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Abstract

Optimal levels of chaos and fractality are distinctly associated with physiological health and 

function in natural systems. Chaos is a type of nonlinear dynamics that tends to exhibit seemingly 

random structures, whereas fractality is a measure of the extent of organization underlying such 

structures. Growing bodies of work are demonstrating both the importance of chaotic dynamics for 

proper function of natural systems, as well as the suitability of fractal mathematics for 

characterizing these systems. Here, we review how measures of fractality that quantify the dose of 

chaos may reflect the state of health across various biological systems, including: brain, skeletal 

muscle, eyes and vision, lungs, kidneys, tumours, cell regulation, wound repair, bone, vasculature, 

and the heart. We compare how reports of either too little or too much chaos and fractal 

complexity can be damaging to normal biological function, and suggest that aiming for the healthy 

dose of chaos may be an effective strategy for various biomedical applications. We also discuss 

rising examples of the implementation of fractal theory in designing novel materials, biomedical 

devices, diagnostics, and clinical therapies. Finally, we explain important mathematical concepts 

of fractals and chaos, such as fractal dimension, criticality, bifurcation, and iteration, and how they 

are related to biology. Overall, we promote the effectiveness of fractals in characterizing natural 

systems, and suggest moving towards using fractal frameworks as a basis for the research and 

development of better tools for the future of biomedical engineering.
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1 Introduction

“Clouds are not spheres, mountains are not cones, coastlines are not circles, and 

bark is not smooth, nor does lightning travel in a straight line.”

– BB Mandelbrot1

Some degree of chaos is universally present in living systems. The case of biological chaos 

is especially clear, for example, in cardiac systems. One look at the heart’s electrical activity 

pattern on an electrocardiogram reveals a time-varying myriad of spikes and dips with beat-

to-beat variability. Blood vasculature does not form a perfect grid, but rather a branching 

network. These are examples of chaotic and fractal structures. Today, underlying chaos in 

the systems we work with is often overlooked. This paper will review the presence and 

significance of chaos and fractals in biological systems, its uses in biomedical applications, 

and suggest incorporating fractal frameworks more broadly in biomedical engineering.

2 What are chaos and fractals?

When large iterations of complex computations were first enabled by computers, strange 

phenomena were revealed1,2, such as contradicting results from weather models despite 

increased computational precision. These sensitive nonlinear dynamical systems have now 

been explained using chaos theory and fractal geometry11,2.

Chaos is a behavior of dynamics that appears random, even though it has well-defined 

underlying order. It tends to be the governing order in systems that are sensitive to small 

factors and perturbations, and single systems may transition between the appearance of 

ordered and chaotic dynamics. These are typically systems with collective behaviour, e.g. 

the weather, or single cells that assemble into a coordinated tissue3.

Often, chaotic systems are well approximated by geometries that are fractal. Fractals may be 

described as structures that have infinitely iterated self-similar patterns. They contain 

features that are preserved across multiple levels of observation, according to a precise 

scaling law. This reflects a form of organization in complex structures, that may be 

quantified with the fractal dimension (Df) parameter. For instance, the buckled shape of a 

coastline may be observed on the range of 100 km, again at 50 km, and even at 10 km and so 

on. The scaling of the buckled feature on a fractal coastline, and more generally the scaling 

of a feature on any fractal structure, would appear at intervals that follow a characteristic 

order (Fig. 1A). This results in a phenomenon where if we attempt to measure the length of 

e.g. the coastline, its length increases by a power law as the scale of measurement decreases, 

since smaller resolutions of buckles can get measured with each increase in measurement 

precision (i.e. decrease of measurement scale) (Fig. 1B). By contrast, for non-fractal 

structures, such as a perfect circle, this power law relationship is absent. By plotting the 

measured length versus measurement precision of different structures, the power law 

exponent of the fitted relationship can yield one definition for the fractal dimension, and thus 

reflects a characteristic value for each structure, which describes that structure’s level of 

scaling complexity (Fig. 1C). The higher the value, the greater the complexity of the 

structure. Although several other definitions for fractal dimension have also been developed, 
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such as the more common box-counting dimension and similarity dimension, they all share 

this same underlying principle.

For example, the length of Great Britain’s coast y is related to the scale at which the scale s 
> 0 which the coast is measured, following the power law:

y = b × (1/s)d (1)

where b > 0 and d ≥ 0 may not be integers. The power d can be estimated by taking the log 

of this equation and running a regression:

logy = d × log(1/s) + logb (2)

This power d is related to the fractal dimension as we will detail in Section 5. For the coast 

of Great Britain, d ≈ 0.338. Other coastlines have different values of d; thus d may be 

considered characteristic2.

Further, the mathematical breakdown of fractal structures can be approximated by recursive 

feedback equations that feature at least some form of similarity transformation function.

An + 1 = W An , n = 0, 1, 2…, (3)

where W is one or a set of similarity transformation functions, and An, n = 0,1,2…, is a 

given structure or feature being iterated (such as the buckle of a coastline).

When iterated as a series, this process yields a fractal structure with several unique 

properties such as invariance, periodicity, and power law scaling. The limiting structure, 

denoted as A∞, can be considered an attractor, or limit object, for the system. Further, by 

relaxing the notion of self-similarity to include functional and statistical self-similarity rather 

than strictly geometric, it becomes possible to classify a wide variety of fractal structures, 

such as multifractals and complex fractals. For example, in many cases, when we say a 

physiological system has a fractal structure, its appearance might not strictly follow the 

traditional definition of self-similarity in the geometric sense. It also sets some criteria for 

the exclusion of non-fractals, which may have self-similarity, but lack other properties such 

as similarity transformations or power law scaling.

In general, it can be considered that fractals describe the geometry of chaos. Thus, it is 

essential to use chaos and fractals together for modeling complex and non-linear dynamical 

systems, such as those dominant in nature. There is a large resource of mathematical 

frameworks and concepts available for describing and elucidating new entities from fractal 

structures that may be applied to open new doors in biomedical research. For instance, the 

criticality that leads to specific bifurcations of fractals during scaling, and the determination 

of system attractors, reflect an entire “fractal dimension” of new, usable information about a 

system that cannot be captured by standard metrics. In the following section, we will review 
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one way in which fractal frameworks have provided insight in physiology: how fractal 

dimension and chaotic variability can measure an organ system’s state of health. In Section 

5, we will provide a mathematical description of a chaotic system and fractal.

3 Fractality as a metric for health in the body

Healthy and stable living systems are generally established as chaotic and fractal in nature. 

A few of the most accessible examples include neurons and neural networks, heart rate, and 

the branching vasculature. Although the basis for fractal behaviour in natural systems is still 

unclear, its relationship to physiological state is much more pronounced. Variability has been 

analyzed with chaos and fractal theory in many different physiological systems, and the 

measure of fractality has been demonstrated to be associated with the state of health of the 

system (Fig. 2).

3.1 Brain

The fractal dimension (Df) has been well suited as a quantitative parameter for describing 

several brain systems, due to the underlying organization that is hierarchical and 

topological12 (Fig. 3A). From the cell scale morphologies of neurons, astrocytes, and 

microglia4,13–16; to tissue level neural networks17,18, gyrification and cortical complexity 

patterns19,20; and the temporal recordings of brain signals21–23; fractal methods have been 

useful for quantitative studies of brain structure and function. For example, fractal 

dimension of astrocyte morphology has been demonstrated to be able to differentiate 

different morphological subtypes, as well as between astrocytes affected by different types 

of pathologies15. The fractal dimension of the cortical ribbon has been demonstrated as a 

significant indicator of Alzheimer’s disease24,25. Measures of various types of brain scan 

images also show lower fractal complexity in cases of schizophrenia, bipolar disorder, and 

brain injury4,20,24,26,27 (Fig. 2A), and higher in manic-depression28 and glioma5 (Fig. 2B). 

