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Abstract

Emerging infectious diseases rarely affect all members of a population equally and determining 

how individuals’ susceptibility to infection is related to other components of their fitness is critical 

to understanding disease impacts at a population level and for predicting evolutionary trajectories. 

We introduce a novel state-space model framework to investigate survival and fecundity of 

Tasmanian devils (Sarcophilus harrisii) affected by a transmissible cancer, devil facial tumour 

disease. We show that those devils that become host to tumours have otherwise greater fitness, 

with higher survival and fecundity rates prior to disease-induced death than non-host individuals 

that do not become infected, although high tumour loads lead to high mortality. Our finding that 

individuals with the greatest reproductive value are those most affected by the cancer demonstrates 

the need to quantify both survival and fecundity in context of disease progression for 

understanding the impact of disease on wildlife populations.
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INTRODUCTION

Infectious diseases rarely affect all individuals in a population equally (Grenfell et al. 2001; 

Lloyd-Smith et al. 2005). In many cases, it is the weakest, least fit, members of a population 

that are most impacted by pathogens. Low-ranking individuals or those in overcrowded 

aggregations have been reported to exhibit lower immune function and higher disease risk 

owing to a range of factors that can influence survival and fecundity (Sapolsky 2004). 

Conversely, dominant individuals that typically engage in mating and reproduction more 

frequently than subordinates may trade-off energetic investment in reproduction at the 

expense of immune competence, ultimately increasing their disease risk (Sheldon & 

Verhulst 1996; Lee 2006; Sepil et al. 2013). In either case, higher infection risk is frequently 

reported in association with stress and immune suppression, implying that the infection of 

relatively weakened individuals is common place in disease spread and persistence 

(Beldomenico & Begon 2010).

Predicting the effects of infectious diseases on populations remains challenging due to the 

intricate interplay of demo-graphic and epidemiological dynamics (Merler & Ajelli 2010; 

Peel et al. 2014). High disease-induced mortality, for example, does not necessarily imply 

decline in population growth if increased fecundity can compensate for the loss at the 

population level (Wells et al. 2015), and/or if surviving individuals benefit from increased 

survival or reproductive opportunities due to decreased competition (Gaillard et al. 2000; 

Coulson et al. 2004). Hence, the consequences of disease outbreaks at the population-level 

ultimately depend on individual fitness outcomes, that is, the relative reproductive potential 

of individuals that become host to the disease and non-host individuals, i.e. those individuals 

never affected by the disease. If, for example, a disease mainly affects individuals that are 

unlikely to contribute to recruitment (e.g. post-reproductive individuals), even a highly lethal 

disease would have little effect on long-term population growth (see Fig. 1). If, however, the 

disease impacts those individuals most likely to contribute to recruitment then disease effects 

on population growth may be more substantial.

Here, we examine the fitness consequences of devil facial tumour disease (DFTD) for 

Tasmanian devils (Sarcophilus harrisii) using 10 years of mark–recapture data. DFTD is a 

recently emerged infectious disease caused by a clonal cancer, transmitted by direct transfer 

of live cancer cells when devils bite each other (Hawkins et al. 2006; Pearse & Swift 2006; 

Jones et al. 2008; Hamede et al. 2013). DFTD is mostly fatal, with large ulcerating tumours 

leading to metabolic starvation, overgrown oral cavities, or organ failure resulting from 

metastasis. High contact rates among individuals, often resulting in aggressive interactions 

including biting, and frequency-dependent disease transmission have been expected to 

reduce devil populations to very low levels (Lachish et al. 2007; Hamede et al. 2009; 

McCallum et al. 2009). In contrast, precocial reproduction of devils when the cancer reduces 

population density and hence intraspecific competition has been suggested as an adaptive 

host mechanism (Jones et al. 2008; Lachish et al. 2009). However, the extent to which 

individuals that become host to the cancer exhibit different fitness compared to non-host 

individuals that never become infected, and the timing and extent of reproduction in relation 

to individual disease status has not been examined so far. To explore fitness in the context of 

individual and population-level disease progression, we developed a novel state-space model 
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framework that integrates individual-based survival and fecundity in the context of disease 

progression and epidemiological dynamics over time.

