.org/releases/24lift37.html. All chromatin profiles used from 

ENCODE and Roadmap Epigenomics projects were listed in Supplementary Table 7. The 

HGMD mutations are from HGMD professional version 2018.1.

Human exons that are alternatively spliced (AS) were obtained from a recent study that has 

examined publicly available human RNA-seq data to annotate an extensive catalog of AS 

events51. Internal exon regions (both 5’SS & 3’SS flanking introns), upstream exon (5’SS 

flanking introns), and downstream terminal exon (3’SS flanking introns) were used for 

alternative exon definition types of cassette, mutually exclusive, tandem cassette exons. 

Terminal exon region was used for intron retention, alternative 3’ or 5’ exon AS exon types. 

All selected exon-flanking intronic regions were collapsed into a final set of genomic 

intervals used to subset SNVs that are located within alternative splicing exon region (200 or 

400nts from exon boundary), illustrated in Supplementary Fig. 16.

Network differential enrichment analysis (NDEA)

Brain-specific functional relationship networks integrate a wide-range of functional genomic 

data in a tissue-specific manner and predicted the probability of functional association 

between any pair of genes27. This network was filtered to only include edges with >0.01 

probability (above Bayesian prior) to reduce the impact of noisy low-confidence edges.

We use NDEA to test the differential (proband vs sibling) impact of mutations on each gene 

or gene set. Intuitively, this test generates a p-value that reflects the proband-specific impact 

of mutations on that gene or gene set, including through its network neighborhood. This also 

enables statistical assessment of which gene sets (e.g. pathways) are significantly more 

affected by proband mutations compared to sibling mutations. Technically, NDEA performs 

a weighted two-sample (proband vs sibling mutations) test, where the weight for each 

observation is defined based on network connectivity scores (to the gene or gene sets) and 

two samples are compared based on weighted averages. Each weight is a non-negative 

constant number that is used to specify the relative contribution of an observation to the test 

statistic. When all weights are the same, it reduces to regular two-sample t tests; when the 

weights are different, it adjusted the standard t statistic to use appropriate variance resulting 
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from weighting. Note, unlike some other forms of weighted t-test, the weights are not 

random variables and do not represent sample sizes. The assumptions of the NDEA test are 

analogous to those of the standard two-sample t test, including that samples in each set are 

i.i.d. and the weighted sample means are normally distributed.

For each gene i, the NDEA t statistic is computed by

ti = μPi
− μSi

/Si 

μPi
=

∑m ∈ PWi j m dm
∑m ∈ PWi j m

,  μSi
=

∑m ∈ SWi j m dm
∑m ∈ SWi j m

Si =  
VPi
NPi

+
VSi
NSi

VPi
=

Σm ∈ pwi j m dm − μPi

Σm ∈ pwi j m −
Σm ∈ pwi j m

2

Σm ∈ pwi j m

2

, VSi
=

Σm ∈ swi j m dm − μSi

Σm ∈ swi j m −
Σm ∈ swi j m

2

Σm ∈ swi j m

2

NPi
=

∑m ∈ PWi j m
2

∑m ∈ PWi j m
2 ,  NSi

=
∑m ∈ SWi j m

2

∑m ∈ SWi j m
2

, in which μPi
 and μSi

 are weighted averages of disease impact scores dm of all proband 

mutations p or all sibling mutations S. Wij(m) is the network edge score (interpreted as 

functional relationship probability) between gene i and gene j(m) divided by the number of 

proband (if m is a proband mutation) or sibling (if m is a sibling mutation) mutations gene 

j(m) associated to, where j(m) indicate the implicated gene of the mutation m. P and S are 

the set of all proband mutations and the set of all sibling mutations included in the analysis. 

VPi
 and VSi

  are the unbiased estimates of population variance of μPi
 and μSi

.  NPi
 and NSi

are the effective sample sizes of proband and sibling mutations after network-based 

weighting for gene i.