Fractal measurement of electroencephalogram (EEG) signals has also provided abundant 

characterization and prognostic value. EEG fractality fluctuates with age29, sleep and 

wake30,31, sensitivity to electromagnetic fields32, and circadian rhythm where higher fractal 

dimensions occur during periods of alertness33. EEG fractality decreases during stroke, and 

is negatively correlated with its prognosis34. It may also be able to predict the onset of 

epileptic seizures35. Thus, fractality has been able provide insight that allows researchers to 

distinguish different functioning brain states, as well as to speculate on the mechanisms of 

transitions between states.

3.2 Skeletal muscle

Oscillatory activity in neurons and general spatiotemporal control of the body’s balance can 

also exhibit chaotic behaviours41–43. In neurorehabilitation, functional electrical stimulation 

(FES) therapy is often applied to help correct or repair damage that results from nervous 

system injury. The therapy applies small electrical shocks similar to the electrical impulses 

from nerves. This field has begun exploring the benefits of more variable stimulation 

frequency patterns compared to ordered patterns. Variable patterns of FES are based on 

native observations44 and mainly feature an initial burst of higher-frequency signals 

followed by regular signals. They have shown better performance results for patients, who 
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experienced less fatigue, reduced spasms, and improved muscle strength after their 

therapy45,46. This suggests that increasing variability is more physiologically effective, and 

perhaps a progression to chaotic dynamics may eventually provide even better results.

3.3 Vision

Eye and vision research has also been facilitated with the use of fractal math. Vision is 

generated as the eye scans across fixation points47. These fixational eye movement time 

series have been the basis for eye tracking studies. Fixational eye movement is characterized 

by high-dimensional deterministic chaos in the saccades and other small involuntary eye 

movements, and has been successfully modelled with nonlinear, fractal, tools48. The fractal 

quantification of these movements has been studied in the cases of Alzheimer’s disease, 

where data suggest that patient eye movements are less complex than those of healthy 

subjects49, with a similar trend for studies of eye movements versus reading ability50. 

Meanwhile, another study indicates that schizophrenic patients show higher chaos in their 

eye movements in reading activities51. Thus, in the example of the eye and visual cognitive 

function, there may be a sweet spot for how much chaos is best suited for normal vision.

3.4 Lung

The respiratory system follows a self-similar structure from the trachea and lungs (Fig. 3B) 

down to bronchioles and alveoli,52 and its fractality has been used in a number of lung 

characterization studies53,54. The fractal design and structure of the lungs is relevant to its 

functional aspects, where the fractality is a determinant for gas-exchange surface area, and 

thereby the lung’s function55,56. For instance, asthmatic patients with difficulties breathing 

were found to have lower fractal dimensions in their airway walls6 (Fig. 2C). Higher-than-

normal fractal dimensions were correlated with idiopathic pulmonary fibrosis7 (Fig. 2D). 

Again, there exists a healthy chaotic sweet-spot for lung fractality. Understanding the fractal 

relationships in the lungs has had clinical consequences. The breathing rate time series 

considered in breathing rate variability (BRV) is fractal in nature and related to alveolar 

inflation patterns57. It has been linked to aging, disease, and mortality57–59. Recently, the 

BRV was applied to predict mechanical ventilator weaning outcome60–63. This knowledge 

has led to improvements in the design of ventilation apparatus64.

3.5 Kidney

Like the lungs, kidneys are highly branching organs with fractal properties in their overall 

structure as well as in their functional behaviours. On the organ scale, the renal arterial 

system is branching with a mean fractal dimension of 1.6, based on image analysis of renal 

angiograms65. This fractal dimension has been shown to decrease with congenital 

diseases65. Kidney podocytes, a cell type essential in glomerular filtration, also appear 

fractal in structure with at least four degrees of processes branching out from the cell 

body66. During disease, podocytes typically undergo foot process effacement, whereby foot 

processes retract into broad, flattened protrusions, thereby losing some of the degrees of 

process formation67, consistent theoretically with a decrease in fractal dimension. Although 

podocyte fractal dimension has not yet been quantified, the specific ratio of podocyte 

process digitation on a cellular level may suggest the presence of a characteristic scaling 

law68. From the temporal aspect, renal autoregulation also exhibits nonlinear dynamic 
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behaviour, which is paired with the behaviour of arterial blood pressure69. However, too 

much chaos in the tubular pressures over time is indicative of hypertension70, again pointing 

to the notion that there is a healthy dose of chaos to normal biological function.

3.6 Tumours

In cancer and tumour research, fractal dimension on cell or tumour aggregate shape has been 

studied as a diagnostic parameter. Fractal dimension has been used to classify many types of 

tumours, by considering the tumor’s cell or tissue morphology: metastatic bone71; lung 

carcinoma72; canine circumanal gland tumors73; hyperplasia and endometrial 

adenocarcinoma74; normal mucosa, dysplasia and carcinoma in oral cancers75; and bladder 

cancer76. Mitochondrial morphology has also been quantified by fractal dimension and 

correlated with malignant mesothelioma classification as well as its sensitivity to 

treatment77. In studies of migration modes of a tumour, infiltrative tumours were shown to 

have higher fractal dimensions than static tumours during growth78. By contrast, in a study 

classifying skin lesions, malignant lesions were found to have lower fractal dimension than 

benign lesions8 (Fig. 2E).

3.7 Cell scale regulatory and growth dynamics

The presence of fractal patterns ranging from gene, to cellular, and tissue-scale structures 

have also been studied with proposed implications on regulatory mechanisms.

On a molecular scale, it may be appropriate to generalize fractal aspects in terms of 

clustering patterns. Studies of DNA sequences have discovered fractal patterns among the 

distributions of coding and non-coding genes, which is unlocking new theories about how 

cell nuclei may regulate gene expression79. Similarly, various forms of chromatin molecules 

have been found to follow fractal models of movement, also suggesting that fractal dynamics 

play a role in how cells regulate signaling on a molecular level80,81. This may be related to 

more general polymer physics scaling laws and criticality, which are suspected to underpin 

physiologically relevant protein interactions and behaviour82.

Cellular organization can be considered fractal by evaluating how cell-scale properties 

reflect underlying molecular-scale organization. Beyond the scaling of membrane-bound 

structures ubiquitous to cells, there are various relationships in cellular organization and 

resultant structure-function properties that adhere to fractal scaling laws. For instance, 

structural collagen content scales with resultant tissue stiffness in a characteristic power law 

relationship typical of fractals83. Similarly, nuclear lamin content has also been found to 

scale in power law proportionality with collagen content and stiffness, which has 

implications about how cells may regulate nuclear mechanosensing and gene expression. 

This is especially notable because these proportionalities appear to be conserved across a 

range of organs in the body and from various sources of datasets83–85. Other cell-level 

fractal patterns that may be considered include microvillar search by T-cells, where 

microvilli follow fractal scanning patterns during antigen detection and recognition, 

suggestive of a most efficient search process86. It may be interesting to consider how this 

finding resonates with how eyes also scan the environment in a fractal search pattern47. 

Another area where fractal patterns are notable is in stem cell populations. Stem cell 
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populations can be considered as fractal networks as they divide and migrate87. The 

hierarchical divisions and subsequent branching and clustering may be modeled with fractal 

tools and scaling88, and could shed some light on how cells are distributed with respect to 

stem cell niches throughout the body89.

Finally, as cells scale in number to form coordinated tissues and organs, higher order 

geometries become common, for example, in branched tissues like the lungs, vasculature, 

kidneys, and mammary glands, where fractal patterning provides suitable packing to provide 

high surface areas3. Collective cell migration and local geometric constriction are currently 

leading notions explaining the mechanisms of tissue scale branching3,90,91.

Taken together, the above suggests that the precise fractal organization that scales across 

several orders of magnitude may be involved in governing overall collective behaviour of a 

biological system.

