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In blood, apolipoprotein E (ApoE) is a component of circulating lipoproteins and mediates the clearance of these lipoproteins from blood
by binding to ApoE receptors. Humans express three genetic ApoE variants, ApoE2, ApoE3, and ApoE4, which exhibit distinct ApoE
receptor-binding properties and differentially affect Alzheimer’s disease (AD), such that ApoE2 protects against, and ApoE4 predisposes
to AD. In brain, ApoE-containing lipoproteins are secreted by activated astrocytes and microglia, but their functions and role in AD
pathogenesis are largely unknown. Ample evidence suggests that ApoE4 induces microglial dysregulation and impedes A� clearance in
AD, but the direct neuronal effects of ApoE variants are poorly studied. Extending previous studies, we here demonstrate that the three
ApoE variants differentially activate multiple neuronal signaling pathways and regulate synaptogenesis. Specifically, using human
neurons (male embryonic stem cell-derived) cultured in the absence of glia to exclude indirect glial mechanisms, we show that ApoE
broadly stimulates signal transduction cascades. Among others, such stimulation enhances APP synthesis and synapse formation with an
ApoE4�ApoE3�ApoE2 potency rank order, paralleling the relative risk for AD conferred by these ApoE variants. Unlike the previously
described induction of APP transcription, however, ApoE-induced synaptogenesis involves CREB activation rather than cFos activation.
We thus propose that in brain, ApoE acts as a glia-secreted signal that activates neuronal signaling pathways. The parallel potency rank
order of ApoE4�ApoE3�ApoE2 in AD risk and neuronal signaling suggests that ApoE4 may in an apparent paradox promote AD
pathogenesis by causing a chronic increase in signaling, possibly via enhancing APP expression.
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Introduction
Apolipoprotein E (ApoE) is a major component of circulating
lipoproteins that mediates the clearance of lipoproteins from

blood by binding to ApoE receptors (Goldstein and Brown,
2015). Human ApoE is expressed in three allelic genetic variants,
ApoE2, ApoE3, and ApoE4, which exhibit distinct receptor-
binding properties (Calandra et al., 2011). ApoE2 binds much
less strongly, and ApoE4 more strongly than ApoE3 to ApoE
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Significance Statement

Humans express three genetic variants of apolipoprotein E (ApoE), ApoE2, ApoE3, and ApoE4. ApoE4 constitutes the most
important genetic risk factor for Alzheimer’s disease (AD), whereas ApoE2 protects against AD. Significant evidence suggests that
ApoE4 impairs microglial function and impedes astrocytic A� clearance in brain, but the direct neuronal effects of ApoE are
poorly understood, and the differences between ApoE variants in these effects are unclear. Here, we report that ApoE acts on
neurons as a glia-secreted signaling molecule that, among others, enhances synapse formation. In activating neuronal signaling,
the three ApoE variants exhibit a differential potency of ApoE4�ApoE3�ApoE2, which mirrors their relative effects on AD risk,
suggesting that differential signaling by ApoE variants may contribute to AD pathogenesis.
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receptors, at least under some conditions (Weisgraber et al., 1982;
Utermann, 1985; Mamotte et al., 1999). Likely due to their dif-
ferential ApoE-receptor binding properties, both ApoE2 and
ApoE4 homozygosity predisposes to dyslipoproteinemias, albeit
with different severity (de Knijff et al., 1994; Smelt and de Beer,
2004). ApoE is not only present in blood, however, but also se-
creted in brain by activated astrocytes and microglia (Schmidt et
al., 2014; Lane-Donovan and Herz, 2017). ApoE production in
brain is likely physiologically significant since ApoE4 is the most
important genetic risk factor for Alzheimer’s disease (AD),
whereas ApoE2 protects against AD (Strittmatter et al., 1993;
Rebeck et al., 2002). However, the functional activities of the
three ApoE variants in brain and their different effects in AD
pathogenesis are incompletely understood.

Patients that are homozygous for inactivating ApoE gene
mutations suffer from severe dyslipoproteinemia but appear cog-
nitively normal and do not exhibit major neurological impair-
ments, suggesting that ApoE is not essential in normal brain or
required to prevent neurodegenerative processes (Ghiselli et al.,
1981; Lohse et al., 1992; Mak et al., 2014). However, ApoE could
be a protective signal during damage response or repair, a possi-
bility supported by the finding that microglia and astrocyte acti-
vation induces ApoE expression (Poirier et al., 1991; Saura et al.,
2003). At least three major hypotheses that are not mutually ex-
clusive have been advanced to account for the role of ApoE2 and
ApoE4 in protecting against or promoting AD pathogenesis, re-
spectively. The first hypothesis is based on the observation that
ApoE is important for the clearance of amyloid-� (A�) peptides
that are thought to contribute to AD pathogenesis (Deane et al.,
2008; Castellano et al., 2011; Verghese et al., 2013; Robert et al.,
2017). Here, ApoE4 is proposed to promote AD by decreasing A�
clearance and increasing A� levels, although the precise role of
A� in AD pathogenesis remains unclear. The second hypothesis
is framed by the finding that ApoE binds to TREM2, a microglial
surface receptor that constitutes another major AD risk factor
(Guerreiro et al., 2013; Jonsson et al., 2013; Atagi et al., 2015;
Bailey et al., 2015; Colonna and Wang, 2016; Yeh et al., 2016).
ApoE binding to TREM2 is thought to regulate microglia (Jen-
dresen et al., 2017), and ApoE4 may promote AD pathogenesis by
impeding normal microglial function, for example by impairing
microglia in an A�-dependent manner (Krasemann et al., 2017;
Ulrich et al., 2018). However, TREM2 lacks classical ApoE-
binding LDL-receptor domains (Südhof et al., 1985), and micro-
glia themselves produce copious amounts of ApoE that would
thus have to act in an autocrine manner (Boyles et al., 1985;
Martins et al., 2001; Nathan et al., 2001). The third hypothesis
suggests that ApoE2, ApoE3, and ApoE4 differentially activate
neuronal ApoE-receptors that control intracellular signaling, and
posits that differences between the ApoE variants in stimulating
neuronal ApoE receptors are associated with changes in AD risk.
This hypothesis is based on the observation that ApoE activates
neuronal signaling (Gotthardt et al., 2000; Ohkubo et al., 2001;
Qiu et al., 2004) and that ApoE variants exhibit a differences
efficacy in activating neuronal signaling, thereby causing differ-
ential induction of APP and A� synthesis in neurons with a po-
tency rank order of ApoE4�ApoE3�ApoE2 (Huang et al., 2017).
Of potential relevance, there is also evidence that the three ApoE
variants may differ in their lipidation states, which could affect
the interaction of ApoE particles with their target cells and recep-
tors (Weisgraber, 1994; Hu et al., 2015; Heinsinger et al., 2016).
How differential neuronal ApoE-induced neuronal signaling
may promote AD pathogenesis, however, also remains unclear.

In the present study, we investigated the third hypothesis to
affirm its reproducibility and broad applicability. ApoE-induced
neuronal signaling can only be studied in the absence of glia and
of serum because glia produce copious amounts of ApoE, and
serum contains high concentrations of ApoE. This experimental
constraint may explain why questions were raised about the re-
producibility of ApoE-induced neuronal signaling (Wang et al.,
2018), but prompted us to perform extensive confirmatory stud-
ies. Furthermore, ApoE-induced signaling was previously only
demonstrated with recombinant ApoE, raising concerns about
the physiological implications of such signaling since different
from physiologically secreted ApoE, recombinant ApoE may not
be properly lipidated. Because of this concern, we have now also
examined ApoE in a physiological context. Moreover, ApoE ac-
tivates APP and A� synthesis in neurons (Huang et al., 2017), but
may stimulate other neuronal responses as well, including syn-
apse formation (Mauch et al., 2001), motivating us to broadly
study the signaling pathways and downstream effects of ApoE-
induced signaling. Indeed, we here find that ApoE stimulated
multiple neuronal signaling pathways and, among others, en-
hanced synapse formation with an ApoE4�ApoE3�ApoE2 po-
tency rank order in a manner requiring MAP-kinase activation.
In contrast to the previously described induction of APP tran-
scription by ApoE (Huang et al., 2017) but consistent with an
earlier study on ApoE-induced signaling (Ohkubo et al., 2001),
ApoE-induced synapse formation involved activation of CREB.
Thus, we propose that ApoE acts as a secreted molecule to
broadly activate neuronal signaling pathways, and that these
pathways may be relevant to AD pathogenesis because of the
differential signaling efficacy of the three genetic ApoE variants
that mirrors their relative effects on AD pathogenesis.

Materials and Methods
Experimental design and statistical analyses. No statistical methods were
used to predetermine sample size because effect sizes were unknown
before experiments. No samples were excluded from analysis. For several
experiments, two major sets of experiments [see Figs. 2, 2-2 (available at
https://doi.org/10.1523/JNEUROSCI.2994-18.2019.f2-2), 8, and 6-1
(available at https://doi.org/10.1523/JNEUROSCI.2994-18.2019.f6-1)]
were randomized and investigators were blinded to sample identities
during experimentation and outcome assessment. All experiments in-
volving mice and human embryonic stem (ES) cells were performed in
accordance with Stanford University and federal guidelines with ap-
proval of appropriate protocols by the various regulatory committees. All
cultures of mouse cells were composed of mixed male and female cells; all
human neurons were produced from the H1 male ES cell line.

The statistical analyses of our results were conducted using Prism 8
software (GraphPad Software) and are summarized in Table 1. In the
figures, quantitative data are presented as means � SEM. All experiments
were independently repeated at least three times. Statistical comparisons
between groups were analyzed for significance by one-way or two-way
ANOVA with Tukey’s post hoc test. Our data meet the normal distribu-
tion assumption of these tests. There is an estimate of variation within
each group of data, and the variance is similar between the groups that are
being statistically compared.