Under null hypothesis of the two groups having no difference, the above t statistic 

approximately follows a t-distribution with the following degree of freedom:
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d f =

VPi
NPi

+
VSi
NSi

2

VPi
2

NPi
2 NPi

− 1
+

VSi
2

NSi
2 NSi

− 1

For testing significance difference between proband and sibling mutations, mutations within 

100kb of the representative TSS of all genes and all intronic mutations within 400bp to exon 

boundary were included in this analysis. RNA disease impact scores were used as the 

mutation score for intronic mutations within 400bp to exon boundary and DNA disease 

impact scores were used for other mutations.

For gene set level NDEA, we consider the gene set as a meta-node that contains all genes 

that are annotated to the gene set (e.g. GO term). Then, to any given gene the average of 

network edge scores for all genes in the meta-node is used as the weights. GO term 

annotations were pooled from human (EBI 5/9/2017), mouse (MGI 5/26/2017) and rat 

(RGD 4/8/2017). Query GO terms were obtained from the merged set of curated GO 

consortium52 slims from Generic, Synapse, ChEMBL, and supplemented by PANTHER53 

GO-slim and terms from NIGO54.

For network-based analysis of correlation between coding and noncoding TRD and RRD 

mutations, we first compute the NDEA t-statistic for every gene for all protein coding 
mutations from SSC exome sequencing study2,8, all SSC WGS noncoding mutations within 

100kb to a gene, and all SSC WGS genic noncoding mutations within 400bp to an exon, 

respectively. We then compute Pearson correlation across all resulting gene-specific t-

statistics between all three pairs of mutation types. For testing statistical significance of the 

correlation, we permuted proband and sibling labels for all mutations to compute the null 

distributions of correlations for each pair of mutation types. 1000 permutations were 

performed.

Network visualization and clustering

For network visualization, we computed a two-dimensional embedding with t-SNE55 by 

directly taking a distance matrix of all pairs of genes as the input. The distance matrix was 

computed as -log(probability) from the edge probability score matrix in the brain-specific 

functional relationship network. The Barnes-Hut t-SNE algorithm implemented in the Rtsne 

package was used for the computation. Louvain community clustering were performed on 

the subnetwork containing all protein coding genes with top 10% NDEA FDR.

Selection and cloning of Variant Allele Genomic Regions

All genomic sequences were retrieved from the hg19 human genome assembly. For 

experimental testing, we selected variants of high predicted disease impact scores larger than 

0 and included mutations near genes with evidence for ASD association, including those 

with coding LoF mutations (e.g. CACNA2D3) and a proximal structural variant (e.g. 
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SDC2). We did not explicitly select mutations based on proximity to TSSs, and the chosen 

mutations lie from between 7bp and 324kbp away from nearest TSS, with most variants 

lying farther than 5k from nearest TSS (Supplementary Table 6) For each allele (sibling or 

proband), we either cloned 230 nucleotides of genomic sequence amplified from proband 

lymphoblastoid cell lines or used FragmentGenes synthesized by Genewiz (Supplementary 

Table 6). In both cases, 15 nucleotide flanks on 5’ and 3’ ends matched each flank of the 

plasmid cloning sites (Supplementary Table 6. Synthesized fragments were cut with KpnI 

and BglII and cloned into pGL4.23 (Promega) cut with the same enzymes. PCR-amplified 

genomic DNA was cloned into pGL4.23 blunt-end cut with EcoRV and Eco53kI using 

GeneArtCloning method from Thermofisher Scientific. All constructs were verified by 

Sanger sequencing.

Luciferase Reporter Assays

Human neuroblastoma BE(2)-C cells were plated at 2×104 cells/well in 96-well plates and 

24 hours later were transfected with Lipofectamine 3000 (L3000–015, Thermofisher 

Scientific) together with 75ng of Promega pGL4.23 firefly luciferase vector containing the 

230nt of human genomic DNA from the loci of interest (Supplementary Table 6), and 4ng of 

pNL3.1 NanoLuc (shrimp luciferase) plasmid, for normalization of transfection conditions. 