3.8 Wound repair

Collagens, polylaminins, elastins, and proteoglycans are essential components of various 

extracellular matrices and are involved in the cell’s establishment of its local matrix and 

basement membrane, in migration, and in interaction with other cells. These building-block 

structures thus often self-assemble in self-similar hierarchies as they grow into larger 

functional entities (Fig. 3C). Quantification of collagen fibers using fractal dimension has 

been applied to the analysis of scar formation and wound healing, for example, where 

collagen staining shows that scars have higher fractal dimension than unwounded skin9 (Fig. 

2F). Similarly, fractality of the microenvironment has been applied in vitro to generate a 

more effective minimal matrix model of scar tissue92. The applicability of fractal dimension 

in scar quantification has also been demonstrated to be more sensitive than other methods 

such as x-ray diffraction, laser scattering, and Fourier transform analysis, and could present 

its utility in assessing collagen abnormalities more broadly9.

The fractality of polylaminins has also been studied in the context of axonal regeneration in 

models of spinal cord injury, noting that while laminin is not fractal, its polymerized forms 

are93. This is interesting considering that polylaminins are present throughout the body in 

several different forms, suggesting that some of these variations may be associated with the 

scaling and self-assembling nature of fractals. Elastin, too, which is responsible for elasticity 

in several tissue types, also forms fractal fibrillar networks and aggregates, where α-elastin 

units form a polypeptide system capable of self-aggregating in different forms94. Again, this 

could be consistent with the notion that there is a ‘healthy dose’ of fractality specifically 

tailored to different tissues performing different functions, and that the specificity of 

different forms of molecular aggregates in different locations could be derived from self-

assembling mechanisms of scaling fractal growth.

Similar fractal structure and function properties have also been suggested for proteoglycan 

networks e.g. in the cornea95,96. Furthermore, macromolecules in general have been 

proposed to have fractal properties with functional consequences, such as for molecular 

binding potential97. Likely, the extent of fractal scaling and degree of fractality would be 
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relevant in many proteins and biological molecules, for specifying their function, 

localization, and interactions with other structures within the body.

3.9 Bone

Bone is another example of tissue that exhibits an intertwining motif of ordered and 

disordered self-similar structures across several scales. From the nanoscale crystal 

organization of minerals and collagen, up to macroscale lamellar and trabecular bone 

structure, the fractal-like organization of bone was comprehensively and thoroughly mapped 

to at least 12 levels using three-dimensional structural characterization by Reznikov et al. 

(Fig. 3D), suggesting a key role of nested fractal patterning to the evolution of the optimally 

stiff and tough properties of bone39. Thus, characterizing bone in terms of its fractal 

properties has been fairly common, and has been used to demonstrate successful delineation 

of several types of bone abnormalities and pathologies. For example, ageing, 

postmenopausal osteoporosis, and inflammation mediated osteopenia had reduced fractal 

complexity of trabecular bone microarchitecture relative to young and control trabecular 

bone in rat models98. Decreases in fractal complexity were also observed with other forms 

of osteoporosis such as Kashin-Beck disease99, in the mandible of patients with 

periodontitis100, and in cancellous bone of patients who had vertebral fractures101. By 

contrast, fractal dimension was increased in mandible bone of cancer patients on 

bisphosphonate treatment102, and in right ventricular trabecular bone of pulmonary 

hypertension patients103. Overall, fractal dimension appears to be effective in supplementing 

standard forms of bone tissue quantification and diagnosis, as it correlates well with most 

existing bone quantification practices101,104–106. In some cases it performed even more 

sensitively, for example, than bone mineral density107,108 and cancellous bone area101. Note 

however that results are specific to the particular region of tissue under consideration as well 

as the modality used to obtain images106.

3.10 Vasculature

The significance of the vasculature’s fractal aspects is not trivial. Vessel morphology or 

spatial organization is known to change under many pathological conditions109, such as 

atherosclerosis110, cancers111, arteriovenous malformations112, infections113, stroke114,115, 

hypertension116, diabetes and obesity117, Alzheimer’s disease118, and even normal aging116. 

Thus, nuances in the fractal properties of microvasculature may be used as a prognostic 

factor for many illnesses. In particular, imaging of retinal microvasculature has provided a 

non-invasive window into the vascular properties of an individual. Fundus cameras are 

designed to photograph the interior surface of the eye, whereby retinal microvascular tree 

patterns may be obtained and studied. The retinal vascular network may serve as a 

representative of the entire vascular system, reflecting the pressure relationships and 

branching patterns of the whole body116. Thus, changes in retinal microvasculature reveal 

insight not only directly related to eye health119,120, but about other possible systemic risks 

such as renal11,121, cardiac122, diabetic117,123, brain health118, and more. While many 

studies have been based on the identification of vasculature changes in normal versus 

pathologic cases, some studies have prognostic value. For example, reduced retinal 

microvascular fractal dimension has been found to predict mortality from coronary heart 

disease122. For pregnant mothers, decreased fractality of retinal microvasculature has been 
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shown to relate to uteroplacental vasculature in delayed fetal growth and birth size10 (Fig. 

2G). Retinal microvasculature also was found to correlate with chronic kidney disease, 

where sub-optimal (low or high quantiles) levels of retinal vascular fractality was associated 

with increased risk of chronic kidney disease11 (Fig. 2H). Note however that these 

applications have yet to develop standardized procedures and subgroup classifications that 

would ensure consistency of study results124–128. That retinal microvasculature can reflect 

the state of so many other organ systems emphasizes the interconnectedness of physiological 

function throughout the body as a whole.

3.11 Heart

“The heart’s supposedly regular rhythm is not precisely regular.”

- A. Moss129

The heart reflects fractal organization in both structural and temporal aspects. On a structural 

level, cardiac muscle is hierarchical and reflects a fractal property based on fibres (Fig. 3E). 

Fractal self-similarity appears from the molecular scale microfilament up to the striated cell 

and tissue scales, from nm to μm and cm. Tubular actin and myosin filaments collect into 

myofibrils, which then collect to form myocytes, and further collect into cardiac muscle 

fibres. This highly structured hierarchical organization is necessary for cardiac tissue 

function (synchronized contraction). The presence of properly scaling fibres serves as an 

indicator of cell and tissue maturation and differentiation130,131. Similarly, the His-Purkinje 

network of the heart is fractal132,133, and the entire cardiovascular system follows a 

multifractal structure: starting from the heart, branching out from the aorta into arteries, 

vessels, and capillaries, and following a characteristic power law as the vasculature 

distributes over the entire body134–136.

Similarly, the heart’s electrical activity is endogenously variable, from the sinoatrial node, to 

cardiomyocytes, and the organ as a whole132,137. Heart rate and heart rate variability (HRV) 

designate two separate but related parameters, and both may be obtained from 

electrocardiography and photoplethysmography readings138–140. Heart rate measures the 

number of times the heart contracts in one minute, and reflects the speed of pumping. Thus, 

changes in heart rate can be normal, for example in exercise versus resting states, as well as 

under other autonomous influences. The variability of time intervals between beats are 

designated by HRV, since the duration of successive beat-to-beat intervals varies over time. 

Normal HRV has been demonstrated to be a chaotic deterministic system141, and has been 

appropriately analysed with fractal and multifractal analyses142,143. Any changes in HRV, 

and its fractal properties, have been distinctly recognized for relating with pathophysiology. 

This has been especially useful for its predictive and diagnostic value, with the emergent 

general rule that reduced variability is a signature for disease and enhanced risk129,144–153. 

Arrhythmia in particular has been found to correlate with reduced HRV, and in post-

myocardial infarction patients, can predict increased mortality148,154,155. By contrast, for 

stroke patients, increased fractality in HRV reflects greater stroke lesion severity156, and 

may even serve as a prognostic tool for early stroke detection157. Similarly, abnormalities in 

fetal heart rate patterns, such as sinusoidal patterns that have reduced variability, have been 
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found to indicate severe distress and fetal jeopardy158–160. Once again, the healthy dose of 

chaos is an important consideration, where too much can be as detrimental as too little.

