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ABSTRACT Acute otitis media is one of the most common childhood infections
worldwide. Currently licensed vaccines against the common otopathogen Streptococ-
cus pneumoniae target the bacterial capsular polysaccharide and confer no protec-
tion against nonencapsulated strains or capsular types outside vaccine coverage.
Mucosal infections such as acute otitis media remain prevalent, even those caused
by vaccine-covered serotypes. Here, we report that a protein-based vaccine, a fusion
construct of epitopes of CbpA to pneumolysin toxoid, confers effective protection
against pneumococcal acute otitis media for non-PCV-13 serotypes and enhances
protection for PCV-13 serotypes when coadministered with PCV-13. Having cross-
reactive epitopes, the fusion protein also induces potent antibody responses against
nontypeable Haemophilus influenzae and S. pneumoniae, engendering protection
against acute otitis media caused by emerging unencapsulated otopathogens. These
data suggest that augmenting capsule-based vaccination with conserved, cross-
reactive protein-based vaccines broadens and enhances protection against acute oti-
tis media.

KEYWORDS Haemophilus influenzae, Streptococcus pneumoniae, otitis media,
vaccines

Encapsulated bacteria such as Streptococcus pneumoniae (pneumococcus) and Hae-
mophilus influenzae are significant mucosal pathogens that can cause invasive

disease, especially in young children (1, 2). As part of the normal respiratory flora, both
species are frequent colonizers of the nasal passages in healthy individuals and can
persist asymptomatically for prolonged periods without progressing to disease (3).
However, when these organisms translocate to the lungs or middle ear, they can cause
pneumonia and acute otitis media (AOM), respectively.

AOM is the most frequently diagnosed infection of children and is the most common
reason for prescribing antibiotics to children in the United States (4). Despite prolonged
exposure to broad-spectrum antibiotics, a high percentage of children who experience
acute otitis media will have frequent recurrences of infection (5). The most common
bacterial pathogens responsible for AOM are H. influenzae, S. pneumoniae, and Moraxella
catarrhalis (6). When multiple infectious agents are present, the subsequent risk for devel-
oping acute otitis media is higher than that of carrying any individual pathogen (7). Both
pneumococcus and H. influenzae have a propensity to form biofilms during colonization
and otitis media, which are then inherently difficult to clear by antibiotics (8). These factors
contribute to the continued high incidence of pediatric AOM.

Conjugate vaccines based upon capsular antigens have greatly reduced the inci-
dence of invasive disease by pneumococcus (9) and H. influenzae type b (10) in children
and adults. However, colonization with nonvaccine serotypes in the case of pneumo-
cocci and predominance of nonencapsulated H. influenzae (NTHi) have resulted in these
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pathogens continuing to be a significant medical burden, predominantly for infections
of the mucosa. This is observed in the incidence of both community-acquired pneu-
monia (9, 11) and acute otitis media (12), which both occur frequently despite wide-
spread use of currently licensed vaccines.

The initial pneumococcal polysaccharide conjugate vaccine (PCV-7) effectively re-
duced the overall incidence of invasive disease (13) and partially reduced otitis media
(14). Expanding vaccine coverage from 7 to 13 serotypes (PCV-13), including serotypes
frequently isolated from pneumococcal AOM, has further decreased pneumococcal
AOM incidence, although significant disease burden persists (15). An alternative strat-
egy to expand coverage beyond pneumococcus employed capsules from 10 serotypes
conjugated to a surface-exposed lipoprotein of H. influenzae (PHiD-CV) (16). This
strategy also has somewhat decreased AOM incidence by both pneumococcus and
NTHi (17). However, conjugate vaccination does not decrease recurrent pneumococcal
AOM (18), and acute otitis media remains a significant health burden (19). This
phenomenon is not fully explained by serotype replacement to non-vaccine-type
strains, as even vaccine serotypes continue to be isolated from pneumococcal AOM
cases in vaccinated populations (16, 20). This issue could be due to poor mucosal
antibody production or low expression of capsular antigen by colonizing pneumococci
(21). The recent discovery of active enzymatic removal of capsular polysaccharide at the
mucosal surface may also help S. pneumoniae evade anticapsular antibodies (22).