METHODS

Study system and field data

We analysed mark–recapture data from individually marked Tasmanian devils collected 

between July 2006 and November 2015 from a population in western Tasmania (West Pencil 

Pine, 41°31 S, 145°46 E) (Hamede et al. 2015). Devils were captured at 3-month intervals 

(93 ± SD = 18 days between capture sessions). The timing of capture sessions coincided 

with key reproductive stages during the annual cycle and were categorised into four seasons: 

(1) February/March (mating season), (2) May (small pouch young), (3) July/August (large 

pouch young) and (4) November (females are in late lactation with young in den). We 

further categorised capture sessions into three 3- to 4-year time periods: (1) 2006–2008, (2) 

2009–2011 and (3) 2012–2015. As a compromise between exploring temporal variation and 

model complexity, we chose these arbitrary intervals rather than fitting a continuous time 

function. Shifts in tumour strain frequency (Hamede et al. 2015) and host genes related to 

immune response (Epstein et al. 2016) could cause different DFTD effects on survival rates, 

but the exact timing of relevant events remains unknown. We classified the reproductive 

status of females based on pouch appearance (Hesterman et al. 2008) into six categories: (1) 

immature, (2) oestrous, (3) postovulatory, (4) pouch young presence, (5) lactating and (6) 

regressing teats. The number of pouch young was counted if present. The size of each DFTD 

tumour detected was measured with callipers to the nearest 1–5 mm in three dimensions 

(depth measurements of tumours inside the skin were least accurate) and the per-capita 

tumour load (tumour volume to the nearest cm3) was calculated. Hamede et al. (2015) 

provides further descriptions of field methods. See Supplementary Information for sample 

sizes.

Hierarchical model of individual fitness and disease progression

Survival—We used a Bayesian hierarchical mark–recapture model, in which we integrated 

an incremental growth model of tumour load to project unknown disease states for all time 

steps when diseased individuals were likely to be alive but tumour load was not known. We 

use ‘tumour load’, the total volume of all tumours on an individual at a particular time, 

rather than modelling each individual tumour separately because some tumours merged 

together over time and not all tumours were distinguishable. We assume that tumour growth 

is governed by an underlying ergodic and irreversible Markov process (once diseased, 

individuals remain diseased until death and tumour load is assumed to continuously 

increase; the rare events where shrinking tumours have been observed are modelled by the 

Gamma process as described below). Our model resembles a continuous time Markov chain 

model for discrete state variables, and we projected all data on a continuous time scale (the 

first day of the study set to one) to express the time of all events such as individual age, 

lifetime and the onset of tumour growth as Euclidean temporal distances.

We used the term ‘host’ for all individuals that were known to harbour tumours at any stage 

during their lifetime and the term ‘non-host’ for individuals never observed with tumours 
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during their lifetime. Host individuals were classified as ‘diseased’ if tumour was present 

and as ‘non-diseased’ prior to the onset of tumour growth.

For each individual devil i, we noted the encounter at time t (the total number of trapping 

sessions being T) as a binary vector Yi of length T with y(i, t) = 1 if the individual is 

encountered and y(i, t) = 0 otherwise. The capture records y(i, t) are assumed to be random 

observations of the true presence–absence z(i, t) of individual i at time t based on capture 

probability p(i, t) with

y(i, t) ∼ Bernoulli(z(i, t)p(i, t)) . (1)

The incompletely known individual states z(i, t) were estimated based on the survival 

probability Φ(i, t) conditioned that individuals were alive at the previous time step t−1 such 

that:

z(i, t) ∼ Bernoulli Φ(i, t)δ(t)
z(i, t − 1)Iborn(i, t)(1 − Idied(i, t)) . (2)

The exponential scaling factor δ(t) accounts for unequal time intervals between capture 

sessions and was calculated as the ratio of the time interval between capture sessions to the 

average interval (93 days). The binary Boolean indicators Iborn(i, t) and Idied(i, t) indicate 

whether individuals are born or have died at time step t (i.e. Iborn(i, t) = 1 if already born and 