Culture of principal cell types. All cell culture procedures were per-
formed as reported previously (Zhang et al., 2013; Pak et al., 2015; Patzke
et al., 2015; Yi et al., 2016; Huang et al., 2017). H1 human ESCs were
obtained from WiCell Research Resources (RRID:CVCL_9771) and
maintained in the feeder-free condition. Mouse glia were cultured from
the cortex of newborn CD1 mice (Pak et al., 2015). Murine embryonic
fibroblasts (MEFs) were isolated from mouse embryos of CF-1 strain
(Harlan Laboratories) harvested at 12.5–13.5 postcoitum.

Generation of human neurons from H1 human ES cells. Human neurons
were generated from H1 cells essentially as described previously (Zhang
et al., 2013). In short, ES cells were detached with Accutase and plated
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onto Matrigel-coated 6-well plates (4 � 104 cells/well) on day �2. Len-
tiviruses expressing Ngn2 and rtTA were prepared as described below,
diluted in fresh mTeSR1 medium, and added to the ESCs on day �1.
Doxycycline (2 mg/L, to activate Ngn2 expression) was added on day 0
(D0) in DMEM/F-12 medium with N2 supplement without morpho-
gens. Puromycin (1 mg/L) was added on D1 in fresh DMEM-F12/N2 �
doxycycline medium for selection up to 48 h. On D3, differentiating
neurons were detached with Accutase and replated on cultured mouse

glia, MEFs, or just Matrigel-coated 24-well plates (2 � 10 5 cells/well),
and maintained in Neurobasal-A/B-27 medium with no doxycycline.
Lentiviral infection of iN cells was performed on D4 as described below;
ApoE incubations were initiated on D10 and maintained until neurons
were analyzed for various parameters. For mRNA and synaptic protein
measurements, the assays were performed on D12 after ApoE treatments
of 2 d, unless otherwise specified in time course studies. For immuno-
blotting analysis of protein phosphorylation, ApoE was administered for
only 2 h, and neuronal cultures were harvested immediately afterward.
For synaptic density and morphology analysis, neurons were fixed for
immunofluorescence on D16 or D23–D35. Electrophysiological record-
ings were performed at D23–D25.

Production of recombinant proteins. Recombinant ApoE2, ApoE3, and
ApoE4 were produced in HEK293 (FreeStyle 293-F) cells (Thermo Fisher
Scientific; ATCC catalog #PTA-5080, RRID:CVCL_D603) or in bacteria
(E. coli BL21 strain) essentially as described previously (Huang et al.,
2017; detailed procedures are provided in the extended data). Recombi-
nant proteins of glia-secreted factors for screening experiments (Fig.
4-2C; available at https://doi.org/10.1523/JNEUROSCI.2994-18.2019.
f4-2) were produced in HEK293T cells transfected with plasmids encod-
ing human proteins by a standard calcium phosphate protocol; for de-
tailed procedures and cDNA information, please see our previous report
(Huang et al., 2017 ). For production of recombinant RAP, pGEX-KG-
RAP (provided by Dr. Joachim Herz, UT Southwestern Medical Center;
Herz et al., 1991) was expressed in BL21 bacteria, and GST-RAP was
purified as described previously (Burré et al., 2010; see the Materials and
Methods in the extended data), except that thrombin cleavage (10 U per
milligrams protein, overnight at 4°C) was used instead of rhinovirus 3C
protease as a final step. The purity and yields of HEK293 and bacterial
ApoE proteins and of RAP were assayed by Coomassie blue staining
(Bio-Rad), silver staining (Pierce), and immunoblotting against ApoE
with conventional and nondenaturing SDS-PAGE (Fig. 7-2, available at
https://doi.org/10.1523/JNEUROSCI.2994-18.2019.f7-2).

Lentivirus-mediated gene expression. Lentiviruses were produced in
HEK293T cells as described previously (Pak et al., 2015), from the fol-
lowing plasmids: (1) lentiviruses to trans-differentiate ES cells into hu-
man neurons: TetO-Ngn2-P2A-puromycin and rtTA (Zhang et al.,
2013); (2) lentiviruses to induce Apoe knock-out in primary cultures of
mouse glia by loxP recombination: FUW-GFP::Cre or inactive form FU-
WGFP::�Cre (Yi et al., 2016); (3) lentiviruses for overexpression of hu-
man ApoE in mouse glial cultures: pLX304-ApoE2, pLX-ApoE3 and
pLX304-ApoE4 (Huang et al., 2017); (4) for overexpression of DLK,
MKK7 and MBIP: pLX304-DLK, clone ID: HsCD00413295; pLX304-
MBIP, HsCD00420627; pCW45-MKK7, HsCD00298961 (Harvard
Medical School); (5) DN-cFos (Olive et al., 1997), DN-CERB (Ahn et al.,
1998), DN-MEF2A (Ornatsky et al., 1997) and DP-CREB (Cardinaux et
al., 2000): with synthesized human cDNA fragments modified from val-
idated rodent sequences cloned into AgeI and EcoRI sites on lentiviral
vector FUGW (Addgene plasmid #14883).

Lipidated ApoE: glia-conditioned media, purified glial lipoproteins, and
low-density lipoprotein (LDL). Primary glial cultures were prepared from
Apoe conditional knock-out mice (B6.129S6-Apoetm1.1Mae/MazzJ;
The Jackson Laboratory, stock #028530), in which loxP sites flank exon 3
of the Apoe gene. The Apoe knock-out and expression of ApoE variants
were mediated by lentiviruses expressing Cre recombinase, human
ApoE2, ApoE3, ApoE4, together with inactive Cre (�Cre) and EGFP as
controls, to generate five ApoE conditions: wild-type mouse ApoE
(�Cre�EGFP), ApoE-null (Cre�EGFP), human ApoE2 (Cre�ApoE2),
human ApoE3 (Cre�ApoE3), and human ApoE4 (Cre�ApoE4).
Serum-free media (Neurobasal-A/B-27) from glial cultures that were
treated under these five conditions were harvested 72 h after lentiviral
transduction and every three days on medium change thereafter up to
four times. These glia-conditioned media were directly added to cultures
of human neurons, or used to purify lipoproteins by concentration with
spin column (Millipore catalog #UFC900324) followed by reverse pre-
cipitation using dextran polymers (MyBioSource catalog #MBS168884;
Burstein et al., 1970). Human low-density lipoproteins (LDL) was ob-
tained commercially (Thermo Fisher Scientific catalog #L3486). Glia-
conditioned media, purified glial lipoproteins and human LDL were

Table 1. Summary of statistical analysis

Figure Test used Sample size Degree of freedom and p-value

No. Tukey’s post hoc n/exp. F(DFn,DFd); p-value
2A Two-way ANOVA 3/3 F(3,48) � 52.66; p 	 0.0001
2B Two-way ANOVA 3/3 F(3,40) � 15.3; p 	 0.0001
2C Two-way ANOVA 3/3 F(3,32) � 120.7; p 	 0.0001
3B One-way ANOVA 4 – 6/4 F(6,25) � 12.25; p 	 0.0001
3C One-way ANOVA 4 – 6/4 F(6,25) � 18.02; p 	 0.0001
4B One-way ANOVA 4/3 F(2,7) � 22.85; p � 0.0009
5A Two-way ANOVA 4/3 F(3,36) � 75.81; p 	 0.0001

Two-way ANOVA F(3,36) � 20.09; p 	 0.0001
5B Two-way ANOVA 4/3 F(3,36) � 75.81; p 	 0.0001

Two-way ANOVA F(3,36) � 0.08013; p � 0.9704
5C One-way ANOVA 3–9/3 F(11,42) � 74.37; p 	 0.0001

Two-way ANOVA F(2,18) � 3.882; p � 0.0396
5D One-way ANOVA 4/3 F(15,48) � 9.965; p 	 0.0001
6B One-way ANOVA 17/3 F(9,160) � 83.48; p 	 0.0001
6C One-way ANOVA 17/3 F(9,160) � 0.7898; p � 0.6262
6D One-way ANOVA 17/3 F(9,160) � 0.6154; p � 0.7827
6E One-way ANOVA 17/3 F(9,160) � 0.4825; p � 0.8848
6F One-way ANOVA 17/3 F(9,160) � 0.6741; p � 0.7315
6H One-way ANOVA 23/3 F(3,88) � 28.24; p 	 0.0001
6I One-way ANOVA 23/3 F(3,88) � 0.4337; p � 0.7294
6J One-way ANOVA 23/3 F(3,88) � 1.122; p � 0.3445
7A Two-way ANOVA 14/4 F(9,780) � 903.4; p 	 0.0001
7B Two-way ANOVA 6/3 F(3,120) � 319.2; p 	 0.0001
7C Two-way ANOVA 10/3 F(7,432) � 307.4; p 	 0.0001
7D Two-way ANOVA 8/3 F(3,168) � 412.7; p 	 0.0001
8A One-way ANOVA 25–39/3 F(3,127) � 2.642; p � 0.0522
8B One-way ANOVA 32–39/3 F(3,134) � 0.3289; p � 0.8044
8D One-way ANOVA 31–38/3 F(3, 134) � 19.12; p 	 0.0001
8F One-way ANOVA 32–39/3 F(3,138) � 9.078; p 	 0.0001
8G One-way ANOVA 32–39/3 F(3,138) � 2.237; p � 0.0867
9A Two-way ANOVA 6/3 F(5,180) � 119.9; p 	 0.0001
9B Two-way ANOVA 14/4 F(11,936) � 666.3; p 	 0.0001
10A Two-way ANOVA 9/4 F(13,672) � 240.2; p 	 0.0001
10B Two-way ANOVA 5/3 F(13,336) � 102.2; p 	 0.0001
10C Two-way ANOVA 5/3 F(11,288) � 133.9; p 	 0.0001
11A Two-way ANOVA 8/4 F(7,336) � 48.64; p 	 0.0001