The incidence of both mucosal and invasive pneumococcal disease decreases
beyond early childhood, a phenomenon thought to be the result of accumulating
protein antigen exposure leading to building broad protective antibody-mediated
immunity (23). Inclusion of protein-based antigens to supplement currently licensed
capsule-based vaccines may be a viable strategy for reducing the incidence of mucosal
infections, particularly in young children, in a serotype-independent manner. Inclusion
of protein-based antigens that cross-react with multiple bacterial pathogens might
further extend protection. One candidate is the pneumococcal choline binding protein
A (CbpA) (24), also named pneumococcal surface protein C (PspC) (25). Vaccination with
recombinant CbpA elicits antibodies that are cross-reactive against H. influenzae sero-
group b and most strains of pneumococci (26). CbpA is a pneumococcal adhesin with
domains targeted to the nasopharyngeal mucosa (YLN) and the blood-brain barrier
(NEEK). In this study, we examined whether coadministering the commercially available
capsular vaccine PCV-13 with a pneumococcal fusion protein (YLN) composed of two
epitopes of CbpA fused to the termini of a pneumolysin toxoid would broaden
protection against AOM beyond PCV-13 serotypes and/or affect PCV-13-induced anti-
body titers in a murine model.

RESULTS

We initially sought to determine whether coadministering a fusion protein vaccine
with polysaccharide conjugate vaccine PCV-13 would significantly enhance the levels of
IgG against whole pneumococci. YLN is a fusion protein in which the adhesin domains
of CbpA (YPT and NEEK) have been fused to an L460D toxoid of pneumolysin (26, 27).
Administering either PCV-13 or YLN induced a potent antibody response against
serotype 4, 19F, and 7F pneumococci (Fig. 1a to c), all of which are included in the
PCV-13 vaccine. PCV-13 vaccination did not elicit significant titers against a serotype 2
strain, which is not included in the PCV-13 vaccine. However, the YLN vaccine induced
a robust antibody response against this strain (Fig. 1d). Coadministering YLN with
PCV-13 significantly (P � 0.05 by Mann-Whitney test) elevated serum antibody titers
against pneumococci of all 3 vaccine serotypes (4, 7F, and 19F) and nonvaccine
serotype 2 beyond that elicited by PCV-13 alone, as measured by whole-cell enzyme-
linked immunosorbent assay (ELISA). This result suggests that YLN vaccination induces
antibodies recognizing antigens common to multiple serotypes of pneumococcus,
including those not in the current PCV-13 vaccine, and that adding protein vaccine
elevates the overall antibody response when administered with PCV-13.

We next sought to ascertain whether YLN alone or in combination with PCV-13
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would engender protection against pneumococcal acute otitis media. We used lumi-
nescent derivatives of serotypes 19F (19F/x) and 7F (7F/x), both of which translocate
from the nasal passages into the middle ear, resulting in acute otitis media in murine
models (28). The capsule types 7F and 19F are serotypes included in the PCV-13 vaccine
but are still frequently isolated from patients with AOM, even in the post-PCV-13 era
(29, 30).

At 24 h after challenge with the 19F/x strain, significant reductions in overall titers
were observed in response to the PCV-13 vaccination administered alone or with YLN
vaccination compared to titers for alum-vaccinated mice. While YLN vaccination alone
did not confer significant protection against AOM, vaccination with both YLN and
PCV-13 enhanced protection beyond that of PCV-13 alone (Fig. 2a). This was shown in
the overall incidence of AOM, with the total number of animals with at least one ear
testing positive for bacteria and the percentage of ears having positive cultures being
significantly reduced only in the PCV-13/YLN dual-vaccinated animals (Fig. 2b and c).
These data were further supported with measurements of bioluminescent intensity in
the ears after challenge, with the dual-vaccinated group having the lowest level of
bacterium-containing ears by IVIS imaging (Fig. 2d to g). No significant alterations in
initial colonization density were observed in response to any of the vaccine groups
compared to levels for PCV-13 alone at this early 24-h time point (see Fig. S1 in the