4 Applying chaos and fractals in medicine

In light of the overviewed work that shows how fractal complexity in natural systems may 

reflect its state of health or function (Fig. 2), we will next review the typical tools and 

approaches involved in fractal quantification, as well as some leading practical applications 

of this knowledge. We also highlight important limitations associated with this type of work.

4.1 Measuring fractality

The most common applications of fractality so far have been for quantifying roughness of a 

shape, branching networks, detecting order in a seemingly irregular system, signal 

characterization, and pattern description in both 2D images and 1D temporal data161. For 

example, we reviewed how various vascularized structures like retina, pial structures, gluteus 

muscle, and organs, may be assessed for the network fractal dimension162–164, and then 

related to other health parameters such as cardiac122,165 and renal diseases11,121.

The fractal dimension measures how complicated a self-similar structure is. It serves as a 

metric of complexity. A high fractal dimension indicates a high extent of self-similar 

complexity across several orders of magnitude. Integer-number dimensions indicate 

conformity with Euclidean geometry, and those structures are not fractal. Any apparent 

complexity observed in such systems may be considered random, rather than chaotic. Most 

methods for fractal dimension estimation rely on the power law scaling property of fractals 

as demonstrated by the compass method, where measured values increase without bound as 

measurement precision increases. Non-fractals will plateau at a constant value (Fig. 1). In 

general, this relationship between measurement precision and measured output for a fractal 

follows a power law, where the fractal dimension can be derived from the exponent in the 

power law, as will be detailed in Section 5. The box counting method is another approach 

that measures fractal dimension using sequential subdivisions of an image into grids, where 

feature area is measured across a range of grid sizes. Box counting methods are most 

common and applicable in science. There are several other quantifications of fractality, 

including Higuchi dimension29,156, Hausdorff dimension2,134, packing dimension166, and 

many others. These nomenclatures are based on the particular method used to calculate the 

fractality. It is important to recognize that the choice of algorithm or method of fractal 

analysis will depend on the purpose of the analysis, since different approaches to measuring 

fractality yield different results between them, and analyses should be considered relative to 

the method used.

A typical approach for assessing fractality involves data pre-processing followed by fractal 

analysis using a suitable algorithm or software. There are many types of software available 

to aid in fractal analysis (Table 1), where a 1D time series, 2D image, 3D volume, or high 

dimensional signal dataset may be loaded. To control how the software reads a file and 

executes analysis, preprocessing steps such as image conversion from colour to binary or 

greyscale, are required. This may involve some form of bitmap compression, thresholding, 

outlining, de-noising, etc73,164. Similarly, different analysis parameters will need to be 
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specified such as range of analysis, image polarization, or algorithm selection. The specific 

method used will depend on the nature of the feature being analyzed167–170. Since the case-

specific methodologies and resolution influence the resultant fractal output, careful 

considerations must be made when measuring fractality and comparing multiple sets of data.

4.2 Diagnostics

The distinctiveness and characteristic properties of fractal dimension as pertains to 

describing specific physiological states has potential to impact several diagnostic 

applications. Tumor morphology, microvascular network structure, and HRV patterns are 

examples of areas where fractal analysis-based prognosis has the potential for widespread 

biomedical benefit. Tumour morphology assessment using fractal dimension for tumour 

classification, malignancy, and risk stratification is beneficial as it can be performed using 

routine biopsy samples, or non-invasive images, thus providing an extra layer of information 

that can improve accuracy and enhanced risk assessment of a given diagnosis and treatment 

proposal (Fig. 4A). Microvasculature is also readily quantifiable by fractal dimension and 

can be routinely captured and evaluated using widely-available fundus cameras in 

ophthalmology offices. Measuring associated changes in fractal dimension of retinal 

microvasculature can provide early indication of diabetic retinopathy125,181, as well as risk 

of coronary heart disease mortality122(Fig. 4B). Another implementation of fractality in 

diagnostics is based on HRV (Fig. 4C). EEG signal monitoring has similar implementations 

as well34,35 (Fig. 4D). The drastic changes in HRV that occur during various abnormalities 

are well quantified by fractal analysis and linked to risk stratification of various pathologies 

and even to mortality. This information has been proposed to serve as a signature for early 

detection of threatening conditions such as stroke or cardiac arrest, and holds promise for 

applications in Holter monitoring149,157,182. Some such technologies are already 

commercial, as companies provide fractal analysis as part of their biosignal analysis 

solutions179.

4.3 Biomedical materials

The ability to generate and design fractal structures has been useful for engineering 

biomimetic tools, such as tissue scaffolds, biomaterials, and microfluidic systems184. Many 

of these designed materials are bioinspired in nature. This may be on the one hand from 

considering the structure-function properties of biological building blocks, such as 

collagen9, elastin94, and polylaminin93, which all exhibit fractal scaling in their polymerized 

structure. On the other hand, many disordered materials, such as polymers, proteins, and 

composites, tend to follow scaling laws and criticality patterns, for which fractal 

mathematics provide insight for higher-level engineering. For example, monomers that 

aggregate into clusters of increasing sizes; critical points in protein folding; and 

fragmentation sequences in martensite formation185–187. This comes with an interest beyond 

simply characterizing the fractal properties of materials, to understanding the factors that 

influence the precise fractal scaling growth patterns with the intent of creating tunable 

fractality.

Korolj et al. Page 11

Biomaterials. Author manuscript; available in PMC 2020 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Current state-of-the-art of materials that are designed with fractality focus on nanostructure, 

micropatterns, or bulk properties. Table 2 presents a shortlist of current approaches to 

engineering fractality of materials, with illustrations echoed in Fig. 5.

On a molecular scale, fractal-inspired silk fibroin was synthesized, where the self-

assembling fractality of silk fibroin networks was intentionally adjusted by modulating the 

negative charge on nanofibrils, which resulted in tunable mechanical properties of the 

materials such as hardness188 (Fig. 5A). Partially-ordered peptide materials were designed 

with regions of order and disorder that result in fractal structures, which so far have had 

improved tissue integration properties, although a deeper understanding of the consequences 

of the biomimetic fractal structure has yet to be elucidated189 (Fig. 5B). Control of the 

heterogeneity of structural components with a focus on fractality has also been applied to 

enhance bulk properties in a tissue engineering scaffold context, for example, where 

embedding different degrees of collagen fibers into a gel resulted in an in vitro minimal 

matrix model of a scar that had more physiologically relevant properties92 (Fig. 5C).

In the field of stretchable electronics and devices, fractal design has been used on the nano 

and micro scales to impart improved conductive and elastic properties. On a nanoscale, 

control of molecular aggregates is one approach to fractal-inspired material design. 

Stretchable conductors were synthesized from citrate-stabilized gold nanoparticles that 

maintained self-organized structural patterns across a range of strain levels, which is 

suspected to support continued conductance at high deformations194. On a microscale, 

fractal patterning of metal wires has helped to impart nonlinear unraveling and deformation 

properties that improve flexibility and conformability, for example, with fractal “horseshoe-

like” micropatterning190,195 (Fig. 5D). A similar approach uses kirigami-based techniques to 

cut and fold 2D sheets to create fractal 3D structures that are highly conformable and 

flexible yet maintain properties of the initial material191 (Fig. 5E).

Micropatterned fractality has also been applied in the context of creating specific surface 

roughness on tissue culture scaffolds for studying stem cell behaviour196. Simulation studies 

also suggest that fractal surface roughness and patterns in implantable electrodes are more 

effective at promoting interfacial contact and integrated biological function192,197 (Fig. 5F).

Fractal designs have also been used to increase dispersion in microfluidic devices, for 

example, to speed up quantification of biomarkers in a diagnostic platform for high 

throughput analysis193 (Fig. 5G), and to achieve greater heat dissipation in device 

cooling198. Other constructions of fractal patterns or objects have been achieved on the 

molecular scale with directed self-assembly199,200, or on larger scales with software (e.g. 