0 otherwise, Idied(i, t) = 1 if already dead and 0 other-wise), derived from the Markov chains 

of individual states. For most individuals the year of birth was known and uncertainty of the 

exact birth date fell into a 20-day window around the 1st April; for the few individuals with 

unknown birthdates (8 of 518), uncertainty in birthdates was assumed to cover the time 

window of 6 years before first capture according to assumed maximum devil lifespan. For 

analysis, we drew individual birthdates Π(i) as random variables from a uniform distribution 

across individual uncertainty intervals; given Π(i) and z(i, t), for any time the individual age 

can be calculated given the underlying Markov process.

We modelled survival probability Φ(i, t) based on logit-link functions as

logit Φ(i, t) = μΦ agecat(i, t), period(t) + βsex sex(i)
+ βhost Ihost(i)Iage≥425d(i, t)
+ βtumour ωcat(i, t), period(t) + BTXT(t) .

(3)

Here, µΦ is the intercept, which we allowed to vary among different age classes and time 

periods. We considered individual age as a categorical variable agecat(i, t) with six levels: (1) 

1–365 days, (2) 1–2 years, (3) 2–3 years, (4) 3–4 years, (4) 4–5 years and (5) > 5 years. The 

coefficient estimate βsex captures variation in survival probability due to devil’s sex. The 

coefficient βhost allows for variation in survival of mature host vs. non-host individuals ≥ 

425 days old; we chose this threshold as this is the earliest age when individuals are 
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expected to engage in reproduction and biting behaviour relevant for disease transmission 

(Jones et al. 2008). The coefficient βtumour captures variation in survival according to 

individual tumour load category ωcat(i, t) based on categorising tumour load ω(i, t) (see 

below) into four different levels: (1) 0.0001–50 cm3, (2) > 50–100 cm3, (3) > 100–200 cm3 

and (4) > 200 cm3. XT is a matrix of time steps (t = 1, …, T) of fourth orthogonal 

polynomial order (for modelling non-linear relationships), and BT is a vector of coefficient 

estimates for the polynomial model of the time covariate.

Capture probability p(i, t) was modelled with a logit-link functions as

logit p i, t = μp(s) + γinfect Iinfect(i, t) + GTXT(t), (4)

allowing the intercept to vary over season s, depending on whether individuals were diseased 

or not with DFTD at time t [as given by the Boolean indicator Iinfect(i, t)], and as a 

polynomial function of time t of fourth order with coefficients GT.

Reproduction—We estimated the reproductive state of female f at time t as ηRepro(f, t), 
which was unknown when individuals were not captured and pouch appearance could not be 

classified (note that the double-index notation i[ f ] is used to match individuals i from the 

overall model framework to female f). Transition probabilities between the different 

reproductive states r can be summarised into an R × R matrix (R = 6 for the six different 

reproductive stages) with marginal sums of one. We accounted for a directional transition 

between reproductive stages, i.e. the probability to be in any reproductive stage is 

conditioned on the previous states such that individuals once oestrous cannot become 

immature again but individuals can repeatedly reproduce once matured. We modelled 

reproductive states for each individual and time step based on the matrix of transition 

probabilities Ψ(rcurrent, rfuture, s, j); Ψ was allowed to vary among seasons s and for host vs. 

non-host individuals as indexed by j and was conditional on the individuals’ previous 

reproductive state (using the sum to unity constraint of the multinomial distribution):

ηRepro( f , t) ∼ Multinomial ψ ηRepro( f , t − 1), R, s, j)
z(i[ f ], t − 1) + ψ0

Repro(R)(1 − z(i[ f ], t))
(1 − Idied(i[ f , t)]

(5)

We used indicator variables to distinguish transition probabilities when individuals are alive 

(z(i[ f ], t) = 1) from those prior to individual birth (z(i[ f ], t) = 0, Idied(i[ f ], t) = 0) to 

enforce the constraint that unborn individuals (Iborn(i[ f ], t) = 0) are in the immature state 

(ψ0
Repro(R) is a vector of length R with the first value set to 1 and all others to 0).

