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The mammalian heart contains a heterogeneous population of resident macrophages that are 

scattered between cardiomyocytes and display noncanonical organ-specific skills that go 

beyond canonical phagocytosis (1). In mice, macrophages populate the heart during 

embryogenesis (2). Once seeded, embryonic-derived macrophages self-maintain through 

local proliferation (3,4). Monocyte-derived macrophages subsequently replenish embryonic 

tissue macrophages when depleted because of aging (5) or cardiac damage (6), and are able 

to self-maintain through local proliferation (4).

Following myocardial infarction (MI) proper healing requires a series of coordinated events 

in which circulating inflammatory Ly6Chigh monocytes differentiate first into Ly6Chigh (also 

known as M1 proinflammatory) macrophages and next into Ly6Clow (or M2 reparative) 

macrophages (7,8). The accumulation of monocyte-derived macrophages largely depends on 

emergency medullary or extramedullary hematopoiesis (8,9), a response that also occurs in 

humans (10). Similarly, cardiac pressure overload induces a strong immune response. At an 

early phase, cardiac resident macrophages proliferate and are regulated by Kruppel-like 

factor 4 (11). Next, infiltrating Ly6Chigh monocytes (11) differentiate into M1 inflammatory 

macrophages (or CCR2+ macrophages) that promote adverse left ventricular remodeling 

(12). On the contrary, subsequent M2 macrophages inhibit CD4 T-cell activation by pressure 

overload and exhibit anti-inflammatory properties (13).

Considering their abundance and the high plasticity that drives distinct cardioprotective 

effects following cardiac injury (i.e., ischemia and cardiac overload) (14), the therapeutic 

manipulation of macrophages in tissue injury and repair is intriguing. Yet, the mechanisms 
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governing cardiac macrophage polarization and the role of macrophage subsets in 

modulating localized responses from cardiomyocytes and fibroblasts are still poorly 

understood in vivo.

In this issue of the Journal, Yang et al. (15) report new evidence that manipulating 

macrophages in vivo improves cardiac injury outcomes and thus is an interesting therapeutic 

target. In this study, the authors show that the deletion of the transcription factor GATA3 in 

myeloid cells (mGATA3KO) improved cardiac function in mice with cardiac injuries such as 

MI and cardiac pressure overload (transverse aortic constriction) (Figure 1).

Following MI, mGATA3KO mice showed less left ventricular dilatation, improved 

contractility, reduced scar area, and increased viable myocardium. This effect was associated 

with reduced neutrophil infiltration in the myocardium at 2 days and fewer CCR2+ 

monocytes/macrophages at 2 and 8 days postinjury. Macrophage subset analysis showed an 

increase in the percentage of Ly6ChighCCR2+ (M1) cells, likely derived from monocytes, 

and a decreased percentage of Ly6ClowCCR2~ (M2) cells, suggesting that cardiac 

improvement could possibly be due to having more inflammatory cells and fewer anti‐

inflammatory cells in the infarcted tissue. In fact, parallel alterations in blood were 

consistent with a relative increase of Ly6Chigh and reduced Ly6Clow monocytes in 

mGATA3KO versus controls that may indicate a role of GATA3 in the regulation of 

hematopoiesis and monocyte polarization in blood.

Cardioprotective effects (i.e., reduced cardiac hypertrophy and collagen content) of GATA3 

deficiency in myeloid cells were also seen in nonischemic conditions using the transverse 

aortic constriction model of chronic pressure overload. However, phenotype analysis of 

myeloid cells in the circulation and cardiac infiltration were not presented, making it 

impossible to speculate whether the immune alterations observed in the MI model were also 

relevant in nonischemic conditions.

In vitro studies show that GATA3 expression in macrophages is transient and detected in M2 

polarized macrophages only. In fact, a detrimental M2 differentiation through a GATA3-

dependent mechanism regulated by micro RNA-720 has been reported in cancer (16,17). 

Moreover, GATA3KO macrophages did not produce the profibrogenic Arg-1, produced by 

M2 macrophages, suggesting the possibility that the lack of M2 phenotype in mGATA3KO 

mice may contribute to reduced cardiac fibrosis and remodeling. Other observed 

cardioprotective effects, such as the enhanced myocardium viability, will require additional 

studies that further explore independent mechanisms.

Overall, the results of the present study suggest a pathological role of M2 macrophages in 

cardiac damage following MI and cardiac pressure overload. In fact, the role of M1 and M2 

macrophages is the subject of intense debate. Although such reductionist dichotomy may 

offer the advantage of standardization, macrophage polarization is more likely a spectrum 

that reflects the highly adaptive nature of these cells to their environment. Perhaps, the 

M1/M2 (or Ly6Chigh vs. LyC6Low macrophages) model prevents the discovery of new 

tissue-specific functions in response to specific insults (i.e., ischemic or pressure overload). 

The lack of phenotypic resolution in defining the macrophage spectrum of polarization could 

Giannarelli and Fernandez Page 2

J Am Coll Cardiol. Author manuscript; available in PMC 2019 September 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



explain the many discrepancies in the literature on whether M2 macrophages contribute to 

cardiac damage, like in the present study, rather than being cardioprotective as reported by 

others (13,18–21).

As a whole, the present study provides further evidence that targeting macrophage 

polarization to prevent cardiac damage and promote repair is theoretically feasible. 

However, our current knowledge of cardiac macrophage biology suffers from undeniable 

limitations, including our insufficient understanding of the microenvironmental cues that 

drive macrophage polarization in vivo and the lack of selective strategies to target specific 

macrophage subsets. Another main limitation is that most of the available evidence is 

derived from mouse models and the data on phenotype and functions of human macrophages 

in homeostasis and disease are only starting to emerge and challenging the M1/M2 paradigm 

(22,23).

While continuing exploring the phenotype and function of macrophages in the human heart, 

there is a tremendous need to identify new strategies to determine the spectrum of 

macrophage phenotype and functions in human steady state and disease. The recent effort of 

the human cell atlas initiative is an initial step ahead toward the goal of defining the diversity 

of all cells in health and disease (24). The inclusion of immune cells from human cardiac 

tissues in future datasets will provide fundamental cues to help resolve this intricated matter.
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FIGURE 1. Effect of GATA3 Deficiency in Myeloid Cells (mGATA3) on Cardiac Injury and 
Repair
Following myocardial infarction, mGATA3 deficiency results in increased circulating 

Ly6ChighCCR2+ monocytes and macrophages (M1 type), and reduced Ly6ClowCCR2−(M2 

type) macrophages in the ischemic heart. mGATA3KO mice displayed cardioprotective 

attributes, possibly from the inhibition of M2 polarization of cardiac macrophages. 

Cardioprotective effects were also observed in a transverse aortic constriction model of 

cardiac pressure overload. BM = bone marrow.
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