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Abstract

Aneurysmal subarachnoid hemorrhage has a high mortality rate and, for those who survive this 

devastating injury, can lead to life-long impairment. Clinical trials have demonstrated that cerebral 

vasospasm of larger extraparenchymal vessels is not the sole contributor to neurologic outcome. 

Recently, the focus of intense investigation has turned to mechanisms of early brain injury that 

may play a larger role in outcome, including neuroinflammation and microvascular dysfunction. 

Extravasated blood after aneurysm rupture results in a robust inflammatory response characterized 

by activation of microglia, upregulation of cellular adhesion molecules, recruitment of peripheral 

immune cells, as well as impaired neurovascular coupling, disruption of the blood-brain barrier, 

and imbalances in endogenous vasodilators and vasoconstrictors. Each of these phenomena are 

either directly or indirectly associated with neuronal death and brain injury. Here, we review recent 

studies investigating these various mechanisms in experimental models of subarachnoid 

hemorrhage with special emphasis on neuroinflammation and its effect on microvascular 

dysfunction. We discuss the various therapeutic targets that have risen from these mechanistic 

studies and suggest the utility of a multi-targeted approach to preventing delayed injury and 

improving outcome after SAH.
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Introduction

Non-traumatic subarachnoid hemorrhage (SAH) is a devastating neurological emergency 

resulting most commonly from the rupture of cerebral aneurysms. It occurs in 7.2–10.5 out 

of 100,000 people and accounts for approximately 5% of strokes annually.1, 2 While the 

incidence of aneurysmal SAH is lower compared to that of ischemic stroke, it occurs in 

younger patient populations, has a higher mortality, and confers a significant impairment on 

quality of life. Long-term disability and mortality from SAH are estimated to account for up 

to 27% of all stroke-related years of potential life lost before age 65.3 For those who survive, 

life expectancy is greatly reduced with reported excess mortality rates of approximately 17% 

at 20 years compared to the general population.4 Mortality after SAH can occur at various 

time points after aneurysmal rupture. Approximately 10–15% of patients die before 

receiving medical attention.1, 5 This is likely due to a sharp rise in intracranial pressure that 

reduces cerebral perfusion, inducing global cerebral ischemia and resulting in metabolic 

crisis. For those who make it to the hospital, another 25% may succumb within the first 24–

72 hours.5 This is a critical window during which multiple pathogenic processes are 

occurring that are collectively referred to as early brain injury (EBI). Clinically, severity of 

EBI is determined by various admission factors which include hemorrhage volume, level of 

consciousness, and presence of neurological deficits. Various mechanisms have been 

investigated to target EBI after SAH, including a robust inflammatory response, cerebral 

edema, and microvascular dysfunction throughout the brain.6

Of those who survive the initial 24–72 hours, there is additional risk of delayed cerebral 

vasospasm and ischemia which occur in 70% and 30% of patients, respectively.7–9 

Vasospasm typically affects the medium- and large-sized intracranial arteries and occurs 

within days 3 and 14 after SAH. This luminal narrowing has been associated with delayed 

cerebral ischemia (DCI), cerebral infarction, and long-term neurocognitive impairment. 

Clinical deterioration caused by DCI is a distinct entity that presents with focal neurological 

deficits or a decrease in Glasgow Coma Scale of at least two points for at least one hour.10 

Hypoperfusion from DCI may progress to infarction in some cases, detected via CT, MRI, or 

on autopsy.1, 10 For decades, cerebral vasospasm was the subject of intense investigation as 

it was attributed to be the principal contributor to poor outcome. However, recent clinical 

trials using the endothelin-1 (ET-1) receptor antagonist clazosentan demonstrated a 

reduction in the incidence of angiographic vasospasm, but no significant change in 

functional outcome or mortality.11–13 The results of these trials served as a major turning 

point in the field and highlighted the need for further investigation into other pathogenic 

mechanisms of brain injury after SAH.

Several mechanisms during the acute phase of SAH contribute to DCI and poor outcome. 