For each year y a female was alive (z(i[ f ], t) = 1), we calculated individual litter size l( f, y) 

as the number of pouch young. Random state values of l( f, y) were estimated based on the 

expected population-level probability p(l, j) of the different litter sizes (with l ε L indexing 

1–4 young and l = 1
L = 5π(l) = 1) and conditional that an individual is expected to reproduce. 
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We estimated π(l, j) separately for host vs. non-host individuals as indexed by j. The random 

variable l( f, y) allowed us also to summarise the expected yearly population-level number of 

young. As part of preliminary analysis, we also allowed Ψ(rcurrent, rfuture, s, j) and π(l, j) to 

vary for diseased vs. non-diseased host individuals (i.e. the index j included an additional 

category conditioned on infection status); as results were similar we ignored this aspect in 

the final model to increase computational efficiency.

Tumour incremental growth and projection—We fitted an incremental growth model 

to tumour load measurements m(i, t) based on a logistic growth model which has been found 

to provide accurate fit to the growth of individual tumours (R.H. unpublished manuscript), 

and a Gamma process to account for random variation in each incremental growth step 

independent of the population-level mean growth (Russo et al. 2009; Eaton & Link 2011). 

For this, we assumed field measures of tumour load m(i, t) to be random draws from the 

underlying growth process over the time intervals t1 and t2 between consecutive 

measurements such that

m(i, t2) = ω(i, t1) + ι(i, t2)dt(t2) + εω . (6)

Here, ω(i, t1) is the tumour load at time step t1, ι(i, t2)dt (t2) is the product of the daily 

increment ι(i, t2) and the length of the time interval dt between t1 and t2, and εω is random 

Gaussian noise. The increment ι(i, t2) = (ω(i, t2) – ω (i, t1))/dt(t2) is assumed to be a 

Gamma random variable ι(i, t2) ~ Gamma(P(i, t2), λ) with shape parameter P(i, t2) and 

scale parameter λ > 0. The shape parameter P(i, t2) is based on the expected mean daily 

tumour growth according to the underlying logistic growth with

p(i, t2) = λ[m(i, t2) − ω(i, t1)]/dt (7)

and

m(i, t2) = ω(i, t1)Mmax/ ω(i, t1 + [Mmax − ω(i, t1)]e( − αdt) (8)

where Mmax is the asymptotic tumour load and α is the scale parameter of the logistic curve.

Parameter estimates from the incremental growth model (λ, α, Mmax) enabled forward and 

backward projection of individual disease burden, which is a Markov process governed by 

the disease burden ω(i, t−1) at the previous time step and the probability density function 

over all possible increment values given the growth model (eqn 6).

We used backward projection to estimate the date tumour load was at an assumed minimum 

mass of ωmin = 0.0001, which we assumed to correspond to an arbitrary initial volume at the 

onset of tumour growth (note that we cannot further account for the true underlying 

biological process of latent and incubation period and the emergence of first lesions 

associated with tumour growth from the given data). We then projected individual tumour 
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loads ωP(i, tP) according to eqns 6–8. Note that the superscript ‘P’ is used to indicate 

projected values rather than likelihood-based estimates from the data. We were not able to 

account for individual heterogeneity in growth parameters (λ, α, Mmax) due to a lack of 

more detailed data; to realistically project individual disease burdens despite this 

shortcoming, we constrained logistic growth of individual tumours such that any projected 

value ωP(i, tP) was smaller than any previous data-derived estimate of disease burden and 

not larger than any future, data-driven estimate, i.e. ω (i, t < tP) ≤ ωP(i, tP) ≥ ω (i, t > tP).

Force of infection—The individual disease state d(i, t) of whether individual i is diseased 

at time t is another partially known binary state variable, which is known for all times 

individuals were captured and for projected tumour loads but unknown after the last capture 

for non-diseased individuals. We modelled d(i, t) based on the infection probability Γ(i, t), 
that is, the probability that uninfected individual become infected, conditional they are alive.