AutoCAD, MATLAB) followed by e.g. additive manufacturing processes or rapid laser 

prototyping to build 3D, 2.5D, or 2D devices or patterns184,201,202.

It would be interesting to see the development of various synthetically designed materials 

that have an emphasis on incorporating fractality on all conceptual levels, as well as how the 

resultant properties would compare with materials that incorporate fractals on fewer 

conceptual levels.
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4.4 Therapeutic applications

Although we have repeatedly seen how fractals may be measured for characterization in a 

clinical context, fractal patterning may also be applied as a stimulus in therapeutic devices. 

For example, there is evidence that rehabilitative devices that use more variable patterns in 

their stimulation programs could support more natural-like results. Functional electrical 

stimulators45,46,203 (Fig. 6A), pacemakers204–206 (Fig. 6B), and mechanical ventilators64 

(Fig. 6C) are examples of clinical devices where studies suggest that increased variability 

may have beneficial therapeutic function. For example, using fractal programming in the 

mechanical ventilator has been shown to enhance respiratory sinus arrhythmia (i.e. the 

extent to which heart rate variability synchronizes with respiration)64. Similarly, fractal 

surfaces on electrodes, for example in pacemakers, are also suggested to have better clinical 

performance205. On a non-invasive aspect, there are also studies that suggest that viewing 

mid-range fractal aesthetics, such as natural scenery, elicits a more positive cognitive 

response than low or high fractal patterns207–209. For example, natural scenery in the 

window view from hospital rooms was found to have an association with improved patient 

recovery210, which could suggest a new role for non-invasive, passive approaches to therapy.

4.5 Limitations and alternatives

While fractality and chaos have an unmistakable presence in natural systems and their 

characterization is proving useful in biomedical applications, there are several limitations 

and pitfalls worth addressing.

Chaos and fractality are descriptors for nonlinear dynamical systems, that often appear 

random and have high levels of complexity. However, although all fractals have high 

complexity, not all highly complex structures are fractals. Fractal dimension only reveals 

whether there is scaling order within a pattern. Although it often happens that high-

complexity structures can contain greater extents of order than low-complexity structures, 

high-complexity structures can just as well have low fractality, meaning that in all the 

complexity, there is limited underlying organization. Thus, complexity and fractality are not 

necessarily related. On the other hand, the relationship of chaos and complex systems may 

need a clarification. In general, a complex system might be random and chaotic, and a 

complex system may encode system-environment interaction.

Another caution when using fractal analysis is that limitations associated with resolution and 

data/image quality, computing power, preprocessing steps, program and algorithm selection, 

and feature properties, may cause variability in results. Differences in image quality can 

affect the consistency or depth of scaling, as can the selection of fractal-counting algorithms. 

Similarly, there can be multiple features within a given structure amenable to fractal 

analysis, and a focus on a different set of features may yield different results. For example, 

there are several instances where studies on retinal vasculature have contradicting results, 

and could simply be an artifact of differences in methodologies, in addition to differences in 

the sampled population124–128. Thus, it is important to have careful consideration of the 

exact methods used to measure fractality in order to justify any comparisons. Note that these 

factors would also account for any deviations from theoretical values, for example, the 

fractal characterization of an annulus. An annulus theoretically has fractal dimension 2. 
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However, most image-based processing approaches will measure values such as 1.9, due to 

the limited 2D digital rendering of an annulus that is composed of thick lines.

Similarly, fractal analysis depends on the physical space and chosen metric. Although in 

modern data analysis it is common to consider non-Euclidean space and non-Euclidean 

metrics, many other areas may have tools and approaches that are based in Euclidean 

metrics, which can be an issue when characterizing something that is in fact outside of that 

scope. For example, 3D objects that are projected onto a 2D image or scan represent 

simplified or dimensionally reduced representations of the original structure. These 

limitations should be considered and accounted for when assessing fractality and chaos in 

reproduced images.

To support conclusions for characterizations of complex structures in micrographs and 

images, applying other non-fractal methods in conjunction could provide more 

comprehensive assessments. Structural features other than fractal scaling also have relevant 

degrees of prognostic value. This covers a wide range of image/texture analyses. The gray 

level co-occurrence method is useful for characterizing variation in sample elevation as 

approximated by gray levels in an image211,212. Autocorrelation functions can be used to 

quantify distribution and alignment of filamentous features in an image213. Scattering and 

diffraction patterns from x-ray and polarized light microscopy can also be assessed to 

measure orientation, periodicity, spacing and size of filaments214,215. Applying Fourier or 

wavelet transforms to derive spectral information of an image can also be effective at 

quantifying spacing and orientation9. Colocalization studies in fluorescence microscopy can 

provide insight on spatial distribution and interaction of molecules, to elucidate function and 

signaling216. Noise levels of certain features can also be compared by measuring e.g. 

fluorescence microscopy signal intensity mean and standard deviation values to get insight 

on feature specificity92,217. Combined, these non-exhaustive descriptors are useful additions 

to fractal dimension and lacunarity analysis that could contribute to a more powerful overall 

understanding of results.

5 Delving deeper into biomedical chaos and fractals

The presence of fractals and chaos and its relation to health has indicative power relevant for 

biomedical fields. Tissue engineering and regenerative medicine are thriving fields that are 

working towards developing new biomedical solutions, either through the use of cell-based 

models to restore damaged tissues or to instruct innate reparation. The 3D tissue engineering 

setup has massively increased in complexity in the last decades of research, through the 

incorporation of more and more nuanced aspects of the native microenvironment218–220. 

However, a more profound consideration of complexity itself has yet to enter into the 

picture. Deeper nuances of chaos theory and fractals may be important to implement in 

future exploration of natural systems.

5.1 Origins in nature

Although the presence of fractality in natural systems is clear, the reasons for this tendency 

are still generally considered as matters of hypothesis and speculation. One speculation 

supporting fractal variability in living things is that it stems from the non-linear dynamics of 
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reactive and feedback-based control systems that are dominant in biological control 

mechanisms132. This setup is similarly thought to represent adaptability of a system, in the 

sense that it promotes easier changes in direction132,221, and that mathematically, fractal 

models are more tolerant to error propagation than other scaling models222. The self-similar 

nature of fractals over time is also considered to be a form of natural memory132. Another 

speculation from the perspective of energy and entropy is that self-assembling fractal 

structures occur in nature when energy distribution is optimized221. That is, while entropy is 

a thermodynamic quantity that is a driving force for the behaviour of certain systems, chaos 

is the type of dynamical behaviour that may well describe those systems. For example: the 

distribution of oxygen and nutrients throughout an organism must be optimized with respect 

to the work required for its delivery. This would be why blood vessels branch in a fractal 

pattern, where each successive division serves a smaller region within an organ, thereby 

optimally serving the entire body162. Another hypothesis for the scaling growth of fractal 

networks comes from physics, where it is thought that nodes that emerge during scaling 

growth are driven by repulsion forces, such that each successive node orients itself in time 

and space as far from other nodes as possible in order to increase dispersion and robustness 

of the system, in an effort to “renormalize” the system223,224. This concept alludes to how 

local stress and strain distributions dictate epithelial morphogenesis that gives rise to fractal-

like structures in the lung alveoli3,37,225,226, or for the progression of lumen formation227. 

Further experimental work on these notions could help to bridge the gap between 

mathematical speculation and scientific theory.

5.2 Chaotic organization

“Chaos: When the present determines the future, but the approximate present does 

not approximately determine the future.”

– EN Lorenz228

Understanding the causal relationships of a system is the basis for predicting its behaviour. 