FIG 1 Protein-based vaccines enhance IgG antibody responses against S. pneumoniae. ELISA-based measurements
of cross-reactive IgG from vaccinated mice receiving alum (vehicle control), PCV-13, YLN, or PCV-13 with YLN. Sera
from vaccinated animals were tested against whole-cell lysates of serotype 4 (a), 19F (b), 7F (c), or 2 (d)
pneumococcal strains. Each data point represents titers from an individual animal. Groups were different by
ANOVA, with P values of �0.0001 for serotypes 4, 19F, and 2 and a P value of 0.0002 for serotype 7F. Indicated
pairwise comparisons were made by Mann-Whitney testing. P values are indicated, with a P value of �0.05 being
considered significant. Horizontal bars indicate the medians for each group.
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supplemental material). These data indicate that vaccination with YLN in conjunction
with PCV-13 enhances protection against AOM by a serotype 19F strain independent of
colonization density.

We next tested the strain specificity of the protection engendered by the PCV-13/
YLN vaccine combination by testing an additional strain of pneumococcus, a lumines-
cent derivative of a serotype 7F isolate, 7F/x, in our model of AOM. The PCV-13-
vaccinated group had significantly lower overall bacterial titers in the middle ear, with
the protective effect being significantly enhanced upon addition of the YLN vaccine
(Fig. 3a). Although vaccination with PCV-13 lowered the overall bacterial burden in the
ears, the incidence of AOM on a per-animal basis was lowered only in the PCV-13/YLN
dual-vaccination group (Fig. 3b). These data were further supported by the results of
bioluminescent imaging of the ears, in which the greatest reduction in ears testing
positive was observed in the PCV-13/YLN dual-vaccination group (Fig. 3c to e). Coad-
ministration of YLN and PCV-13 significantly reduced 7F/x nasal titers below levels seen
in alum-vaccinated mice but not below levels in PCV-13-vaccinated animals. These data
indicate that adding YLN to the PCV-13 vaccine can reduce the incidence of AOM
against homologous challenge strains.

FIG 2 Impact of vaccine interventions on serotype 19F-mediated acute otitis media. (a) Vaccination with either PCV-13 or PCV-13 with YLN
significantly reduced bacterial burden of serotype 19F S. pneumoniae in the middle ear 24 h postchallenge. Each data point represents titers from
an individual animal. Groups were significantly different by ANOVA at a P value of 0.0011. Indicated pairwise comparisons were made by
Mann-Whitney testing, with a P value of �0.05 being considered significant. Horizontal bars indicate the medians for each group. (b and c)
Percentages of animals with bacteria recovered from the ears (b) or the percentage of bacterium-positive ears (c) indicates that PCV-13
supplemented with YLN significantly reduced the overall burden of AOM. Comparison was made by chi-square test. *, P � 0.05 compared to
alum-vaccinated mice. Representative Xenogen images of alum (d)-, PCV-13 (e)-, YLN (f)-, and PCV-13 with YLN (g)-vaccinated animals.
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Although vaccines targeting the polysaccharide capsule are effective against ho-
mologous capsule types, one challenge in the field is the prevalence of nonencapsu-
lated pneumococci that retain the capacity to cause infections at mucosal sites. Such
isolates are associated with outbreaks of conjunctivitis and are significant contributors
to AOM infections (31). These nonencapsulated strains also frequently carry multiple
antibiotic resistance genes that can be transferred to susceptible isolates by horizontal
transfer (31). Vaccination with YLN, either alone or with PCV-13, resulted in high IgG
antibody titers against the nonencapsulated strain MNZ67 (Fig. 4a). Vaccination with
YLN, either alone or with PCV-13, conferred protection against AOM caused by MNZ67,
reducing bacterial titers in the middle ear (Fig. 4b). This protection was operative even
in the absence of reduced nasal burden (Fig. S1C).