42 hours after transfection, luminescence was detected with the Promega NanoGlo Dual 

Luciferase assay system (N1630) and BioTek Synergy plate reader. Four to six wells per 

variant were tested in each experiment. Variants were tested in at least two separate 

experiments. For each sequence tested, the ratio of firefly luminescence (ASD allele) to 

NanoLuc luminescence (transfection control) was calculated and then normalized to empty 

vector (pGL4.23 with no insert) on the same plate. Statistics were calculated from fold over 

empty vector values from each experiment and results from multiple replication experiments 

are combined with Fisher’s combined probability test. For presentation of the data, we 

normalized the fold over empty vector value of the proband allele to that of the sibling allele.

SMEK1 minigene assay

To construct the SMEK1 minigene, the genomic region was amplified with primers -- 

upstream exon + ~1,400nt intron and alternative exon, downstream exon + ~1,400nt intron, 

then cloned into pSG5 vector (Supplementary Table 6). The mutant minigene was 

constructed by assembling the PCR amplified vector backbone with synthetic gBlocks (IDT 

DNA) carrying the desired single base mutation (GRCh37:chr14:g.91932755G>A in RNA). 

Minigenes (2 μg) were transfected into SH-SY5Y cells and cells were harvested 48 h post-

transfection for immunoblotting or RT-qPCR following standard protocols. Three 

independent experiments were performed for statistical comparison.

Contribution of de novo mutations in ASD SSC

For LoF and missense coding mutations, we use annotations from Supplementary Table 1 of 

the SSC exome study Iossifov et al2. Out of total 2,508 probands, 331 ASD probands have at 

least one LoF coding mutation and 1,182 probands have at least one missense mutation. We 

estimate the expected number of background occurrences in probands using unaffected 

siblings occurrences adjusted by the overall proband/sibling ratio, resulting in 221.8 for LoF 

and 1105.0 for missense. The final estimated contribution was determined by the differential 
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between observed and background occurrences (e.g. for LoF, 331 minus 221.8 divided by 

2,508 probands, leading to an estimated contribution of 5.4%). For noncoding mutations, we 

observe 1,086 probands with mean DIS (mean of average DNA DIS and average RNA DIS) 

> 0, in comparison to a background occurrence of 1,009 per 1,781 individuals (unaffected 

siblings). The differential of 1,086 minus background 1,009, leads to an estimated 

contribution of 4.3%.

Statistical analysis

All details of the statistical tests are specified in the associated text or figure legends. The 

NDEA test is described in detail in the above “Network differential enrichment analysis 

(NDEA)” section.

Life Sciences Reporting Summary

Further information on experimental design is available in the Nature Research Reporting 

Summary linked to this article.

Code and data availability

The code is available from https://hb.flatironinstitute.org/asdbrowser/help. ASD WGS data 

can be obtained from the Simons Foundation Autism Research Initiative (SFARI). All 

variant predicted scores have been made available as supplementary material and an 

interactive web interface is available at https://hb.flatironinstitute.org/asdbrowser/.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. The elevated noncoding regulatory mutation effect burden in Autism Spectrum Disorder.
a) Overall study design for deciphering the genome-wide de novo noncoding mutation 

effects contribution to ASD. 1,790 ASD simplex families’ whole genomes were sequenced 

to identify de novo mutations in the ASD probands and unaffected siblings. SNV de novo 
mutations were analyzed by their predicted transcriptional (chromatin and TFs) and post-

transcriptional (RNA-binding proteins) regulatory effect for comparison between probands 

and siblings.

b) ASD probands possess mutations with significantly higher predicted disease impact 

scores compared to their unaffected siblings. We observe significant burden of both 

transcriptional (DNA - all variants, n = 127,140) and post-transcriptional regulation (RNA - 

all transcribed variants, n = 77,149) altering mutations in probands. This proband excess is 
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stronger when restricted to mutation near all genes for DNA (n = 69,328) and near 

alternatively spliced exons for RNA (n = 4,871), and even stronger near ExAC LoF 

intolerant (DNA n = 14,873, RNA n = 1,355) genes. For analyses that include gene sets, 

variants were associated with the closest gene within 100kb of the representative TSS for 

transcriptional regulatory disruption (TRD) analysis. For RNA regulatory disruption (RRD) 

analysis, variants located in the introns within 400bp of flanking exons in alternative splicing 

regulatory regions were used. Wilcoxon rank sum test (one-sided) was used for computing 

the significance levels. All predicted disease impact scores were normalized by subtracting 

average predicted disease impact scores of sibling mutations for each comparison (mean DIS 

with the error bars indicate 95% CI). Every result is significant with multiple hypothesis 

correction (FDR < 0.05) and robust to inclusion or exclusion of protein coding region 

mutations (Supplementary Fig. 6).

c)Genomic variant set analysis of mutational burden for transcriptional- and 

posttranscriptional- disruptions. x-axis shows, for each gene set and distance cutoff, the 

effect size as defined as the difference between average DIS in probands and in siblings. 