One-way ANOVA F(7,56) � 12.26; p 	 0.0001
12A Two-way ANOVA 6 –12/6 F(5,324) � 94.71; p 	 0.0001

One-way ANOVA F(5,48) � 14.14; p 	 0.0001
12C Two-way ANOVA 5/3 F(5,144) � 209.4; p 	 0.0001

One-way ANOVA F(5,24) � 20.46; p 	 0.0001
12E Two-way ANOVA 4/3 F(7,144) � 98.23; p 	 0.0001
13B One-way ANOVA 4/3 F(7,24) � 52.99; p 	 0.0001
2-1B One-way ANOVA 6/3 F(2,15) � 24.12; p 	 0.0001
2-1C One-way ANOVA 3/3 F(2,6) � 0.1482; p � 0.8653
6-1A One-way ANOVA 32–34/3 F(3,129) � 25.66; p 	 0.0001

One-way ANOVA F(3,129) � 0.479; p � 0.6974
One-way ANOVA F(3,129) � 0.08649; p � 0.9673

6-1B One-way ANOVA 10/3 F(3,36) � 0.192; p � 0.9012
7-1A Two-way ANOVA 14/4 F(3,312) � 271.7; p 	 0.0001

Two-way ANOVA F(4,390) � 180.2; p 	 0.0001
7-3A Two-way ANOVA 6/4 F(3,120) � 188.9; p 	 0.0001
7-3B Two-way ANOVA 6/4 F(3,120) � 169.3; p 	 0.0001
7-3C Two-way ANOVA 3– 6/3 F(25,330) � 12.26; p 	 0.0001

This table summarizes information about methods of statistical analysis, degree of freedom, and significance for
each figure. Tukey’s multiple-comparisons test was performed post hoc for all.
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subjected to Coomassie blue staining and immunoblotting to measure
the ApoE contents (see Figs. 3, Fig. 4).

Suppression of gene expression using RNAi or CRISPR/Cas9. For RNAi
of DLK, shRNA to DLK (sequence: ACTCGTATTCCTTGTACATAG,
TRC number: TRCN0000231658) and control shRNA (sequence: TA-
AGGCTATGAAGAGATAC; SHC016) were purchased from Sigma-
Aldrich in lentiviral vector pLKO.1-puro. The DLK shRNA targets the
3
UTR of DLK mRNA and does not affect expression of rescue DLK,
while the control shRNA contains at least four mismatches to any human
or mouse gene and was demonstrated by the manufacturer to target zero
gene using microarray analyses. For MKK7 CRISPR, lentiviral CRISPR/
Cas9-mediated inhibition of human MKK7 expression was performed
using a plasmid (lentiCRISPR v2; Addgene plasmid #52961) that coex-
presses Cas9 nuclease with a single guide RNA (sgRNA). The MKK7
sgRNA (sequence: GCTTCAGCTTTGCTTCCAGG) targets exon 1 with
a cleavage site at amino acid 13 and was designed using web-based tools.
The control sgRNA targets EGFP (EGFP sgRNA4; sequence: GGAGCG
CACCATCTTCTTCA; Addgene plasmid #51763) and was cloned into
the same Cas9-expressing vector. The efficacy of the inhibition of gene
expression by RNAi, or CRISPR/Cas9 was assessed by qRT-PCR as re-
ported previously (Huang et al., 2017).

Immunofluorescence labeling experiments. Immunofluorescence stain-
ing experiments and image acquisition and analyses were performed
essentially as described previously (Huang et al., 2017). Briefly, cultured
neurons were fixed in 4% paraformaldehyde, 4% sucrose in PBS, perme-
abilized with 0.2% Triton X-100 in PBS, and blocked with 5% goat serum
in PBS. Cells were incubated with primary antibodies diluted in blocking
buffer overnight at 4°C, washed 3 times, and incubated with secondary
antibodies in blocking buffer for 1 h at room temperature. Samples were
then mounted on glass slides for confocal imaging. The following anti-
bodies were used: mouse anti-MAP2 (Sigma-Aldrich catalog #M1406,
RRID:AB_477171, 1:1000), rabbit anti-synapsin (E028, 1:1000), rabbit
anti-HOMER1 (Synaptic Systems catalog #160 003, RRID:AB_887730;
1:1000), mouse anti-Tuj1 (Covance Research Products catalog #MMS-
435P, RRID:AB_2313773, 1:2000); Alexa Fluor 488-, Alexa Fluor-546-,
and Alexa Fluor-633-conjugated secondary antibodies (Invitrogen). Im-
munofluorescence signals were visualized using a Nikon A1 confocal
microscope with constant image settings. Neurons were randomly cho-
sen in confocal images. Synapsin-positive or Homer1-positive synaptic
puncta were quantified for puncta density per dendritic length, size, and
intensity. Total dendritic length and cell body size were quantified based
on tracing of MAP2 signals.

Immunoblotting and protein quantifications. Neurons and cells were
lysed in RIPA buffer (50 mM Tris-HCl pH 8.0, 150 mM NaCl, 0.1% SDS,
0.5% sodium deoxycholate, 1% Triton X-100, plus a mixture of protease
inhibitors; Roche), and lysates were analyzed by SDS-PAGE in the pres-
ence of DTT (0.1 M). Immunoblotting and quantitative analysis were
performed with fluorescent-labeled secondary antibodies and an Odys-
sey Infrared Imager CLX and software Image Studio 5.2.5 (LI-COR Bio-
sciences). Signals were normalized for neuronal TUBB3 probed on the
same blots as loading controls. Antibodies used were as follows: GluA1
(Millipore catalog #AB1504, RRID:AB_2113602, 1:500), PSD-95 (L667,
1:1000), synapsin (E028, 1:2000), synaptophysin (K831, 1:1000),
synaptotagmin-1 (V216, 1:1000), synaptobrevin-1(T2797, 1:1000), Tuj1
(Covance Research Products catalog #MMS-435P, RRID:AB_2313773,
1:2000), APP (Millipore catalog #MABN380, RRID:AB_2714163,
1:2000), DLK (Sigma-Aldrich catalog #SAB2700169, RRID:
AB_2714162, 1:1000), phospho-MKK7 Ser271/Thr275 (Cell Signaling
Technology catalog #4171, RRID:AB_2250408, 1:500), MKK7 (Santa
Cruz Biotechnology catalog #sc-25288, RRID:AB_627925, 1:500), phos-
phor-ERK1/2 Thr202/Tyr204 (Cell Signaling Technology catalog #9106,
RRID:AB_331768, 1:1000), ERK1/2 (Cell Signaling Technology catalog
#4695, RRID:AB_390779, 1:1000), phospho-Akt Ser473 (Cell Signaling
Technology catalog #9271, RRID:AB_329825, 1:1000), Akt (Cell Signal-
ing Technology catalog #2966, RRID:AB_823417, 1:1000), phosphor-
Src Tyr 418 (Thermo Fisher Scientific catalog #44 – 660G, RRID:
AB_2533714, 1:500), Src (Thermo Fisher Scientific catalog #AHO1152,
RRID:AB_2536324, 1:1000), phospho-JNK Thr183/Tyr185 (Cell Signal-
ing Technology catalog #9255, RRID:AB_2307321, 1:250), JNK (Cell Sig-

naling Technology catalog #9252, RRID:AB_2250373, 1:500), phospho-
c-Fos Ser374 (Santa Cruz Biotechnology catalog #sc-81485, RRID:
AB_1125704, 1:500), phosphor-CREB (Cell Signaling Technology
catalog #9198, RRID:AB_2561044, 1:1000), CREB (Cell Signaling Tech-
nology catalog #9104, RRID:AB_490881, 1:1000), �-actin (Sigma-
Aldrich catalog #A1978, RRID:AB_476692, 1:1000); ApoE (Thermo
Fisher Scientific catalog #701241, RRID:AB_2532438, 1:1000).

Gene expression analyses. To determine the mRNA levels of genes of
interest in cultured cells, qRT-PCR measurements were performed on
total RNA (isolated with PrepEase RNA Spin Kit, Affymetrix) using Taq-
Man probes with VeriQuest Probe One-Step qRT-PCR Master Mix
(Affymetrix) and an Applied Biosystems 7900HT apparatus. The pre-
designed TaqMan primer/probe sets were purchased from Integrated
DNA Technologies and tested to show no or minimal cross-species
reactivity in pure human neuronal and mouse glial cultures (Huang et
al., 2017). MAP2 and GAPDH were used as endogenous reference
genes. The assay IDs of all TaqMan primer/probe sets used are as
follows: human MAP2, Hs.PT.58.20680759; human GAPDH,
Hs.PT.58.40035104; human APP, Hs.PT.56a.38768352; human
SYN1, Hs.PT.58.4027324; human SYP, Hs.PT.58.27207712; human SYT1,
Hs.PT.58.19615550; human SYB1/VAMP1, Hs.PT.58.23319147; human
PSD95/DLG4, Hs.PT.58.20575145; human GluA1/GRIA1, Hs.PT.58.
40318075; mouse Gapdh, 4352932– 0809025; mouse Apoe, Mm.PT.58.
33516165.