Numerous toxoid versions of pneumolysin have been proposed as vaccine antigens,
both as fusion proteins and as components of multivalent vaccines (27, 32–41).
Therefore, we next sought to determine whether a different pneumolysin toxoid fused
to fragments of CbpA would confer a degree of protection similar to that of YLN
vaccination. To this end, additional animals were vaccinated with a different fusion,
YDN. This construct fuses the same domains of CbpA, YPT, and NEEK to a Δ6D385N
pneumolysin toxoid. As observed with YLN, adding YDN to the PCV-13 vaccination
regimen significantly enhanced total IgG responses against whole-cell lysates of both
serotype 4 and 19F strains (Fig. 5a and b). The YDN vaccine alone did not confer
significant protection against a serotype 19F challenge in an AOM model. The PCV-13
and PCV-13/YDN groups demonstrated significant and similar lower bacterial burdens
in the ears following challenge than those of other vaccinated groups (Fig. 5c),
observations confirmed by bioluminescence measurements of the middle ear. These
data indicate that the YLN construct provides protection superior to that of YDN against
pneumococcal acute otitis media.

One intriguing aspect that makes including specific CbpA epitopes in fusion protein
vaccines particularly attractive is the structural similarity that is shared between mul-

FIG 3 Impact of vaccine interventions on serotype 7F-mediated acute otitis media. (a) Twenty-four hours post-
challenge, 7F S. pneumoniae-inoculated animals that were vaccinated with either PCV-13 or PCV-13 with YLN had
a significantly lower bacterial burden in the middle ear than did those that received other vaccinations. Each data
point represents titers from an individual animal/ear. Groups were not significantly different by ANOVA, with a P
value of 0.2226. Indicated pairwise comparisons were made by Mann-Whitney testing, with a P value of �0.05
being considered significant. Horizontal bars indicate the median for each group. (b) The percentage of animals
with bacteria recovered from the ears or the percentage of bacterium-positive ears indicate that PCV-13 supple-
mented with YLN significantly reduced the overall burden of AOM. Comparison was made by chi-square test. *,
P � 0.05 compared to alum-vaccinated mice. (c and d) Representative Xenogen images of animals vaccinated with
alum (c), PCV-13 (d), or PCV-13 with YLN (e).
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tiple etiological agents of meningitis, including OmpP2 of H. influenzae serotype b (26).
Such cross-reactive epitopes can confer protection against the translocation of multiple
bacterial pathogens across the blood-brain barrier (26). NTHi is not a major cause of
meningitis, yet these nonencapsulated pathogens encode OmpP2 (42), which is cross-
reactive to CbpA. Therefore, we next sought to determine whether vaccination with
either YLN or YDN would induce cross-reactive antibodies against NTHi and whether
these responses would be sufficient to mediate protection against NTHi-mediated
AOM. Vaccination with YDN and YLN, either alone or with PCV-13, induced potent IgG
responses against NTHi, as measured by whole-cell ELISA (Fig. 6a). Vaccination with
YDN, either alone or with PCV-13, conferred significant reductions in the overall
bacterial burden of NTHi in the middle ears at 24 h postchallenge, reducing the overall
incidence of AOM in infected animals from 100% in the alum control group to 50% in
the PCV-13/YDN vaccine groups (Fig. 6b). These data indicate that fusion protein-based
vaccines with cross-species reactivity are an attractive strategy for targeting multiple
otopathogens simultaneously.

DISCUSSION

Here, we show that coadministering a protein vaccine that is cross-reactive
against pneumococcus and NTHi with commercially available PCV-13, currently in
use to prevent invasive disease by S. pneumoniae, significantly reduces AOM
incidence and bacterial burden in the middle ear in a murine model. This vaccina-
tion strategy generates cross-reactive antibodies recognizing multiple bacterial
otitis pathogens and reduces AOM caused by leading pneumococcal serotypes and
nontypeable H. influenzae.