Γ(i, t) was modelled with a logit-link function as

logit[Γ(i, t)] = μΓ[agecat(i, t), period(t)] + αsex[sex(i)] + ATXT(t) . (9)

Equivalent to the model for Φ(i, t), we modelled Γ(i, t) with variation over age classes, sex 

and time and used the scaling factor δ(t) to take unequal time intervals into account; see 

Supplementary Information.

The model was fitted in a Bayesian framework with Markov Chain Monte Carlo (MCMC) 

sampling and the Gibbs Sampler in OpenBUGS 3.2.2 (Lunn et al. 2009). Parameter 

estimates were calculated as posterior modes and 95% highest posterior density credible 

intervals (CI) from 5000 MCMC samples. Details of model fit and the model code are 

presented as Supplementary Information.

We calculated the force of infection FoI(t), that is, the rate at which susceptible individuals 

acquire DFTD at each time t, as the population average from the infection probability Γ(i, t).

We used the various state and indicator variables described above to calculate summary 

statistics at the individual (i.e. lifespan, the time until death after the onset of tumour growth 

or lifetime reproductive output of females) and population level (i.e. disease prevalence, 

proportion of individuals in different age classes in each capture session).

We explored trends and seasonal effects of transmission rates (derived from prevalence 

estimated from all individuals and, alternatively, mature individuals only) with linear 

regression models in R (R Development Core Team 2016), running models for each set of 

MCMC samples to obtain posterior distribution of coefficient estimates.

RESULTS

Strikingly, we found that the overall fitness of host individuals was significantly higher in 

terms of both survival and reproduction than those of non-host individuals (devils never 

hosting tumours during their lifetime). The average survival rates of mature (≥ 425 days old) 
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non-diseased host individuals were estimated to be 0.7–4 times higher than those of mature 

non-host individuals (odds ratio of 4.7–4.9 and CIs 3.3–9.0 for βhost for the time periods 

2006–2008 and 2009–2011; odds ratio of 1.7 and CI 1.4–4.9 for the time period 2012–2015; 

temporal differences are only tendencies but not significant because of overlapping credible 

intervals; Fig. 2). Increased tumour loads of diseased host individuals did indeed lead to 

decreased survival rates, reducing survival of individuals with tumour burdens > 100 cm3 to 

only 9–20% of that of non-diseased host individuals with similar effects over time (Fig. 2; 

βtumour, odds ratios of 0.09–0.12, CIs: 0.07–0.21). Nevertheless, devils with tumours in the 

smallest size class had higher survival rates than those that never became infected. A larger 

proportion of host individuals had lifespans between 3–4 years compared to non-host 

individuals, with 56% (CI: 53–59%) of hosts surviving to this age compared to only 38% 

(CI: 34–40%) of non-hosts (Fig. 3), most having died or dispersed as young before they 

could get infected.

Mature female host individuals reproduced on average 1.3 times (CI: 1.2–1.4) in their 

lifetime, whereas mature non-host females reproduced on average only 0.7 times (CI: 0.6–

0.9). Moreover, host individuals tended to have larger litter sizes with a 63% (CI: 62–64%) 

chance of a litter sizes of four young opposed to only 47% (CI: 46–48%) chance for non-

host individuals, which more often had litter sizes of two or three young only.

According to our incremental growth model, the average half-life time of tumours (i.e. the 

progression of individual tumour loads towards half the size of the asymptotic tumour load 

Mmax) was 148 days (CI: 114–181 days); Mmax was estimated as 202 cm3 (CI: 198–223 

cm3) and the scale parameter of the logistic growth curve as α = 0.03 (CI: 0.028–0.043, Fig. 