Electrophysiology. Whole-cell voltage-clamp recordings were per-
formed at room temperature on human neurons at D23–25, with 3–3.5
M� borosilicate patch pipettes filled with an internal solution containing
the following (in mM): 135 CsMeSO3, 8 NaCl, 10 HEPES, 0.25 EGTA, 4
MgATP, 0.3, Na3GTP, 2 MgCl2, 5 Na-phosphocreatine, and 2 QX314
(pH adjusted to 7.30 with CsOH). Cells were held at �70 mV in a bath
solution containing the following (in mM): 140 NaCl, 10 HEPES, 10
glucose, 5 KCl, 3 CaCl2 and1 MgCl2 (pH adjusted to 7.40 with NaOH).
For mEPSC recordings, TTX (1 �M) and picrotoxin (50 �M) were added
to the bath solution. All electrophysiological recordings were performed
with Multiclamp 700B amplifiers (Molecular Devices) and analyzed us-
ing Clampfit 10.4 (Molecular Devices). Details of the electrophysiologi-
cal recording and analyses were described in (Patzke et al., 2015; Yi et al.,
2016).

Results
Physiologically produced lipidated ApoE reproducibly
activates MAP-kinase signaling in human neurons
Direct activation of neuronal signaling by ApoE has been re-
ported by us and others (Gotthardt et al., 2000; Ohkubo et al.,
2001; Qiu et al., 2004; Huang et al., 2017), but its validity was
recently questioned (Wang et al., 2018). Given growing concerns
about reproducibility, validation of scientific results is arguably
more important than the prominent question of whether a par-
ticular result is physiologically relevant. To address this issue di-
rectly for the activation of neuronal signaling by ApoE, we
embarked on a replication effort using a rigorous experimental
design. We first validated that human neurons differentiated
from ES cells do not produce ApoE at significant levels, even
though the ES cells from which these neurons are derived express
surprisingly high levels of ApoE (Fig. 1A,B). Moreover, we ana-
lyzed recent mouse brain single-cell RNAseq data (Saunders et
al., 2018; Zeisel et al., 2018) and confirmed that in mice ApoE is
also expressed at much lower levels in neurons than in astrocytes
and microglia (Fig. 1C,D). These results argue against the notion
that ApoE functions as a neuronal protein that is pathogenic
when misfolded in the cytoplasm of neurons (Wang et al., 2018),
but are consistent with the hypothesis that ApoE is produced as a
signaling factor by glia.

We next tested in a ‘double blind’ fashion the signaling effects
of ApoE on human neurons that were cultured on mouse embry-
onic fibroblasts (MEFs, which produce ApoE only at very low
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levels; Fig. 1A,B) in the absence of serum. Two scientists
(Y.-W.A.H. and A.M.N.) independently produced ApoE2,
ApoE3, and ApoE4 proteins in transfected HEK293 cells. These
protein preparations were “anonymized” by a third scientist who
randomly assigned numbers to the preparations. The original
two scientists then used the anonymized samples to test whether

the effect of ApoE variants on ERK phosphorylation and APP
levels were reproducible.

We found that ApoE2, ApoE3, and ApoE4 proteins synthe-
sized in HEK293 cells are secreted into the supernatant without
significant differences in abundance or glycosylation state, and
are pelleted by ultracentrifugation by similar g forces, suggesting
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Figure 1. Analyses of ApoE mRNA and protein levels in various cell types reveal that ApoE expression is low in neurons but high in astrocytes and microglia. A, ApoE mRNA levels are high in mouse
glia and human H1 ES cells, but barely detectable in human neurons (iNs) and mouse embryonic fibroblasts (MEFs) as determined by qRT-PCR using species-specific primers. Levels were normalized
to GAPDH as an internal standard. Human neurons were examined at day 10 after induction (D10) with neurons cultured on Matrigel in the absence of glia, MEFs, or serum. B, Immunoblotting detects
robust levels of ApoE protein in cultured mouse glia and human H1 ES cells, but not in human neurons (iNs) or MEFs. �-actin was analyzed as an internal standard, and synapsin-1 (Syn1) and
synaptobrevin-1 (Syb1) as neuron-specific synaptic proteins. C, D, Single-cell RNAseq data obtained by Saunders et al. (2018) (C) and Zeisel et al. (2018) (D) were analyzed for relative expression
levels of the indicated genes. Using the clusters as defined by each of these studies, cell types were grouped into the following populations: neurons, microglia/macrophages, astrocytes, and
oligodendrocytes. Gene expression levels were compiled from each dataset with no further processing, using the units as displayed from each database.
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that recombinant ApoE2, ApoE3, and ApoE4 produced in trans-
fected HEK293 cells are biochemically similar (Fig. 2-1A–C,
available at https://doi.org/10.1523/JNEUROSCI.2994-18.2019.
f2-1). Double-blinded application of the two separate ApoE
preparations by the two experimenters to human neurons yielded
essentially the same results as described earlier (Huang et al.,
2017), namely a stimulation of ERK1/2 phosphorylation and an
increase in the levels of APP and DLK proteins, all of which were
induced with a potency rank order of ApoE4�ApoE3�ApoE2
(Fig. 2A,B, and Fig. 2-2, available at https://doi.org/10.1523/
JNEUROSCI.2994-18.2019.f2-2). The effect size differed be-
tween experimenters, but not between ApoE preparations,
probably because of person-to-person variabilities in the techni-
cally challenging culture of human neurons on MEFs without
serum supplementation. Nevertheless, the effects were significant
for both ApoE preparations as performed by both experimenters.

In contrast to the more physiological forms of ApoE produced
by astrocytes or hepatocytes, HEK293 ApoE proteins have been
reported to be poorly lipidated (DeMattos et al., 2001; Huang and
Mahley, 2014). As the lipidation status of ApoE may influence its
receptor binding, we examined whether ApoE produced by acti-
vated glia, which physiologically secrete ApoE, exhibits similar
signaling activities as HEK292 cell-derived ApoE when applied to
neurons cultured in the absence of glia or serum. We prepared
primary cultures of mouse glia devoid of neurons from Apoe
conditional knock-out line (ApoE-Flox from the Jackson Labo-
ratory), and infected the glia with lentiviruses expressing Cre
recombinase, human ApoE2, ApoE3, ApoE4, together with inac-
tive Cre (�Cre) and EGFP as controls, to generate five ApoE
conditions: wild-type mouse ApoE (�Cre�EGFP), ApoE-null
(Cre�EGFP), human ApoE2 (Cre�ApoE2), human ApoE3
(Cre�ApoE3) and human ApoE4 (Cre�ApoE4). We then har-
vested and characterized the glia-conditioned medium (GCM) of
five ApoE conditions: mouse ApoE, null ApoE, human ApoE2,
ApoE3, and ApoE4 (Fig. 3A). The GCMs were used to treat hu-
man neurons cultured on MEFs. All GCMs from glia expressing
ApoE activated MAP-kinase pathway robustly, whereas the null
ApoE condition caused only weak increases in MAP-kinase ac-
tivity as monitored via ERK phosphorylation (Fig. 3B). The small
increase in ERK phosphorylation by GCM from mouse glia lack-
ing ApoE may be due to other soluble factors secreted by glia that
may confound the observation of ApoE-induced signals and of
differences between ApoE variants. To test this hypothesis, we
purified ApoE lipoproteins from the GCMs by dextran precipi-
tation (Burstein et al., 1970). Analysis of purified glial lipoprotein
preparations by Coomassie staining and immunoblotting con-
firmed a high content of ApoE as expected (Fig. 3A). We then
tested the efficacy of glial lipoproteins obtained from GCMs un-
der the five conditions described above on activating MAP-
kinase signaling in human neurons (Fig. 3C). Strikingly, deletion
of endogenous ApoE abolished the ability of glial lipoproteins to
stimulate MAP-kinase signaling, demonstrating that endogenous
mouse ApoE secreted from glia physiologically activates MAP-
kinase signaling (Fig. 3C). Moreover, this phenotype was rescued
by expression of exogenous human ApoE2, ApoE3, or ApoE4,
which exhibited a significantly different efficacy consistent with a
potency rank order of ApoE4�ApoE3�ApoE2 (Fig. 3C). Thus,
ApoE physiologically secreted from glia activates MAP-kinase
signaling in human neurons similar to HEK293 cell-derived re-
combinant ApoE.

To further rigorously test the effect of ApoE lipidation on
MAP-kinase pathway activation, we used low-density lipopro-
teins (LDL) commercially prepared from human plasma. Immu-

noblotting analyses confirmed that LDL was enriched in ApoE
(Fig. 4A). We applied human LDL to human neurons at a con-
centration similar to that used for HEK293 cell-derived ApoE (10
�g/ml) that was tested in parallel (Fig. 4A). LDL robustly acti-
vated MAP-kinase signaling in human neurons cultured on
MEFs, confirming that even when present in a large lipid-
transport particle such as LDL, ApoE can act as a signaling mol-
ecule (Fig. 4B). Together, these findings show that physiologically
synthesized ApoE proteins exhibit similar properties as HEK293
cell-produced ApoE in activating MAP-kinase signaling in hu-
man neurons.

ApoE binding to neuronal receptors stimulates an array of
signaling pathways
In some of the replication experiments, we included analyses of
synapsin-1 protein as a synaptic marker of human neurons. We
were surprised to observe an increase in synapsin-1 levels upon
ApoE treatment, suggesting an effect of ApoE signaling on syn-
apse formation (Fig. 2A). To confirm this finding, we measured
mRNA levels of APP and of another synaptic marker, PSD95, in a
parallel experiment, using the pan-neuronal marker MAP2 as a
control. Again, we observed a significant induction of PSD95
levels by ApoE (Fig. 2C). This effect is independent of neurono-
genesis since the Synapsin-1 and PSD95 levels were normalized
for the neuronal marker MAP2.