Our model recapitulates natural infection, with nasal acquisition followed by dis-
semination to the ear. We used clinical isolates in challenges, demonstrating efficacy
against clinically relevant otitis-causing strains of multiple pneumococcal serotypes,
including nontypeable strains, and against NTHi, the leading causes of bacterial AOM.
Even with this intervention, we were unable to completely eliminate otitis in our model.
However, our definition was strict, with any recoverable bacterial burden in the ear
being deemed positive for otitis. Any reduction in bacterial load induced by vaccine
protection may be clinically relevant, because fewer bacteria and bacterial products will

FIG 4 YLN vaccination induces potent antibody responses and protection against nonencapsulated S.
pneumoniae AOM. Shown are ELISA-based measurements of cross-reactive IgG from vaccinated mice
receiving alum (vehicle control), PCV-13, YLN, or PCV-13 with YLN. (a) Sera from vaccinated animals were
tested against whole-cell lysates or nonencapsulated strain MNZ67. Each data point represents titers
from an individual animal/ear. Groups were significant by ANOVA at P values less than 0.0001. Indicated
pairwise comparisons were done by Mann-Whitney test. P values are indicated, and a P value of �0.05
was considered significant. (b) Twenty-four hours postchallenge, nonencapsulated S. pneumoniae-
inoculated animals that were vaccinated with either PCV-13 or PCV-13 with YLN had a significantly lower
bacterial burden in the middle ear than did those that received other vaccinations. Groups were not
significantly different by ANOVA, with a P value of 0.5669. Indicated pairwise comparisons were made by
Mann-Whitney testing, with a P value of �0.05 being considered significant. Horizontal bars indicate the
medians for each group.
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be present to directly damage the ear tissue or stimulate immune-mediated tissue
damage. While the serum antibody titers were significantly improved by combination
vaccination, the reduction in bacterial burden was less robust. This could be due to
antibodies that recognize the bacterial surface but do not prevent bacterial transloca-
tion into the ear. Additionally, serum antibody levels may not accurately reflect mucosal
antibodies present in the nasopharynx or ears. Mucosal administration of the vaccine
may improve the mucosal antibody responses and provide improved protection at
these tissues.

Pneumolysin toxoids are an attractive vaccine candidate, because this factor is
highly conserved in pneumococci (43) and tissue damage resulting from the action of
the toxin is responsible for many disease symptoms (44). Additionally, immunity against
pneumolysin is raised during natural infection (45), suggesting that it is available to the
immune system during infection. Pneumolysin is especially relevant in protection
against otitis, as it can directly cause cochlear damage and hearing loss in animal
models (46), suggesting that a neutralizing antibody could protect against this sequela

FIG 5 YDN vaccination antibody responses and protective capacity against S. pneumoniae AOM. Shown are
ELISA-based measurements of cross-reactive IgG from vaccinated mice receiving alum (vehicle control), PCV-13,
YDN, or PCV-13 and YDN simultaneously. (a and b) Sera from vaccinated animals were tested against whole-cell
lysates from serotype 4 (a) and 19F (b) strains. Groups were significant by ANOVA at P values less than 0.0001.
Indicated pairwise comparisons were done by Mann-Whitney testing. P values are indicated, and a P value of �0.05
was considered significant. Each data point represents titers from an individual animal. (c) Vaccination with either
PCV-13 or PCV-13 with YDN significantly reduced bacterial burden of S. pneumoniae in the middle ear 24 h
postchallenge. Groups were significantly different by ANOVA at a P value of 0.0475. Indicated pairwise comparisons
were made by Mann-Whitney testing, with a P value of �0.05 being considered significant. Horizontal bars indicate
the medians for each group. (d) Percentage of animals with bacteria recovered from the ears or the percentage of
bacterium-positive ears indicates that PCV-13 supplemented with YDN significantly reduced the overall burden of
AOM. Comparison was made by chi-square test. *, P � 0.05 compared to alum-vaccinated mice.
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of AOM. Additionally, levels of antipneumolysin antibody have been correlated with
reduced incidence of pneumococcal AOM in children (45).