In classical determinism, it is held that if all details of the present are known, the future 

should be strictly predictable. However, it is not possible to fully know the present in all its 

determining details: there is the uncertainty principle, instabilities in natural laws, 

exponential forms of error propagation, and many more dynamical factors constantly in flux 

around a system than we can account for, affecting the system’s trajectory in unpredictable 

ways. Even if we were able to determine all present parameters, it would still be challenging 

to understand and predict the system with all its interactions. Chaos theory aims to account 

for these variabilities and puts a limit to the feasible predictability window of a dynamical 

system. It provides an alternative framework for understanding of causality, by allowing us 

to recognize that any observations we strive to control are only a small selection out of an 

abundance of possibilities.

Chaos is difficult to grasp because it appears completely unpredictable, even though it is 

governed by very regular underlying order. The three tenets of chaos are: mixing (or 

topological transitivity), the presence of a dense set of periodic points, and sensitivity to 

initial conditions. Note that while sensitivity is a notable consequence of the mixing and 
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periodic points properties229, that is, neighbor relations tend to be lost, we keep it as one of 

the tenets since it is well known.

i.e. If we denote a continuous map f:X→X, where X is a metric space with the metric d, that 

describes the evolution of the dynamical system in one time step, then a dynamical system, 

fn, where n ∈ ℕ and fn means n iterations, is chaotic on X if topological transitivity (or 

chaotic mixing, topological mixing), the presence of a dense set of periodic points229, and 

sensitivity are satisfied.

Topological transitivity means that a system may achieve any given state when provided a 

long enough period to reach it.

i.e. f is called topological transitive (or chaotic mixing) if for any two open subsets U and, 

there exists n ∈ ℕ so that fn(U) ∩ V ≠ ∅.

This may be understood by considering that for any starting interval of conditions, as a 

system advances through increasing iterations of its chaotic dynamical process, it would 

eventually be able to fill an entire output space. This comes from the combination of chaotic 

error propagation with long iterations.

Periodic points appeal to those who look for patterns within a seemingly random system230, 

that is, for the order within chaos, since they specify the subset of chaotic space that has 

predictable behavior.

i.e. A point x ∈ X is called periodic if there exists n ∈ ℕ so that fn(x) = x; that is, it is a point 

that a dynamical system repeatedly visits.

These are certain paths that a chaotic system would be more likely to repeatedly reach over a 

period of iterations. A relevant notion in a chaotic system is the attractor, which is the status 

the system eventually will land on. Mathematically, it is an attracting set231,232, or attracting 

basin with a trapping region.

i.e. We may call a pre-compact set T ⊂ X a trapping region for map f if f(T) is contained in 

the interior of T. A set A is called an attracting set if there exists a trapping region T such as 

A = ∩n = 1
∞ f n(T). Note that A is invariant; that is, f(A) = A, and its attracting basin is an open 

set containing T. An attractor is an attracting set that contains a dense orbit.

If an attractor is fractal231,233,234, it is termed a strange attractor. Other definitions of 

attractor are possible, including measure attractor235 and statistical attractor231. Although a 

precise prediction is limited in chaotic systems, they in general share nice statistical 

properties, generally covered by ergodic theory236. For this reason, statistical and probability 

models are a good approach to analysing and predicting orbits237, with the caveat that 

computed approximations will still be arbitrarily far from a true orbit238.

Finally, sensitivity refers to the divergent nature of a system that results from very small 

differences in initial conditions.
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i.e. f is sensitive to initial conditions if there exists δ > 0 such that for any open set U and for 

any point x ∈ U, there exists y ∈ U such that for some n ∈ ℕ, d (fn(x),fn(y)) > δ where δ may 

be called the sensitive constant.

This means that slight changes in starting parameters may result in hugely different 

outcomes later on. A well-known example of chaotic sensitivity is the butterfly effect – a 

flapping of the wings of a butterfly in Japan may lead to a tornado in New Mexico. This 

gives chaos its appearance of randomness, and contributes to the difficulty of predicting a 

chaotic system. The Lyapunov exponent is usually used to quantify the notion of sensitivity 

to initial conditions, and for a chaotic system, two closeby points move away from each 

other exponentially239. Chaotic sensitivity also reflects a type of exponential error 

propagation where the error signal associated with the minor difference in a starting 

parameter amplifies until the noise matches or exceeds the main signal. By contrast, a 

sensitive linear system would have signal and error values growing in harmony.

Overall, while chaotic behaviour in general may be difficult or impossible to predict, its 

dynamic patterns are susceptible to analysis and prediction. Note that the above definition of 

chaos is one among many, since for different dynamical models or real-life applications, we 

may encounter various properties not fully quantified by this definition that nonetheless are 

considered “chaotic240.” Current efforts looking at chaos in natural systems are focused on 

observing the presence of fractal patterns. Insight into the dynamics of these systems may be 

the next step towards achieving higher-fidelity bioengineering results.

5.3 Criticality and bifurcation

Chaos and order are two aspects of the same thing. One and the same system, governed by a 

set of laws, is capable of both ordered and chaotic behaviour. The prevailing state will 

depend on the parameters of the system, and the system can transition between the two. 

Natural systems often spontaneously switch states, for example, laminar and turbulent fluid 

flow241, or a person transitioning from sleep to awake31. These transition phenomena reveal 

a rich framework for understanding chaos, as the two states and their transition are easily 

distinguishable. See the logistic model (or real quadratic family) in Figure 7 for an example 

of different states. In this model, r is the parameter that controls the system, and different r 
leads to different system behaviours.

This state transition pattern involved in a dynamical system capable of chaotic dynamics is 

called bifurcation. Bifurcation patterns are universal and can be found in any system 

experiencing transition from order to chaos. It marks a crisis state where a system’s stable 

points begin doubling up until a transition to chaos. This ramp-up sequence is highly 

conserved, with bifurcation continuing through ordered period-doubling until a state of 

criticality right before the transition to chaos. Just like states of order and chaos, criticality 

carries its own set of characteristic properties useful for modeling as well237. The bifurcation 

diagram, which graphs the stable points or attractor of a system in the y-axis through varying 

parameters shown in the x-axis, visualizes how a single system can be capable of both 

ordered and chaotic types of behaviour and transition between them (Fig. 7A–B)
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The concept of iteration is also useful in understanding chaos. Many dynamical systems are 

based on repetition of a process over a period of time, both on a collective scale and on a 

sequential scale237. When considering a system that is made up of many interacting 

elements, their correlations mark a collective behaviour that is important to analyze, since 

their accumulated outcome is what gives the resultant trajectory of the overall system3,237. 

Similarly, the sequential iterations starting on the micro-level can grow into the combined 

macro-level state. By tracking the cascade of correlations occurring at all scales of a system, 

new features such as self-similarity and chaining of events can be revealed. These features 

are also part of the arsenal in defining and modeling chaos.

Here, we may consider that the whole is more than the sum of its parts, where as we 

approach the limits of a given system, new phenomena can emerge as unique entities. 

Features like long-range correlation, self-similarity, criticality, periodicity and bifurcation, 

may all be considered as entities whose properties are essential in describing both 

themselves and their chaotic systems as a whole. These concepts may thus be useful in our 

approach to analyzing biological systems that transition between healthy and unhealthy 

states that are marked by varying degrees of chaotic dynamics and fractality (Fig. 7C). Just 

as there are many different chaotic mathematical systems that share universal properties of 

chaos and critical transitions (Fig. 7D), many different physiological systems could have 

common transition properties worth exploring and unifying.

5.4 Fractals

Fractals are structures with features that remain invariant across multiple scales. If we 

consider that typical, Euclidean geometry and the basic view of the world is described in 

terms of three dimensions or scales (i.e., a line has dimension 1; a plane has dimension 2; 

and objects have dimension 3), then the non-integer dimensions, when scaling between 1 

and 2, etc., represent fractals. Fractals take into account the complexity of structures in real-

number or “fractional” dimensions. For example, a space-filling fractal curve is more than a 

coiled line, but less than a completely filled-in plane.