These results suggest the possibility that ApoE may produce a
broader signal transduction response than we had originally en-
visioned (Huang et al., 2017). To test this possibility, we surveyed
in human neurons the effect of ApoE on the phosphorylation of
four key signal transduction proteins, ERK1/2, Akt, Src, and JNK
(Fig. 5A). In these experiments, we analyzed both neurons cul-
tured on MEFs and neurons cultured on Matrigel alone in the
absence of a cellular support to ensure that the observed effects
did not depend on the presence of MEFs. We found that ApoE
strongly stimulated phosphorylation of Akt and Src in human
neurons in addition to that of ERK, again with a potency rank
order of ApoE4�ApoE3�ApoE2, but that phosphorylation of
JNK was not affected. All of these effects were observed in a
dose-dependent fashion similarly with or without MEFs as a
cellular substrate for the neuronal culture (Fig. 5 A, C). The
effects were abolished by the ApoE receptor blocking protein
RAP, demonstrating that they were induced by ApoE receptor
binding (Fig. 5B).

Are the signal transduction responses to ApoE observed in
human neurons a general cellular response that is present in other
cells as well? To examine this question, we tested ERK, Akt, Src,
and JNK phosphorylation as a function of ApoE in MEFs cul-
tured without neurons. Indeed, ApoE also induced ERK phos-
phorylation in MEFs, again with a rank-potency order of
ApoE4�ApoE3�ApoE2, but had no effect on Akt or Src phos-
phorylation (Fig. 5D). Thus, ApoE may generally stimulate signal
transduction in cells consistent with previous studies (Gotthardt
et al., 2000; Ohkubo et al., 2001; Qiu et al., 2004), with cell-type-
specific differences in the response patterns.

ApoE promotes synapse formation
The unexpected ApoE-induced increase in synaptic markers (Fig.
2) is reminiscent of the observation that ApoE-containing lipo-
protein particles stimulate synapse formation (Mauch et al.,
2001), prompting us to examine whether synapse formation in
human neurons cultured on MEFs is stimulated by ApoE. Com-
pared with neurons cultured on glia, neurons cultured on MEFs
exhibit a �3-fold decrease in synapse density without a change in
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Figure 2. Activation of the ApoE signaling pathway (DLK-MKK7-ERK/MAP-kinase) is reproduced by multiple experimenters in a highly independent manner. Data are from human neurons
cultured on MEFs in the absence of serum; recombinant ApoE (10 �g/ml, produced in HEK293 cells, see Figure 2-1, available at https://doi.org/10.1523/JNEUROSCI.2994-18.2019.f2-1 and Figure
7-2, available at https://doi.org/10.1523/JNEUROSCI.2994-18.2019.f7-2 or control solutions were added at day 10 (D10), and neurons were analyzed at D12 as indicated. The human neuronal
cultures, ApoE and control solutions were prepared by two experimenters in parallel (“A ApoE” and “B ApoE”), anonymized by an independent third individual, and used by the same experimenters
(“dataset A” and “dataset B”) in a blinded manner. A, Dataset A showing that ApoE induces an increase in ERK phosphorylation and in the levels of DLK, APP, and synapsin-1 (Syn1) proteins with an
ApoE4�ApoE3�ApoE2 potency rank order (top, representative immunoblots; bottom, summary graphs). Protein levels measured using fluorescent secondary antibodies were normalized for the
Tuj1 signal examined on the same blots as an internal standard and additionally for the levels observed in control neurons. Because ApoE solutions were anonymized, samples on the immunoblot
are not in a logical order. B, Dataset B showing that ApoE induces an increase in ERK phosphorylation and in the levels of DLK and APP proteins with an ApoE4�ApoE3�ApoE2 potency rank order
(synapsin-1 was not analyzed). Only summary graphs are shown; for representative immunoblots, see Figure 2-2, available at https://doi.org/10.1523/JNEUROSCI.2994-18.2019.f2-2. C, ApoE2,
ApoE3, and ApoE4 increase neuronal APP and PSD95 but not MAP2 gene expression as assessed by mRNA measurements in human neurons treated with the two independently produced ApoE
preparations. APP and PSD95 mRNA levels were normalized for those of MAP2 as an internal standard and for the levels observed in the absence of ApoE (1.0). Data in bar graphs are means � SEM
(n � 3 independent experiments); statistical significance was evaluated by two-way ANOVA with Tukey’s multiple-comparisons test (*p 	 0.05, **p 	 0.01; ***p 	 0.001) as detailed in the
boxes. Note that in all analyses in which ApoE has an effect on a measured parameter, ApoE3 is always significantly more potent than ApoE2 and less potent than ApoE4.
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neuronal soma size and dendritic arboriza-
tion, presumably because glia secrete po-
tent synaptogenic factors (Fig. 6A–F;
Pfrieger and Barres, 1997). Addition of
ApoE to neurons cultured on MEFs in the
absence of serum induced a 1.5- to two-
fold increase in synapse density, with a
rank-potency order of ApoE4�ApoE3�
ApoE2 (Fig. 6A–F; Fig. 6-1A, available at
https://doi.org/10.1523/JNEUROSCI.2994-
18.2019.f6-1). This increase was abolished
in the presence of the ApoE receptor
blocker RAP, whereas RAP had no signif-
icant effect on synapse density in neurons
cultured on glia, which secrete other syn-
aptogenic factors in addition to ApoE
(Fig. 6A–F). In these experiments, we an-
alyzed synapse density by staining the
neurons for the presynaptic marker pro-
tein synapsin-1, but we observed a sim-
ilar effect when we analyzed synapse
density using Homer1 as a postsynaptic
marker (Fig. 6G–J ). Moreover, when we
performed comparable experiments in
neurons cultured for longer periods
(DIV23–25), we observed the same effects
(Fig. 6-1, available at https://doi.org/
10.1523/JNEUROSCI.2994-18.2019.f6-1).

The measurements of synapsin-1 pro-
tein and PSD95 mRNA that we performed
in the context of the replication experi-
ments (Fig. 2) suggested that ApoE may
stimulate synaptic gene expression in pro-
moting synapse formation. Consistent
with this hypothesis, we found that ApoE,
again with a potency rank order of
ApoE4�ApoE3�ApoE2, enhanced ex-
pression of all synaptic genes tested both
at the mRNA and the protein level (Fig.
7A,B). As for all effects of ApoE on hu-
man neurons, this enhancement was
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Figure 3. ApoE physiologically secreted from glia stimulates ERK phosphorylation with a similar efficacy as recombinant ApoE
produced in HEK293 cells Glia-conditioned, serum-free media were prepared from primary glial cultures of transgenic Apoe floxed
mice, subjected to Cre-dependent knock-out of mouse Apoe and expression of human ApoE2, ApoE3, and ApoE4 by lentiviral
transduction. The glia-conditioned medium (GCM) of five ApoE conditions, mouse ApoE (�Cre, inactive Cre, plus EGFP expression),
ApoE-null (Cre�EGFP), human ApoE2 (Cre�ApoE2), human ApoE3 (Cre�ApoE3) and human ApoE4 (Cre�ApoE4), were either
directly used to treat cultured human neurons, or further purified to enrich glial lipoproteins before use by a protocol of reversible
precipitation by dextran polymers. A, Characterization of the ApoE content in HEK293 cell-derived ApoE, GCM, and purified glial
lipoproteins as indicated by SDS-PAGE followed by Coomassie blue staining (top) or immunoblotting for ApoE (bottom). The ApoE

4

concentrations of all conditions were quantified by Coomassie
blue signal intensities of BSA standards. B, Effects of additions
of GCMs containing endogenous mouse ApoE, no ApoE, or hu-
man ApoE2, human ApoE3 or human ApoE4 on ERK phosphor-
ylation in human neurons (top, representative immunoblots
to assess the levels of phospho-ERK and total ERK; bottom,
summary graph of the ratio of phospho-ERK to total ERK).
HEK293 ApoE3 (10 �g/ml) was included as a positive control.
C, ApoE-containing glial lipoproteins purified from GCMs
strongly activate MAP-kinase signaling with an ApoE4�
ApoE3�ApoE2 potency rank order. Glial lipoproteins and
HEK293 ApoE3 were added to human neurons cultured on
MEFs at D10 with the same ApoE concentration (10 �g/ml)
calculated by Coomassie blue analysis as shown in A (top, rep-
resentative immunoblots to assess the levels of phospho-ERK
and total ERK; bottom, summary graph of the ratio of
phospho-ERK to total ERK). HEK293 ApoE3 (10 �g/ml) was
included as a positive control. Data in bar graphs are means �
SEM (n � 4 independent experiments); statistical significance
was evaluated by one-way ANOVA with Tukey’s multiple-
comparisons test (*p 	 0.05; **p 	 0.01; ***p 	 0.001).
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abolished by the ApoE receptor blocker RAP, and was dose
and time dependent (Fig. 7-1, available at https://doi.org/
10.1523/JNEUROSCI.2994-18.2019.f7-1).