Highly conserved surface proteins of the pneumococcus are also attractive vaccine
candidates, although the diverse pangenome of pneumococcus (43), especially that of
the nontypeable strains (47), can result in a diverse repertoire of surface proteins
among strains (43). Therefore, multivalent vaccines may have the greatest potential to
provide the broadest protection against multiple serotypes and nonencapsulated
pneumococci. We observed the best protection from AOM in our animals that were
vaccinated with both capsule polysaccharide conjugate vaccine and protein vaccine,
suggesting that responses against both capsular antigen and protein antigens are
important for protection against AOM by encapsulated pneumococcal strains. Even
when the capsule antigen was not present in PCV-13 (as in serotype 2 strain D39,
nontypeable strain MNZ67, and NTHi), antibody titers were higher in animals vacci-
nated with the combination of PCV-13 and the fusion protein rather than the fusion
protein alone, suggesting that the capsular antigens or the CRM197 carrier protein
which promotes polysaccharide immunogenicity in infants is enhancing the response
against the fusion peptide. We propose that future pneumococcal conjugate vaccines
should consider the benefit of the “neglected valency” (48) of the protein carrier in
conjugate vaccines. The utilization of cross-reactive protein antigens, such as CbpA-Ply
fusions, in conjunction with existing capsular vaccines may broaden protection against
not only pneumococcus but also other AOM pathogens, such as NTHi.

MATERIALS AND METHODS
Bacterial strains. Pneumococcal strains were grown on solid tryptic soy agar (TSA) (GranCult; EMD

Millipore) medium supplemented with 3% sheep blood (Lampire Biologicals) and 20 �g/ml neomycin at
37°C in a 5% CO2 atmosphere. Overnight growth was directly inoculated into liquid media (CY) (49) and
grown under static conditions until reaching mid-log phase (optical density at 620 nm [OD620] of 0.400).
Bacteria were centrifuged and resuspended in phosphate-buffered saline without Ca2� or Mg2� (PBS)
(HyClone-GE) at the desired concentration for mouse infections (see below) or whole-cell ELISA (see
below). The pneumococcal strains used were TIGR4 (serotype 4), D39 (serotype 2), 19F/x and 7F/x
(luminescent derivatives of otitis media isolates of S. pneumoniae serotypes 19F and 7F, respectively) (50),
and MNZ67 (a nontypeable pneumococcal isolate) (51).

Nontypeable H. influenzae 86-028NP, originally isolated from a patient with chronic otitis media, was
grown on solid chocolate agar medium supplemented with 11,000 U/liter bacitracin (Remel) at 37°C in
a 5% CO2 atmosphere. Overnight growth was directly inoculated into brain heart infusion broth (BD)
supplemented with 0.2% yeast extract (BD), 10 �g/ml NAD� (Sigma, St. Louis, MO), and 10 �g/ml hemin

FIG 6 Efficacy of YLN and YDN against NTHi AOM. (a) ELISA-based measurements of cross-reactive IgG
from vaccinated mice receiving alum (vehicle control), PCV-13, YDN, YLN, or PCV-13 with YDN/YLN. Sera
from vaccinated animals were tested against whole-cell lysates from NTHi, with each point being the
serum from an individual animal. Groups were not significantly different by ANOVA, with a P value of
0.0766. Indicated pairwise comparisons were done by Mann-Whitney testing. P values are indicated, and
a P value of �0.05 was considered significant. (b) Ear tissues were harvested 72 h postinfection with NTHi,
and bacterial burdens were enumerated. Each data point represents titers from an individual ear.
Horizontal bars indicate the medians for each group. Groups were not significantly different by ANOVA,
with a P value of 0.3125. Indicated pairwise comparisons were made by Mann-Whitney testing, with a P
value of �0.05 being considered significant.
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(Sigma, St. Louis, MO) and then grown with aeration until the OD600 reached 0.160. Bacteria were
centrifuged and resuspended in PBS at the desired concentration for mouse infections.