Fractals have notable properties including self-similarity, they can be approximated by 

feedback processes, and they have power-law scaling relationships. Self-similarity means to 

have the same shape regardless of size or scale of observation. In other words, it has some 

key features that recur regardless of the scale or position from which the structure is viewed, 

and if the structure were to be subdivided, its parts would resemble a reduced-size copy of 

the original whole. Feedback processes are a means by which self-similar fractals can be 

generated, using similarity transformations, such as scaling, rotation, and translation, often 

referred to overall as an iterated function system (IFS). By taking a given feature, 

modifying a portion of it with a similarity transformation, and iterating this process ad 

infinitum, a fractal can be created. Breaking a fractal down into its self-similar component 

parts and determining the originating feedback process is also possible. Note that this gives 

rise to certain emergent properties such as invariance. Because they are derived from the 

limit value of iterative processes, fractals are also considered to be geometric solutions of 

iterative equations. This is significant in the context of chaos, where attractors that describes 

the long-term behavior of their chaotic processes are fractal. Finally, power-law scaling 
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distinguishes fractals from other commonly encountered geometric objects, as it reflects the 

complexity that is associated with changes in measurement precision. It provides a basis 

from which the fractal dimension may be measured.

To capture the above qualitative description, we may present a constructive definition of a 

fractal, which depends on a series of definitions. There are many approaches and definitions 

for constructing fractals166,245. We will consider the iterated function system (IFS), power 

law, and box-counting approaches.

For the IFS approach, we may call a finite set of positive numbers (r1,r2,…,rn) a contracting 

ratio list if ri < 1 for all i = 1,…,n. On a complete metric space X, a map f:X→X is called a 

similarity, with the similarity ratio r > 0 if d(f(x),f(y)) = rd(x,y) for all x,y ∈ X. A collection 

of functions fi:X→X, i = 1,…,n, is called an IFS realizing the contracting ratio list (r1,r2,

…,rn) if fi are similarities with ratio ri. By the Hutchinson theorem, there exists a unique 

non-empty compact subset K ⊂ X such that K = f1(K) ∪ … ∪ fn(K). We call such K a 

fractal (associated with the IFS realization the contraction ratio list166 (r1,r2,…,rn). This IFS-

based construction implies the self-similarity of a fractal structure. Moreover, an IFS may be 

considered as a dynamical system, if we denote W(A)≔f1(A) ∪ … ∪ fn(A) for a given 

object A. Then, An + 1 =W(An) for n = 1,… with A1 the initial state (initial object). Then, 

lim
n ∞

An = K., where the fixed point of W is thus the fractal K.

Another notion of dimension for a fractal is related to the exponent of the power law scaling 

of a fractal with respect to measurement precision (Fig. 1). Recall that in the Euclidean 

space, the notion of dimension connects the scale and the volume. Thus, given a fractal with 

self-similar structure, the relationship N(s) = (1/s)D, where N(s) is the number of pieces into 

which the structure can be divided, should be satisfied for some D ≥ 0. Here, D is called the 

self-similarity dimension. To compare the self-similarity dimension with the exponent of the 

power law in equation (1), y(s) = b × (1/s)d, we assume that b = 1 is achieved by a rescaling. 

Here, y(s) quantifies the infinite complexity that is associated with unbounded length 

measures as precision increases. Note the critical relationship between N(s) and y(s) with 

respect to compass setting; that is, y(s) ≈ N(s)s when s is small. By taking log and this 

relationship into account, we know D = d + 1; that is, in the Britain’s coast length example, 

the exponent of the power law differs from the self-similarity dimension by 1. In this way, a 

fractal is measured by quantifying the infinite complexity that is associated with unbounded 

length measures as precision increases.

The box counting dimension (also known as Minkowski dimension) is another relevant 

approach to quantifying fractals. The box counting dimension of a measurable set A is 

defined as lim
δ 0

log Nδ(A)
log (1/δ) , where Nδ(A) is the smallest number of sets of a diameter of at 

most δ that covers A. Note that this definition captures the intuitive idea that if the box-

counting dimension is s, Nδ(A) ≈ δs when δ is small, which is related to the definition of the 

self-similarity dimension. The box-counting dimension is more numerically friendly than, 

for example, the Hausdorff dimension. For this reason, it may be among the most commonly 

applied approaches for measuring fractals.
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Overall, applying fractal geometry to quantifying chaotic processes is common and natural. 

Fractal growth is intimately connected with chaos in how collective phenomena arise 

through interacting elements and cascading events, thus building up to self-similar properties 

with multi-scale correlations, and eventual progression to criticality. As we have seen, it is 

very effective at classifying complex structures that are seemingly indistinguishable by other 

metrics, such as the heart’s electrical activity. HRV in the electrocardiogram appears too 

chaotic to be described by regular metrics. However, with the fractal dimension, the pattern 

is characteristic and effective at distinguishing healthy from diseased states in physiology246. 

Moreover, both chaos and fractals are mathematically framed by iterative processes and 

share associated properties. Where chaos is a dynamical state, fractals are the geometric 

tools to quantify it.

6 Summary

It is important to be cognisant of the fractality in the systems we study so that we can adjust 

our perspective and use more compatible tools and mathematical principles in our research 

efforts. Many systems are capable of transitioning between ordered and chaotic dynamics, 

and we must be prepared to understand the chaotic regime more ubiquitously. When a 

system is deemed to be fractal or chaotic in nature, standard Euclidean geometries and linear 

principles become less accurate descriptors. Non-linear dynamics governed by fractal 

attractors cannot be well represented by the linear models that were developed for the 

ordered regime. Because of the chaotic nature of biological systems, they are well-suited for 

fractal analysis. Parameters such as volume and surface area are not well defined for a 

system that is infinitely complex as it scales through many orders of magnitude, thus more 

general mathematical tools are needed. They also discount collective effects that arise 

through long-range correlations, for example, molecular-scale organization that cascades up 

to cell- and tissue-scale organization.

We suggest that in working with bioinspired systems, such as novel materials, engineered 

cell culture systems, functional electrical stimulation, and tissue engineering, applying 

fractal frameworks could be the difference between garnering deterministic or purely 

random behaviour in our experiments132. This may be achieved by remembering to 

sometimes look at our problems through the lenses of iteration, self-similarity, scaling, 

criticality, dimensionality and collective behaviour.

Moving forward, we suggest a few specific steps in our outlook on how to incorporate 

fractal frameworks in future research. In cell and tissue culture, recapitulating the fractal and 

chaotic aspects of the microenvironment might be a necessary step for developing higher-

fidelity biomedical systems, for example, as performed by Dingal et al. in matching the 

fractal heterogeneity of matrix stiffness in their model of scar tissue92.

Another suggestion is to consider bidirectional changes in fractal optimality in studies that 

include pathophysiological characterization. Consistent reporting on shifts from healthy to 

injured states that considers fractality would add to the literature of the field, and a search 

for optimal levels by considering the low and high extremes of fractality could serve as a 

compass to guide new technological developments.
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Similarly, we encourage taking a step forward by applying other fractal concepts to 

biomedical research, such as determining system attractors and patterns of bifurcation.

Finally, we comment that the state of today’s research in the area of bioengineering fractality 

is largely observational in nature, and we would like to see a bigger trend towards more 

generative work, that derives prognostic insight and that focuses on building or innovating 

new biomedical tools. Currently, studies in these areas occur in relative isolation from each 

other. Further collaboration and incorporation of concepts from across the different fields 

could accelerate the understanding of chaos in biological systems, and grant us a greater 

degree of dexterity and power when working with them on new endeavors.