Wilcoxon rank sum test (one-sided) was used for computing the significance levels. 

Significance level before and after correction for each category is listed in Supplementary 

Table 2. Categories shown in Fig. 1b are included in the annotation. All gene lists were 

obtained from Werling et al.17. Distance cutoffs for DNA are 10kb, 50kb, 100kb, 500kb, ∞ 
to TSS, and distance cutoffs for RNA are 200bp, 400bp, ∞ to all exons or to all alternatively 

spliced exons. DNA results shown in blue and RNA in orange; dot size corresponds to 

sample size (number of variants in a category); total sample size n = 127,140. Variant sets 

with >500 mutations are displayed. Full list of results are available in Supplementary Table 

2. Uncorrected p-values are shown in the y-axis and the dashed line indicates categories 

below FDR 0.05 threshold with the Benjamini-Hochberg method. Results are robust to 

inclusion or exclusion of protein coding region mutations (Supplementary Fig. 7).
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Fig. 2. Analysis of noncoding mutation effects converges on brain specific signals and 
neurodevelopmental processes.
a) Brain tissue-specific genes show strongest elevated proband-specific noncoding mutation 

effect burden. All 53 GTEx tissues are ranked by significance of increased proband mutation 

burden compared to unaffected siblings in tissue-specific genes (Methods). Uncorrected p-

values are shown in the y-axis and the dashed line indicates tissues below the FDR=0.05 

threshold corrected with the Benjamini-Hochberg method. Disease impact scores for all 

mutations within 100kb of representative TSSs (DNA) and intronic mutations within 400bp 

of exon boundaries (RNA) (n = 71,554) are used for the analysis.

b) Neuronal function and development related processes show significant excess of proband 

mutation disease impact scores by statistical test NDEA (full list in Supplementary Table 4, 

see also Methods). Analysis is conducted on the same mutation set as in (a). The top 
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processes (y-axis) and the p-values of proband excess (x-axis) are shown. Uncorrected p-

values are shown in the x-axis and all gene sets shown have FDR < 0.05.

c) Genes with significant network neighborhood excess of high-impact proband mutations 

form two functionally coherent clusters (see annotations for representative enriched gene 

sets in each cluster, full list is in Supplementary Table 5). Analysis is conducted on the same 

mutation set as in (a). The brain functional network is visualized by computing two-

dimensional embeddings with t-SNE (Methods). Genes, but not network edges, are shown 

for visualization clarity. Clustering was performed with Louvain community clustering. All 

genes in the two clusters shown are with FDR < 0.1.
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Fig. 3. Allele-specific transcriptional activity of ASD noncoding mutations.
Differential expression by proband or sibling alleles in a dual luciferase assay demonstrated 

that 57 predicted high TRD disease impact mutations fall in active regulatory elements and 

the mutations confer substantial changes to the regulatory potential of the sequence. Cells 

were transfected with pGL4.23-based expression plasmid containing 230nt of genomic 

region as well as a transfection control, and then luminescence was assayed 42h later 

(Methods). Y-axis shows the magnitude of transcription activation activity normalized to 

sibling allele. Significance levels were computed based on t-test and Fisher’s combined 

probability test (two-sided, stars indicate significance level *: p<0.05, **: p<0.01, ***: 

p<0.001, ****: p<0.0001; Methods). Sample sizes for all tests are in Supplementary Table 6. 

Central values of the box plot represent the median; the box extends from the 25th to the 

75th percentile; and whiskers extend to the maximum and minimum values no further than 

1.5 * IQR from the hinge (where IQR is the inter-quartile range, or distance between the first 

and third quartiles).
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