S1). The scale parameter of the Gamma process of incremental growth was λ = 0.8 (CI: 

0.6–1.4), suggesting that growth of tumour loads was skewed towards relatively small 

incremental growth, and only occasionally, relatively large increments. Tracking the 

individual time until death of host individuals after the onset of tumour growth (i.e. a 

modelled time point prior to the time of first observation), we found that only 11% (CI: 7–

15%) of individuals died within 90 days after the back-projected onset of tumour growth; at 

least 21% (CI: 13–29%) of host individuals were likely to survive > 2 years with tumours 

(Fig. S2).

Population-level disease prevalence increased from the beginning until mid-term of the study 

(2006–2012), but we found no consistent trend in disease prevalence in the last time period 

(2013–2015) (Fig. 4). Disease prevalence and the proportion of non-host individuals did not 

vary across seasons but exhibited some long-term trends. The proportion of non-host 

individuals decreased considerably during the first years of the study (2006–2011) and 

subsequently increased from 2011 to 2014 (Fig. 4).

Force of infection was highest in 2012 (posterior mode of 67%, CI 51–80%). Despite 

considerable uncertainty in these estimates as shown by large CIs (Fig. 5), we found a 

significant decrease in the force of infection after 2012 as shown by the odds ratio of the 

temporal effect (Fig. S7). At population level, the number of newly diseased individuals in 

different capture sessions was positively correlated with the number of diseased individuals 

in previous capture sessions (Spearmans’ r = 0.51, CI: 0.34–0.65) and disease prevalence in 
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previous capture sessions (Spearmans’ r = 0.45, CI: 0.31–0.57). Changes in disease 

prevalence over time were positively correlated with the number of diseased individuals 

(Spearmans’ r = 0.92, CI: 0.88–0.94) and the estimated total mass of all tumour loads at 

population level (Spearmans’ r = 0.72, CI: 0.28–0.89). The force of infection divided by 

prevalence would estimate the transmission rate β if transmission was frequency dependent 

(as previously suggested; McCallum et al. 2009). There was inconclusive evidence that 

transmission rate estimates from August 2012 (peak in force of infection) until November 

2015 declined by approximately 24% (CI: –13 to –29%) during the 3 years of the study with 

prevalence calculated for all individuals regardless of age, but this trend was not confirmed 

with prevalence estimates for mature individuals only. There were no clear seasonal 

differences in transmission rate estimates, which included much uncertainty according to 

large credible intervals (Fig. S8).

Declines in the finite population size estimates over time (Fig. S3) coincided with declines in 

the population-level total number of pouch young per year after 2010 (Fig. S4). Survival 

rates differed markedly for different age classes and over time (Fig. S5), as did the 

demographic structure of the populations (Fig. S6). Capture rates varied over season with 

33–35% (both CIs: 31–39%) capture probability in February/March and November and 27% 

(both CIs: 24–30%) capture probability in May and July/August. Capture probability 

dropped slightly during the course of the study (Fig. S7) and more than doubled for diseased 

host individuals (γinfect) compared to uninfected individuals.

Overall model fit was reasonably good with a Bayesian P-value of 0.52. Model fit of the 

incremental growth models was less precise with a Bayesian P-value of 0.30; we attribute 

the lack of better fit largely to the limited data on disease progression and also large 

individual heterogeneity in tumour growth, for which we could not account in this study 

with a lack of more detailed field data. Results on the variation in survival rates for different 

age classes, population size estimates and the age composition in each capture session are 

presented as Supplementary Information.

DISCUSSION

We found an unexpected and novel result – devil facial tumour disease (DFTD), a 

transmissible and devastating cancer, selectively impacts the otherwise most fit individuals 

in the population. Despite being affected by disease, host individuals (those that eventually 

become infected) had both higher survival and greater reproductive output than non-host 

individuals, in terms of both more annual breeding attempts and larger litter sizes. This 

challenges the conventional wisdom that infectious disease differentially affects less fit 
individuals in a population (de Castro & Bolker 2005). We emphasise that the novel insights 

in terms of individual fitness in relation to disease status gained in this study were only 

possible by analysing disease progression, survival and reproduction in an integrative model 

framework that accounts for the most likely disease states of individuals throughout their 

lifetimes.