Fusion protein vaccines. YLN and YDN are fusions of YPT and NEEK peptides of CbpA to the termini
of pneumolysin toxoids L460D (27) and Δ6D385N (26, 27) and were prepared as His-tagged proteins (as
described in references 26 and 27).

Animal vaccine/challenge. All experiments involving animals were performed with prior approval of
and in accordance with guidelines of the St. Jude Institutional Animal Care and Use Committee. The St.
Jude laboratory animal facilities are fully accredited by the American Association for Accreditation of
Laboratory Animal Care. Laboratory animals are maintained in accordance with the applicable portions
of the Animal Welfare Act and the guidelines prescribed in the DHHS publication Guide for the Care and
Use of Laboratory Animals (52).

Female 7-week-old BALB/c mice were intraperitoneally vaccinated with a 1:50 human dose (10 �l
vaccine in 90 �l PBS) of PCV-13 (Prevnar13; Pfizer), 10 �g YLN or YDN protein with 130 �g alum
(alhydrogel; Brenntag Biosector), or 130 �g alum alone in a volume of 100 �l. At week 3, mice were
administered booster doses of the initial vaccine. At week 4, mice were bled by the retro-orbital route
to determine serum antibody response. At week 5, mice were anesthetized with 2.5% isoflurane and
intranasally infected with 1 � 105 to 2.5 � 105 CFU of 19F/x, 5 � 105 CFU of 7F/x, 1 � 106 CFU of MNZ67,
or 1 � 107 CFU of NTHi in a volume of 100 �l sterile PBS. Twenty-four hours postinfection (hpi), mice
infected with pneumococcus strain 19F/x or 7F/x were imaged via IVIS (PerkinElmer) to visualize otitis
media. Nasal passages and ears were harvested from pneumococcus-infected mice 24 hpi and from
NTHi-infected mice 72 hpi and then homogenized in 0.5 ml sterile PBS and serially diluted, and CFU were
enumerated by counting the number of viable colonies of bacteria. To reduce the limit of detection for
bacterial burden in the ears, 100 �l was also plated directly from the homogenate for CFU enumeration.
Ears with 0 CFU were assigned a value of 1 for graphing and calculations. For selection, pneumococci
were grown on TSA plates supplemented with 3% sheep blood in the presence of 20 �g/ml neomycin,
and NTHi organisms were grown on chocolate agar with 11,000 U/liter bacitracin.

Whole-cell ELISA. Each well of a 96-well high-binding ELISA plate (430341; Nunc) was coated with 106

CFU of bacteria in carbonate-bicarbonate buffer reconstituted from a tablet (C3041; Sigma). Bacteria were
pelleted at the bottom of the plate by centrifugation, the supernatant was removed, and the plates were air
dried overnight before being blocked with 10% heat-inactivated fetal bovine serum (FBS) in PBS for 2 h.
Serum from vaccinated mice was serially diluted 1:2 from a 1:50 starting dilution in 10% FBS in PBS, added
to the wells, and incubated for 1 h at room temperature. Plates were washed 5 times with Tris-buffered saline
(TBS). The secondary antibody (anti-mouse; 1030-04; Southern Biotech) was diluted 1:2,000 in blocking buffer
and incubated in the wells for 1 h at room temperature. Plates were washed 5 times with TBS. Substrate
(P7998; Sigma) was added for 30 min, and the OD405 was read in a 96-well plate reader. Results are reported
as the inverse of the last dilution with a reading above background level.

Statistical analysis. Prism 6 (GraphPad) was used for all calculations, with the respective statistical
tests indicated in the respective figure legends. For bacterial burden and ELISA titers, analysis of variance
(ANOVA) was utilized to compare variation between groups followed by post hoc Mann-Whitney test to
compare individual groups. For measures of relative incidence of disease, comparisons were made by
chi-square test. For all statistical tests, a P value of �0.05 for experimental groups compared to
corresponding alum controls was considered significant.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/IAI

.00253-19.
SUPPLEMENTAL FILE 1, PDF file, 0.1 MB.
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