Previous experiments suggested that ApoE-containing lipo-
protein particles stimulate synapse formation not by virtue of
their ApoE content, but by delivering cholesterol (Mauch et al.,
2001). To test this hypothesis, we examined whether ApoE pro-
duced in bacteria that are incapable of synthesizing cholesterol
would also stimulate synapse formation. ApoE was synthesized
efficiently in bacteria (Fig. 7-2, available at https://doi.org/
10.1523/JNEUROSCI.2994-18.2019.f7-2), and was as efficacious
as HEK293 cell-produced ApoE in stimulating synaptic gene ex-
pression (Fig. 7C), ruling out cholesterol as a major agent. More-
over, we examined the possibility that the action of ApoE on
synaptic gene expression was specific for human neurons gener-
ated from H1 ES cells, but detected a similar effect in neurons
produced from two different lines of induced pluripotent stem
(iPS) cells (SKC and EB lines; Fig. 7-3A,B, available at https://
doi.org/10.1523/JNEUROSCI.2994-18.2019.f7-3) (Sebastiano et
al., 2011, 2014). Finally, because ApoE stimulates the MAP-
kinase pathway in MEFs similar to neurons (Fig. 5D), we inves-
tigated whether ApoE-induced synapse formation in neurons
cultured on MEFs could be an indirect effect of the activation of
MEFs. However, ApoE was as effective at stimulating synaptic
gene expression in neurons cultured on an inanimate Matrigel
support as neurons cultured on MEFs, indicating that ApoE acts

directly on the neurons (Fig. 7D). In all of these experiments, we
observed the same differential efficacy of ApoE variants with a
potency rank order of ApoE4�ApoE3�ApoE2.

The significant increase in synapse numbers induced by ApoE
should cause an increase in synaptic transmission if the synapses
are functional. To investigate this conjecture, we recorded from
neurons that were cultured on MEFs in the absence of glia or
serum and that were incubated either in control medium or in
medium containing ApoE2, ApoE3, or ApoE4. None of the ApoE
variants had an effect on the capacitance or input resistance of the
neurons (Fig. 8A,B), but all variants augmented the amplitude of
evoked EPSCs 1.5- to threefold, again with a potency rank order
of ApoE4�ApoE3�ApoE2 (Fig. 8C,D). Furthermore, ApoE sim-
ilarly increased the frequency of spontaneous mEPSCs recorded
in the presence of tetrodotoxin without a significant effect on
mEPSC amplitudes (Fig. 8E–G). Thus, ApoE promotes forma-
tion of functional synapses in neurons cultured in the absence of
glia or serum.

ApoE-induced synapse formation is mediated by
ERK activation
We previously showed that ApoE enhances APP transcription by
activating MAP-kinases, but our present data suggest that ApoE
additionally stimulates multiple other signaling pathways (Fig.
5). We thus asked whether ApoE induced synaptic gene expres-
sion is sensitive to a general MAP-kinase inhibitor, U0126, or to a
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Figure 4. The LDL fraction from human blood that contains high levels of ApoE activates MAP-kinase signaling in human neurons A, Characterization of the ApoE content of human LDL (obtained
commercially) by SDS-PAGE followed by Coomassie blue staining (top) or immunoblotting for ApoE (bottom). The ApoE concentration of LDL was quantified by comparison with the Coomassie blue
signal of BSA standards and of different amounts of LDL. B, ApoE-containing human LDL potently induces ERK phosphorylation in human neurons. LDL and HEK293 cell-derived ApoE3 (10 �g/ml)
were added to D10 human neurons cultured on MEFs (top, representative immunoblots to assess the levels of phospho-ERK and total ERK; bottom, summary graph of the ratio of phospho-ERK to total
ERK). Data in bar graph are means � SEM (n � 3 independent experiments); statistical significance was evaluated by one-way ANOVA with Tukey’s multiple-comparisons test (*p 	 0.05; ***p 	
0.001).
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Figure 5. ApoE potently activates multiple signaling pathways in human neurons with an ApoE4�ApoE3�ApoE2 potency rank order but stimulates only ERK phosphorylation in MEFs. Data are
from human neurons cultured on MEFs or Matrigel or from only MEFs cultured in the absence of serum; recombinant ApoE (10 �g/ml, produced in HEK293 cells) or control solutions were added for
1 h at D10 before the indicated phosphorylation events were analyzed by immunoblotting. A, ApoE induces phosphorylation of ERK, Akt and Src but not of JNK in human neurons cultured on MEFs
or Matrigel with an ApoE4�ApoE3�ApoE2 potency rank order (left, representative immunoblots; right, summary graphs). B, ApoE3-induced ERK-, Akt- and Src-phosphorylation are prevented by
the ApoE receptor blocking protein RAP (50 �g/ml, applied 30 min before the 1 h ApoE incubation at D10; left, representative immunoblots; right, summary graphs). (Figure legend continues.)
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PI3-kinase inhibitor, Wortmannin. U0126 blocked the ApoE-
induced increase in synaptic gene expression more efficiently
than the ApoE receptor blocker RAP (Fig. 9A), whereas Wort-
mannin had no effect (Fig. 9B). Moreover, ApoE acted via the
same MAP-kinases in stimulating synapse formation as in en-
hancing APP transcription because shRNAs targeting DLK, a

MAP-kinase kinase kinase that is essential for the ApoE-induced
increase in APP (Huang et al., 2017), also abolished the increase
in synaptic gene expression, whereas overexpression of DLK
constitutively enhanced synaptic gene expression (Fig. 10A,B).
Consistently, overexpression of MBIP, an inhibitor of DLK (Fu-
kuyama et al., 2000), abolished the effect of ApoE on synapse
formation and even decreased the baseline expression of synaptic
genes (Fig. 10A,B). Furthermore, CRISPR/Cas9 directed at
MKK7, a MAP-kinase kinase downstream of DLK, also abolished
the effect of ApoE and lowered baseline synaptic gene expression
(Fig. 10A,B). Again, overexpression of MKK7 constitutively en-
hanced synaptic gene expression similar to overexpression of
DLK. The inhibition of synapse formation by MBIP overexpres-
sion and the increase in synapse formation induced by MKK7
overexpression were similar for synapse formation stimulated by

4

(Figure legend continued.) C, The ERK phosphorylation in human neurons is induced by ApoE
in a dose-dependent fashion for all three ApoE variants. D, ApoE induces phosphorylation of
ERK, but not Akt, Src or JNK in MEFs that were cultured in the absence of human neurons and
treated with ApoE as in A (left, representative immunoblots; right, summary graphs). Data are
shown as means � SEM (n � 3 independent experiments); statistical significance (*p 	 0.05;
**p 	 0.01; ***p 	 0.001) was evaluated with two-way ANOVA (A–C) or one-way ANOVA (C,
D) and selected Tukey’s post hoc multiple-comparisons test as indicated.

Figure 6. ApoE increases synapse formation in human neurons in a manner inhibited by the ApoE-receptor blocking protein RAP, with a rank potency order of ApoE4�ApoE3�ApoE2.
Data were from human neurons cultured on MEFs in the absence of serum; recombinant ApoE (10 �g/ml, produced in HEK293 cells) or control solutions were added at D10, and neurons
were fixed and analyzed at D16. Data acquired at a later time point 23–25 d in vitro in a double-blinded manner are shown in Figure 6-1, available at https://doi.org/10.1523/
JNEUROSCI.2994-18.2019.f6-1. A, Representative images of human neurons analyzed by double-immunofluorescence labeling for MAP2 (a dendritic marker) and synapsin (a presynaptic
marker). B–F, Summary graphs of the synapse density (B), synaptic puncta size (C), synapsin puncta staining intensity (D), cell body area (E), and total neurite length (F) in human
neurons cultured in the absence and presence of ApoE receptor blocking protein RAP (50 �g/ml). G, Representative images of human neurons labeled by dual immunofluorescence
staining for MAP2 and Homer1 (a postsynaptic marker). H–J, Summary graphs of the synaptic Homer1 puncta density (H), Homer1 puncta size (I), and Homer1 puncta staining intensity
(J). Data are shown as means � SEM (n�3 independent experiments); statistical significance (*p 	 0.05, **p 	 0.01; ***p 	 0.001) was evaluated with one-way ANOVA with Tukey’s
multiple comparisons.
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different ApoE variants (Fig. 10C). Thus, the same MAP-kinase
pathway is required for both ApoE-induced synapse formation
and ApoE-induced enhancement of APP transcription.

ApoE-induced synapse formation involves CREB but not cFos
ApoE-induced MAP-kinase activation stimulates cFos phos-
phorylation, which in turn enhances APP transcription (Huang
et al., 2017). To investigate whether the same pathway operates