Our finding that devils with relatively high fitness are also those most likely to become 

infected suggests that it is the socially dominant animals that are at highest risk of infection 
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and death from DFTD. These are the individuals that are likely to survive longer than the 

less fit mature individuals in the population, which most likely die from other causes before 

they are able to reproduce. This result is consistent with the finding of a previous study 

showing the most frequent biters (i.e., socially dominant animals) are most likely to become 

infected (Hamede et al. 2013). If infection selectively removes dominant individuals from a 

population, there may be important long-term consequences for the social structure and 

viability of the population, as well as for disease transmission. For example, culling of 

European badgers (Meles meles) disrupts social organisation and leads to increased 

movement of badgers and disease transmission to cattle (Donnelly et al. 2006). Likewise, 

selective animal removal through harvesting can change the demographic structure and 

population growth of many species (Milner et al. 2007).

Our results also have implications for understanding how disease-induced evolution in 

Tasmanian devil populations may be occurring. In particular, our model framework provides 

the opportunity to explore whether devils may evolve resistance to infection or rather 

tolerance to the impacts of infection, both being important host adaptation strategies (Råberg 

et al. 2009). Several lines of evidence provide robust support for the assertion that infected 

devils are under strong selective pressure. First, high mortality of adults from DFTD leads to 

rapid population declines (McCallum et al. 2009). A recent study provided evidence of 

substantial changes in the frequency of genes associated with immune function in devil 

populations that have been infected for as little as 8 years (Epstein et al. 2016). Third, a 

small number of individuals are able to mount an immune response and, in some, tumours 

regress (Pye et al. 2016). In this context, the implications of our novel results, that is that the 

otherwise most fit devils become infected, are intriguing. If adult devils with high fitness are 

those become infected, the potential for selection for resistant animals would be limited. 

However, our results also demonstrate a recent decline in the force of infection and 

transmission rate. This leads to the question of whether devils in this population may have 

developed resistance to infection. The initial increase in the force of infection from 2006 to 

2012 (see Fig. 5) is to be expected as the tumour increased in prevalence within the host 

population after disease emergence. It may also be a result of the replacement of a tetraploid 

tumour karyotype with a diploid karyotype which took effect from 2011 onwards (Hamede 

et al. 2015). The recent decline in the force of infection and transmission rate warrants 

further investigation, and could be due to a number of factors. There is evidence of selection 

at West Pencil Pine in chromosomal regions containing genes related to immune and cancer 

function (Epstein et al. 2016), possibly indicating evolution of resistance, as well as 

evidence of immune responses to DFTD resulting in tumour regressions and recovery after 

infection (Pye et al. 2016). Individual heterogeneity in devil behaviour such as physical 

interaction and biting is another possibility. The recent decline in the force of infection could 

have resulted from a reduction in the number of socially dominant devils from the 

population, if these are responsible for most transmission events. Group living and mating 

strategies can shape social contact networks among individuals that mediate parasite 

exchange (Liljeros et al. 2003; Cauchemez et al. 2011) and disease risk (Altizer et al. 2003; 

Drewe 2010; Kappeler et al. 2015). The possibility of synergistic effects between co-

evolutionary dynamics of host–pathogen interactions and disease-driven changes in social 

structure over time necessitates caution when interpreting changes in disease transmission in 
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context of host defence mechanisms. For future studies, it will be desirable to refine 

estimates of disease transmission rates that are currently blurred by large uncertainty and 

cannot account for individual heterogeneity in social status and behaviour due to the lack of 

data.

Disease tolerance might manifest in a number of ways, but one would be longer survival 

when carrying a tumour burden of a given size. Figure 2 shows no evidence that this has 

occurred, with the relationship between tumour size and mortality rate being 

indistinguishable in the three time periods. A confounding factor, however, is the change in 

the dominant tumour karyotype in the population from tetraploid in the early stages of the 

epidemic to diploid karyotype during the course of the study (Hamede et al. 2015). 