Once understood, fractal and chaotic patterns become prevalent almost everywhere. Fractal 

frameworks are common in fields such as finance, meteorology237, and in computer 

animation247. They are also used in art, to assess painting authenticity248,249 and even as a 

measure of creative expression250,251. Fractal frameworks may thus provide a pivotal 

perspective from which we may approach our most current biomedical engineering 

problems, especially when the nature of the systems we are working with are chaotic 

themselves. Knowing the patterns of chaos and being able to recognize the ruling order of 

the biological systems we work with may be essential for achieving a healthy dose of chaos.
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Fig. 1: The Coastline illustration of the concept of fractal scaling.
(A) Breakdown of Great Britain’s self-similar features in the coastline. (B) Measured length 

of the fractal coast increases as the scale of measurement, or compass setting, decreases. By 

contrast, the length of a non-fractal circle’s circumference has a converging value. (C) The 

scaling of a fractal structure follows a power law from which the fractal dimension may be 

approximated. Measurement precision is defined as the inverse of the compass setting where 

for a small setting s the precision 1/s is large. Figure reproduced with permission from [2].
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Fig. 2. A healthy dose of chaos.
Different physiological systems and the phenomena that occur when the fractal dimension 

characterizing the system becomes too low or too high. (A) Cell outline of microglia in 

different brain regions following experimental diffuse brain injury [reproduced with 

permission from4]. (B) MRI images of grade III and grade IV gliomas [reproduced with 

permission from5]. (C) Images of silicone rubber casts of normal and asthmatic lungs 

[reproduced with permission from6]. (D) Computed tomography images of normal and 

idiopathic pulmonary fibrotic lungs [reproduced with permission from7]. (E) Skin lesions 

that are benign or cancerous [reproduced with permission from8]. (F) Collagen staining of 

unwounded or scarred dermis [reproduced with permission from9]. (G) Sparser maternal 

retinal vasculature was associated with reduced fetal growth during pregnancy [reproduced 
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with permission from10]. (H) Fundus camera images of the retina and skeletonized traces of 

the retinal vasculature in normal and chronic kidney disease eyes [reproduced with 

permission from11].
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Fig. 3: Hierarchical organization in tissues.
A) self-similar brain convolutions during gestational development [reproduced with 

permission from36]. B) Lung branching in embryonic chicken forms at precise locations that 

scale relative to the size of the organ [reproduced with permission from37]. C) Collagen 

fibrils and bundles follow self-similar fibrous structure across scales [reproduced with 

permission from38]. D) Bone tissue with up to 12 (I to XII) levels of fractal organization 

based on collagen fibrils and mineral aggregates [reproduced with permission from39]. E) 

Hierarchical fibrillar structure of cardiac tissue from actin-myosin filaments, myofilaments, 

myofibrils, myocytes, and muscle fibers [reproduced with permission from40].
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Fig. 4. Diagnostic applications of fractal variability data analysis.
(A) (i) Images of H&E-stained hyperplastic/benign, biphasic and epithelioid tumor samples, 

with (ii) fractal dimension analysis revealing significant differences between benign and 

malignant groups [reproduced with permission from77]. (B) (i) Images of retina and 

skeletonized vasculature, and (ii) associated graph of fractal dimension vs hazard ratio for 

14-year coronary heart disease mortality, where extreme values of fractal dimension (1st and 

4th quartile ranges) were associated with elevated risk [reproduced and modified with 

permission from122]. (C) Risk ratio for the univariate prediction of cardiovascular disease 

mortality based on the short-term fractal scaling exponent (DFA1). Low values of DFA1 

reflect reduced correlation in heart rate variability signals, and increased risk of mortality 
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[reproduced and modified with permission from183]. (D) Recording of patient fractal 

dimension variation for EEG trace over 3 minutes, showing onset and end of epileptic 

seizure at 50s and 120s respectively [reproduced with permission from35].
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Fig. 5: Fractal design approaches for novel functional materials.
(A) Silk fibroin aggregates into defined fractal forms [reproduced with permission from188]. 

(B) Partially-ordered-polypeptide materials form hierarchical fractal structures based on 

collective, scaling interactions among ordered and disordered domains, with tunable 

hysteresis and tissue integration properties [reproduced with permission from189]. (C) 

Minimal matrix model of scar tissue was fabricated by heterogeneously embedding collagen 

into gel resulting in fractal stiffness properties [reproduced with permission from92]. (D) 

Fractal coiling designs of wires allows conformal mounting of metal sensor devices on soft 

skin while providing increased stretchability and delayed elastic-to-plastic material 
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transition properties [reproduced with permission from190]. (E) Stretchable device made by 

kirigami-based fractal hierarchical cutting [reproduced with permission from191]. (F) Fractal 

electrodes improve excitability in simulation of neural integration for retinal therapy 

[reproduced with permission from192]. (G) Fractal sensors increase surface area in a 

diagnostic chip to drastically reduce time-to-readout and increase signal gain by several 

hundred percent [reproduced with permission from193].
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Fig. 6: Therapeutic applications enhanced with variable patterning.
A) Variable frequency trains in functional electrical stimulators (FES) can support improved 

gait [reproduced with permission from46]. B) Chaotic pacing was more effective at 

stabilizing random arrhythmias than periodic pacing. Y-axis indicates beat-to-beat intervals 

and x-axis indicates beat number. Start and end positions of chaotic control and periodic 

control are indicated [reproduced with permission from206]. C) Respiratory sinus arrhythmia 

(RSA) is an important component of normal breathing, where heart rate increases with 

inspiration and decreases with expiration, and is associated with ventilation/perfusion 

matching. Fractal ventilation (FV) patterns in a study of mechanical ventilators was shown 

to increase RSA compared to conventional ventilation (CV) [reproduced with permission 

from64].
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Fig. 7. Transitions between order and chaos.
Here we draw parallels between (A) a mathematical system that transitions between order 

and chaos with various steady states, and (C) a physiological system that also experiences 

transitions between various states of health and functionality. (A) The typical bifurcation 

diagram for the quadratic iterator, with control parameter r on the x-axis, and stable state on 

the y-axis [reproduced with permission from242]. (B) Markings of the different transition 

regions and phenomena for the bifurcation diagram in (A). (C) Cardiac rhythms for different 

cardiac conditions. (i) A simulated example of a sinusoidal heart rate pattern (bottom) and 

generated embedding (top). Sinusoidal heart rate patterns may be observed in various severe 

pathologies such as severe fetal anemia, asphyxia, acidosis158–160. (ii) Ventricular tachy 
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arrhythmia, (iii) normal, (iv) ventricular fibrillation conditions, showing the mapped 

attractor (top), cardiac rhythm time series (bottom left), and corresponding frequency plot/

power spectrum (bottom right) [reproduced with permission from243]. (D) Bifurcation 

diagrams for several other mathematical systems, showing the universality of transition 

properties such as bifurcations, self-similarity, and transitions between chaos and order. 

These universal properties may be useful to track in biological systems as well. (i) Hénon’s 

transformations [reproduced with permission from2]; (ii) the quadratic map xt+1 =a(2xt −1)2 

[reproduced with permission from244] (iii) Rössler’s system [reproduced with permission 

from2].
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Table 1:

Common software used for the analysis of fractals.

Software Application Reference

FracLac (ImageJ) Image analysis 171

FracLab Image and signal processing 172

Fractalyse Image analysis 173

FDim Image analysis on greyscale images 174

Ultra Fractal 5 Fractal generator 175

3DFD Volumetric reconstructions, e.g. MRI brain scans 176

Gwyddion Analysis of scanning probe microscopy files 177

MATLAB Various plugins and functions for fractal analysis 178

Kubios HRV analysis 179

Benoit 1D or 2D data fractal analysis 180
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Table 2:

Engineered materials with designed fractality.

Material Technique Image Reference

Silk fibroin Charge-controlled self-assembly 5A Zheng, Kaplan et al. [188]

Partially ordered peptides Mixed ordered and disordered regions 5B Roberts, Chilkoti et al. [189]

Collagen scar tissue model Heterogeneous embedding 5C Dingal, Discher et al. [92]

Flexible electronics Horseshoe design, Kirigami 5D
5E

Fan, Rogers et al. [190];
Cho, Srolovitz et al. [191]

Electrodes Micropatterning/lithography 5F
5G

Watterson, Taylor et al. [192];
Sage, Kelley et al. [193]
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