for ApoE-induced synaptic gene expression that is also mediated
by MAP-kinase activation, we examined the effect of a dominant-
negative cFos mutant (Fig. 11). Although dominant-negative
cFos blocked the effect of ApoE on APP transcription, it did not
alter the effect of ApoE on synaptic gene expression (Fig. 11). We
therefore tested dominant-negative mutants of two other tran-
scription factors known to be important for neuronal function,
CREB and MEF2A (Marie et al., 2005; Rashid et al., 2014). The
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Figure 7. ApoE stimulates synaptic gene transcription independent of its lipidation state or culture substrate, with a rank potency order of ApoE4�ApoE3�ApoE2. Data are from human neurons
cultured on MEFs in the absence of serum; recombinant ApoE (10 �g/ml, produced in HEK293 cells or bacteria as indicated) or control solutions were added at D10 with or without RAP (50 �g/ml),
and neurons were analyzed at D12. A, ApoE increases synaptic protein mRNA levels with an ApoE4�ApoE3�ApoE2 potency rank order; blocking ApoE receptors with RAP abolishes ApoE-induced
synaptic mRNA increases. mRNA levels were measured by human-specific qRT-PCR with MAP2 as internal standard to correct for the progressive neuronal maturation during the experiment, and
plotted normalized to controls (abbreviations: GluA1, glutamate receptor subunit-1; Syt1, synaptotagmin-1; Syp, synaptophysin; Syn, synapsin; Syb1, synaptobrevin-1). The dose titration and time
course effects of ApoE on the expression of synaptic genes were shown in Figure 7-1, available at https://doi.org/10.1523/JNEUROSCI.2994-18.2019.f7-1. A similar ApoE variant-dependent effect
was also detected in neurons derived from two different control lines of human iPS cells, as shown in Figure 7-3A,B, available at https://doi.org/10.1523/JNEUROSCI.2994-18.2019.f7-3. In addition
to ApoE, a few glia-secreted factors induced transcription of synaptic genes as well, as shown in Figure 7-3C, available at https://doi.org/10.1523/JNEUROSCI.2994-18.2019.f7-3. B, ApoE increases
synaptic protein levels with an ApoE4�ApoE3�ApoE2 potency rank order (left, representative immunoblots; right, summary graphs of protein levels normalized for Tuj1 as an internal standard).
C, Recombinant ApoE produced in bacteria (E. coli) and HEK293 cells are equally potent in increasing synaptic protein mRNA levels in neurons cultured in the absence of glia or serum. Analyses were
performed as in A. The characterization of bacterial and HEK293 ApoE proteins were shown in Figure 7-2, available at https://doi.org/10.1523/JNEUROSCI.2994-18.2019.f7-2. D, ApoE increases
synaptic protein mRNA levels with an ApoE4�ApoE3�ApoE2 potency rank order also when human neurons are cultured on Matrigel without cellular support. Summary graphs show the indicated
synaptic protein mRNA levels measured by human-specific quantitative RT-PCR with MAP2 as internal standard, and normalized to the untreated control. mRNA levels are normalized to the control
and to MAP2 as an internal standard. Data are shown as means � SEM (n � 3 independent experiments); statistical significance (**p 	 0.01; ***p 	 0.001) was evaluated by two-way ANOVA
with Tukey’s multiple-comparisons test.

Huang et al. • ApoE4 Differentially Activates Neuronal Signaling to Regulate Synaptogenesis J. Neurosci., September 11, 2019 • 39(37):7408 –7427 • 7419

https://doi.org/10.1523/JNEUROSCI.2994-18.2019.f7-1
https://doi.org/10.1523/JNEUROSCI.2994-18.2019.f7-3
https://doi.org/10.1523/JNEUROSCI.2994-18.2019.f7-3
https://doi.org/10.1523/JNEUROSCI.2994-18.2019.f7-2


mutants of human proteins were designed based on validated
rodent sequences (Ornatsky et al., 1997; Ahn et al., 1998).
Whereas dominant-negative MEF2A had no significant effect on
the ApoE-induced stimulation of synaptic gene expression,
dominant-negative CREB not only blocked ApoE-induced stim-
ulation of synaptic gene expression, but also decreased baseline
levels of synaptic gene expression (Fig. 11). Dominant-negative
CREB did not interfere with the ApoE-induced stimulation of
APP expression, but appeared to also decrease baseline transcrip-
tion of APP as well.

To independently confirm these results, we directly compared
in a separate set of experiments the effects of dominant-negative
and dominant-positive CREB on synaptic gene expression and
on APP both at the RNA (Fig. 12A) and protein levels (Fig.
12B,C). Consistent with a central role for CREB in the ApoE-
induced stimulation of synaptic gene expression, dominant-
negative CREB uniformly decreased synaptic gene expression
and blocked the effect of ApoE, whereas dominant-positive
CREB constitutively enhanced synaptic gene expression. Again,
dominant-negative CREB did not block the effect of ApoE on
APP transcription, but decreased overall expression levels. In
contrast, dominant-positive CREB (Cardinaux et al., 2000) con-
stitutively increased APP expression levels (Fig. 12A–C). The lev-
els of two control proteins, N-cadherin and Hsc70, were
unaffected (Fig. 12B,C). The inhibitory effect of DN-CREB on
the expression of synaptic proteins was similarly observed for all
three ApoE variants (Fig. 12D,E). Thus, cFos is essential for the
ApoE-stimulation of APP expression but not of synapse forma-
tion, whereas CREB is likely involved in synapse formation and,
to a lesser degree, in APP transcription.

How is CREB connected to the MAP-kinase pathway that is
essential for ApoE-induced synaptic gene activation? To address
this question, we monitored CREB phosphorylation as a function
of ApoE treatment (Fig. 13). Strikingly, CREB phosphorylation
in human neurons was potently activated by ApoE with a potency
rank order of ApoE4�ApoE3�ApoE2. This activation was
ablated by the ApoE receptor blocker RAP (Fig. 13A,B). ApoE-
induced CREB phosphorylation was also abolished by the MAP-
kinase inhibitor U0126 but not by three other kinase inhibitors:
Wortmannin, PKI, or KN93 (Fig. 13C). Thus, ApoE binding to its
neuronal receptors stimulates MAP-kinases, which in turn ap-
pear to phosphorylate CREB to trigger CREB-dependent synap-
tic gene expression and synapse formation.

Discussion
Here, we used neurons trans-differentiated from human ES and
iPS cells as a reduced experimental system to investigate the sig-
naling role of ApoE specifically in human neurons. We cultured
human neurons in isolation from all glial contributions to exam-
ine the differential efficacy of ApoE2, ApoE3, and ApoE4 in in-
ducing neuronal signaling, and tested the reproducibility and
extent of such signaling using multiple approaches. Using this
experimental strategy, we made five major observations (see
summary diagram in Fig. 14). First, we found that ApoE broadly
stimulates multiple signal transduction pathways in human neu-
rons in a manner that was inhibited by the ApoE receptor-
blocking protein RAP. ApoE2, ApoE3, and ApoE4 exhibited a
differential signaling efficacy with a potency rank order of
ApoE4�ApoE3�ApoE2 in stimulating neuronal signaling re-
gardless of the ApoE lipidation status. Second, we showed that the
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ApoE-induced stimulation of the MAP-kinase pathway is not
neuron specific, but was similarly detected in MEFs in which the
three ApoE variants also exhibited a potency rank order of
ApoE4�ApoE3�ApoE2. Third, we observed that a major down-
stream effect of ApoE signaling in neurons was stimulation of
synapse formation that increased the number of functional syn-
apses without changing the size of the neurons or their dendrites.
This ApoE-induced stimulation of synapse formation involved
increased expression of synaptic genes, suggesting that it involves
gene transcription as a basic mechanism, similar to the ApoE-
induced increase in APP and A� synthesis we had described
previously (Huang et al., 2017). Fourth, we showed that the
ApoE-induced increase in synapse formation requires MAP-
kinase activation similar to ApoE-induced APP transcription,
suggesting that the ApoE-stimulated MAP-kinase pathway has
multiple downstream readouts. Fifth and finally, we documented
that, unlike the ApoE-induced increase in APP transcription that
required cFos, the ApoE-induced increase in synapse formation

was independent of cFos but required another transcription fac-
tor, CREB.

Viewed together with earlier results (Huang et al., 2017), these
findings suggest that in brain, one of the biological functions of
ApoE is as a signaling molecule that activates diverse messenger
pathways in neurons (Fig. 14). Our data indicate that ApoE’s
signaling functions are broad yet selective. For example, we
showed that ApoE stimulates synapse formation but not den-
dritic arborization, and we found earlier that ApoE stimulates
transcription of APP but not of the related genes APLP1 and
APLP2 (Huang et al., 2017). These results are compatible with
other data suggesting a major signaling role of ApoE in microglia
(for review, see Shi and Holtzman, 2018), and support the notion
that activation of astrocytes and/or microglia enhances ApoE se-
cretion, which then in turn acts as a signaling molecule to pro-
duce diverse effects on neurons. We would like to argue that the
proposed signaling role of ApoE could function as a repair signal
and injury response, with increased synaptogenesis serving to

Figure 9. ApoE induction of synaptic gene expression is blocked by the MAP-kinase inhibitor U0126 and the ApoE-receptor blocking protein RAP. Data are from human neurons cultured on MEFs
in the absence of serum; recombinant ApoE (10 �g/ml) or control solutions without or with U0126 (50 �M), RAP (50 �g/ml), or Wortmannin (0.1 �M) were added at D10, and neurons were analyzed
at D12. A, ApoE3-induced increases in synaptic protein levels is abolished by the MAP-kinase inhibitor U0126 and the ApoE receptor blocking protein RAP (left, representative immunoblots; right,
summary graphs of the indicated synaptic protein levels). B, ApoE-induced increases in the levels of mRNAs encoding synaptic proteins is abolished by the MAP-kinase inhibitor U0126 but not by PI-3
kinase inhibitory Wortmannin. mRNA levels are normalized to the control and to MAP2 as an internal standard. Note that the rank potency order of ApoE4�ApoE3�ApoE2 is maintained under all
conditions under which ApoE is active. Data are shown as means � SEM (n � 3 independent experiments); statistical significance (***p 	 0.001) was evaluated with two-way ANOVA with Tukey’s
multiple-comparisons test.
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compensate for potential losses of synaptic function during path-
ological processes (Masliah et al., 1995).

As always, our conclusions are contingent on the specific con-
ditions of our experiments, which involved human neurons cul-
tured on MEFs or on a noncellular substrate (Matrigel) in the
absence of glia or serum. When human neurons are cultured in
the presence of glia that are activated by the culture conditions
and secrete an array of abundant factors, the application of addi-
tional ApoE has no specific effect, most likely because the other
glial factors, secreted or presented by physical contact, occlude
the effect of ApoE (Fig. 6; Fig. 7-3C, available at https://doi.org/
10.1523/JNEUROSCI.2994-18.2019.f7-3; Huang et al., 2017).
Our findings based on GCMs that exclude the confounding com-
ponent of physical glial interactions suggest an essential function
of endogenous ApoE in the glial stimulation of MAP-kinase sig-
naling in neurons, as ApoE depletion indeed causes an impair-
ment of MAP-kinase pathway activation (Fig. 3B,C). The
purification of glial lipoproteins, which removes most other se-
creted factors, leads to an ApoE variant-dependent effect with a
potency rank order of ApoE4�ApoE3�ApoE2, as observed us-
ing HEK293 cell-produced ApoE (Fig. 3C). Moreover, the appli-
cation of human LDL, which contains naturally lipidated ApoE,

activated MAP-kinase signaling with an efficacy similar to
HEK293 cell-derived recombinant ApoE and to nonlipidated
bacterial ApoE, strongly arguing that the signaling we observed
for recombinant ApoE represents a physiological activity that
does not require a specific form of lipidation.