Unfortunately, distinguishing diploid from tetraploid karyotypes was not possible for most 

of the individuals analysed herein, and this information was therefore not included in our 

study. More-over, recent molecular evidence of a protective immune response of devils 

against DFTD recorded from our study site (Pye et al. 2016) suggests that immune responses 

might impact disease tolerance through regression of tumours. Reconciling these facts with 

our findings of how population-level disease dynamics may change over time requires 

further analysis of how individual-level heterogeneity in host and tumour genotypes and the 

behaviour of adult ‘hosts’ and ‘non-hosts’ drive variation in demographic rates and infection 

risk and how this translates into population-level pattern in disease dynamics.

Our estimates of the time until death following infection are longer than the 6 months 

previously reported (McCallum et al. 2009; Ujvari et al. 2016). These previous estimates 

were for time until death after first detection of tumours. Estimation of the incubation period 

and its frequency distribution is a challenging problem for DFTD (McCallum et al. 2009). 

Our new, model-based estimation of survival time includes back-projection of growth to a 

very small initial tumour volume. This may not estimate the actual incubation period fully, 

but is a substantial improvement over previous approaches, which have relied on anecdotal 

information on the appearance of tumours in captive animals which had not been exposed to 

infection for extended periods (Pyecroft et al. 2007).

To determine whether and how disease-induced evolution within the devil population and 

reciprocal evolution within the tumour population is occurring requires further data and 

modelling. The modelling and analytical framework we have presented in this study 

provides a template for performing such analysis, which should be also applicable to a wide 

range of other emerging infectious diseases in natural populations.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Illustration of possible synergistic effects of host survival and fecundity on long-term 

population growth in context of disease onset and progression such as increasing tumour 

load on Tasmanian devils. Horizontal thick lines indicate individual devil survival over time, 

small devils reproduction and red dots infestation with tumours. Devils may not reproduce 

because of their physical condition or social status independent of the disease (a) or, because 

of a highly fatal disease with rapid progression and death (b), promoting population decline. 

However, host individuals can contribute to the reproductive pool and population growth if 

they are diseased late in life (c) or if slow disease progression allows reproduction of 

diseased host individuals (d). Healthy non-host individuals may reproduce several times in 

their life (e). The outcome of these strongly coupled demographic and epidemiological 

interactions can only be understood if analysed in a consistent framework.
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Figure 2. 
Estimated decrease in survival rates for mature non-host individuals (i.e. those that never 

become infected; grey triangles) and host individuals with certain tumour loads (red squares) 

compared to non-diseased host individuals (i.e. prospective host individuals prior to the 

onset of tumour growth). Triangles and squares are posterior modes of the odds ratios of the 

survival rates compared to those of non-diseased host individuals (baseline value at 1, shown 

in orange), vertical bars are 95% credible intervals.
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Figure 3. 
Proportion of Tasmanian devil individuals with different lifespan estimates based on their 

classifications into host (harbour tumours at any stage during their lifetime) and non-host 

(no tumours) individuals. Symbols represent the posterior mode estimates of the proportion 

of individuals in each class of expected lifespans (1–2, 2–3, 3–4, 4–5, 5–6, > 6 years). 

Vertical bars represent 95% credible intervals based on the uncertainty in individual lifespan 

estimates from the state-space model.
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Figure 4. 
Changes in the proportion of individuals with different health status for devil facial tumour 

disease over 10 years. Disease prevalence, that is, the proportion of individuals that are hosts 

and are diseased are plotted with pink circles/bars. Individuals without tumours are denoted 

as ‘host – non-diseased’ (orange circles/bars) if they were expected to acquire tumours later 

in their life and as ‘non-host’ (grey triangles/bars) if they never hosted tumours. Symbols are 

posterior mode estimates, and bars present 95% credible intervals. For each time step, the 

proportions of individuals in the three different states sum to one.
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Figure 5. 
Estimated force of infection (rate at which susceptible individuals become diseased per year) 

for devil facial tumour disease over 10 years. Black dots are posterior mode estimates, and 

bars present 95% credible intervals from sampling possible disease progression at individual 

level.
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