However, our study certainly is not immune from the overall
caveats associated with experiments that are performed in a re-
duced culture system, which is necessary to uncover mechanisms
but lacks the rich diversity of an organismal context. In fact, all
studies in which cultured neurons and glia are removed from
their normal three-dimensional organization are likewise non-
physiological. After all, in any experimental condition using cul-
tured neurons, the normal cellular interactions are disrupted,
both glia and neurons exist in an abnormal state, and many prop-
erties—such as LTP in neurons—are lost. Nevertheless, such re-
duced systems are valuable and informative. Our specific
approach provides high clarity by excluding glial signals, and, as a
result, allows defining neuronal responses that would otherwise
be blunted or concealed under conventional settings but are
likely to be physiologically operating and important in a normal
cellular context. This highly defined approach is akin to a bio-
chemical reconstitution experiment of a protein complex, in
which the normal cellular complexity is purposely eliminated to
allow reconstruction of a specific molecular function.

With these constraints in mind, we posit that the signaling
pathways that we define here provide major insight into funda-
mental properties of ApoE and its receptors in neurons. Our most
important finding here is that ApoE binding to its receptors on
neurons induces a broad activation of multiple signaling path-
ways that operate via diverse mechanisms and impact selective
downstream processes. Although both synapse formation and
APP transcription were induced by ApoE in a manner requiring
activation of MAP-kinases, the downstream effectors were differ-
ent in that the former required CREB, whereas the latter involved
cFos. In all of the observed ApoE activities, ApoE variants ex-
hibited a differential efficacy with a potency rank order of
ApoE4�ApoE3�ApoE2. In these activities, ApoE acted by bind-
ing to classical ApoE receptors because its actions were inhibited

4

(Figure legend continued.) suppression of MKK7 expression, or MBIP-mediated blockage of
DLK activity abolish the ApoE-induced increase in synaptic protein mRNA levels, whereas DLK or
MKK7 overexpression constitutively increase synaptic protein mRNA levels and render them
insensitive to ApoE3 (abbreviations: OE, overexpression; shR, shRNAs). mRNA levels are normal-
ized to the control and to MAP2 as an internal standard. B, shRNA-mediated knockdown of DLK,
CRISPR-mediated suppression of MKK7 expression, or MBIP-mediated blockage of DLK activity
abolish the ApoE-induced increase in synaptic protein mRNA levels, whereas DLK or MKK7
overexpression constitutively increase synaptic protein mRNA levels and render them insensi-
tive to ApoE3 (top, representative immunoblots; bottom, summary graphs of protein levels
normalized to Tuj1 as an internal standard). OE, Overexpression; shR, shRNA. C, ApoE variant-
dependent effect does not affect the manipulations of DLK MAP-kinase signaling pathway, with
MBIP overexpression decreasing and MKK7 overexpression increasing transcription of synaptic
genes regardless of ApoE treatments. Data are shown as means � SEM (n � 3 independent
experiments); statistical significance (***p 	 0.001) was evaluated with two-way ANOVA with
Tukey’s multiple-comparisons test. n.s., not significant.
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Figure 11. ApoE3-induced increases in synaptic protein expression require CREB but not cFos. Data are from human neurons cultured on MEFs in the absence of serum; the indicated molecular
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Figure 12. ApoE3-induced increases in synaptic protein expression require CREB but not cFos. Data are from human neurons cultured on MEFs in the absence of serum; the indicated molecular
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by RAP specifically. Because of our reductionist experimental
design, these findings were clearly not confounded by signaling
via TREM2, a reported alternative ApoE receptor implicated in
AD, because TREM2 is not detectably expressed in MEFs or hu-
man neurons and, as a noncanonical putative ApoE receptor,
TREM2 is not expected to bind to RAP. Neurons express multiple
classical ApoE receptors, most prominently LRP1, and the pre-
cise ApoE receptor(s) involved in the processes we studied here
remains unknown.

How do the present observations relate to the contribution of
allelic ApoE variants to AD pathogenesis? It seems counterintui-
tive that ApoE4, which predisposes to AD and thus presumably to
neurodegenerative synapse loss, should be more effective in pro-
moting synapse formation than ApoE2, which protects against
AD and synapse loss. However, examination of postmortem AD
brains showed that, though synapse loss in the dentate gyrus was
observed, it was not correlated with APOE genotypes (Scheff et
al., 2006). Moreover, ApoE is not required for overall normal
brain function as evidenced by the generally normal cognitive
performance of ApoE-deficient human patients (Ghiselli et al.,
1981; Lohse et al., 1992; Mak et al., 2014). This fact suggests that
the signaling function of ApoE does not contribute an essential
component to brain performance under nonpathological condi-
tions, and that it is not required for normal synapse formation. If
ApoE signaling kicks in under pathophysiological conditions, the
increased efficacy of ApoE4 as a signaling molecule may cause
differential effects on neuronal survival over prolonged time pe-
riods. Differences in signaling strength between ApoE variants
may also be confounded by variant-specific differences in the
trafficking and recycling of ApoE and its receptors (Heeren et al.,
2004; Chen et al., 2010). The fact that the genetic ApoE variants
show such robust and consistent differences in their respective
potency of activating neuronal signaling pathways seems to us to
be more important than the precise nature of this signaling, be-
cause this fact provides a potential explanation for why ApoE4 is
deleterious and ApoE2 is protective in AD pathogenesis, even if
the specific nature of AD pathogenesis and the role of ApoE-
signaling in it remain undefined.

The finding that ApoE2, ApoE3, and ApoE4 exhibit differ-
ential efficacies in neuronal signaling that mirrors their
ApoE-receptor binding properties has potential therapeutic im-
plications. If ApoE-induced neuronal signaling is involved in AD
pathogenesis, decreasing such signaling that is enhanced in

4

(Figure legend continued.) and abolishes ApoE3-induced increases of synaptic protein but
not APP mRNAs; DP-CREB, in contrast, constitutively increases synaptic protein and APP mRNA
levels. B, C, DN-CREB suppresses baseline levels of synaptic protein and APP protein, and abol-
ishes ApoE3-induced increases of synaptic protein but not APP protein. DP-CREB, in contrast,
constitutively increases synaptic protein and APP protein levels. B, Representative immuno-
blots. C, Summary graphs of protein levels normalized to Tuj1 and control (EGFP)-ApoE3. NCAD
(N-cadherin) and Hsc70 (heat-shock cognate 70) proteins were used as negative controls, and
the levels of overexpressed EGFP (used as a molecular manipulation control) or DN- and DP-
CREB were also examined as a function of ApoE3 to exclude a possible regulation of the molec-
ular manipulations by ApoE3 itself. D, E, The inhibitory effect of DN-CREB on synaptic protein
levels is not affected by different ApoE variants. D, Representative immunoblots and summary
graph of normalized synaptic protein levels. Data are shown as means � SEM (n � 3 indepen-
dent experiments); statistical significance (**p 	 0.01; ***p 	 0.001) was evaluated with
two-way ANOVA (A, C, and E) or one-way ANOVA (for APP in all panels, NCAD and Hsc70 in C)
with Tukey’s multiple-comparisons test. n.s., not significant.
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D10 30 min before recombinant ApoEs (10 �g/ml) or control solutions as indicated, and neu-
rons were analyzed 1 h after ApoE additions. A, B, ApoE activates CREB phosphorylation in
human neurons cultured on MEFs with an ApoE4 � ApoE3 � ApoE2 rank potency order, and
ApoE-induced CREB phosphorylation is abolished by the ApoE-receptor blocking protein RAP. A,
Representative immunoblots. B, Summary graphs of phosphorylation levels normalized for
controls). Data are shown as means � SEM (n � 3 independent experiments); statistical
significance (*p 	 0.05; ***p 	 0.001) was evaluated with one-way ANOVA with Tukey’s
multiple-comparisons test. C, The MAP-kinase inhibitor U0126 but not the PI3- kinase inhibitor
Wortmannin, the protein kinase A inhibitor PKI, or the CaM kinase inhibitor KN93 blocks the
ApoE3-induced phosphorylation of CREB.
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Figure 14. Summary diagram of differential neuronal signaling mediated by ApoE2, ApoE3,
and ApoE4. ApoE binding to neuronal receptors activates multiple parallel signaling pathways,
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lates APP transcription and synaptogenesis.
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ApoE4 carriers would be a viable pathway for therapy. Achieving
such a therapy, however, requires not only validating the pro-
posed mechanism of the role of ApoE4 in AD pathogenesis—
something that has arguably not yet been achieved for any
hypothesis— but also identifying the specific receptor involved in
neuronal ApoE signaling. Multiple ApoE receptors are expressed
in neurons. Which of these receptors mediates the neuronal
ApoE signaling characterized here, however, is unknown. Iden-
tification of this receptor is thus the most important next goal
toward a development of pharmacological agents that could spe-
cifically dampen ApoE4 signaling and thereby ameliorating the
increased risk for AD in ApoE4-expressing population. Accom-
plishing this goal will be a primary focus in forthcoming studies.
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