These include neuroinflammation, microthrombosis, cortical spreading depolarizations, 

disrupted integrity of the blood-brain barrier (BBB), and microvascular dysfunction in 

addition to well-studied macrovascular cerebral vasospasm.6 There are additional systemic 

responses after SAH including stress hyperglycemia, fever, infection, and dysregulation of 

coagulation pathways which may also affect clinical outcome, although systemic 

complications are not the focus of our present review. Recently, our lab has focused on two 

of these phenomena and the complex interplay between them – neuroinflammation and 
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microvascular dysfunction. Results from our work and that of others suggest that these 

pathophysiological processes play a highly influential role during the EBI phase and set the 

stage for long-term complications and outcome (Figure 1). Further, these events may be 

interrelated as inflammatory responses following SAH may result in microvascular 

dysfunction, which in turn could drive further inflammation.

There are excellent reviews describing the association of inflammation with hemostasis, 

dysregulation of large conduit arterial tone, and DCI.14–16 This review summarizes the 

efforts to date investigating the role of neuroinflammation and microvascular dysfunction 

during EBI as well as mechanistic and therapeutic targets that may ameliorate EBI and 

improve outcome after SAH (Table 1). By highlighting various mechanisms contributing to 

EBI and long-term outcome, we suggest a multifactorial approach to the management of 

brain injury following SAH.

Neuroinflammation

Immediately after aneurysm rupture, blood rushes into the subarachnoid space under arterial 

pressure. This leads to a sharp rise in intracranial pressure and reduction in cerebral blood 

flow (CBF), which compromises tissue perfusion and causes diffuse brain injury and 

potential death. In addition, extravasated red blood cells (RBCs) in the subarachnoid space 

undergo degradation, releasing a host of bioactive and potentially toxic molecules including 

hemoglobin, methemoglobin, bilirubin, coagulation factors such as fibrinogen, and more 

(Figure 1).16–22 Several of these molecules, including free hemoglobin and its subsequent 

byproducts, have long been associated with the development of cerebral vasospasm and 

outcome.16–23 Experiments have suggested that mechanisms responsible for this may 

include production of free radicals and other metabolites with vasoconstrictive and pro-

inflammatory properties. Bilirubin oxidation products (BOXes) formed from the breakdown 

of hemoglobin have peak concentrations correlating with the occurrence of vasospasm.21, 22 

Several endogenous scavenging mechanisms in place, such as the CD163-haptoglobin-

hemoglobin system, may act to may help clear toxic hemoglobin and its metabolites; 

however, studies suggest that these systems may quickly become saturated following SAH.24 

While direct interaction with the cerebral vasculature is one mechanism by which these 

molecules can produce long-term impairments, they may also interact with neurons, glia, 

and immune cells as blood products contact adjacent tissue or infiltrate brain parenchyma 

via paravascular spaces and disrupt normal flow between interstitial fluid and cerebrospinal 

fluid (CSF).25, 26 The interactions between blood products and cells throughout the central 

nervous system (CNS) results in a cascade of molecular events triggered initially during EBI 

that may persist and result in both acute and delayed brain injury.

Microglial Response

One of the first cells to respond to these extravasated RBC products is microglia, the resident 

immune cell of the CNS. Under normal physiological circumstances, microglia are the main 

immune cell actively surveying the CNS, which is otherwise somewhat restricted from 

peripheral immune cell trafficking. Blood products such as hemoglobin have been shown to 

bind to pattern recognition receptors (PRRs), such as toll-like receptor 4 (TLR4), on the 
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surface of immune cells such as microglia (Figure 1).18, 27 Activation of TLR4 and other 

PRRs can lead to activation of downstream inflammatory signaling cascades including NF-

kB, MyD88/TRIF, and MAPK pathways.16, 27–29 This results in activation of microglia, 

which take on a more amoeboid shape and release pro-inflammatory cytokines. In animal 

models of SAH, a robust increase in microglia and pro-inflammatory cytokine expression 

throughout the brain was associated with long-term sensorimotor deficits.30 Depletion of 

microglia using CD11b HSVTK+/− mice attenuated neuronal loss after experimental SAH.31 

Further, increased microglial expression of heme oxygenase-1, responsible for the 

metabolism of free heme, has been shown to reduce neuronal cell death, vasospasm, and 

cognitive impairment in murine models.32 While most studies have investigated the 

deleterious effects of microglial activation and promotion of a pro-inflammatory 

environment, it is also well-known that microglia can be polarized to a more anti-

inflammatory phenotype.33 Potential therapeutic strategies early after SAH may thus seek to 

promote the activation of these microglia towards an anti-inflammatory phenotype which 

may confer neuroprotective benefits,34 including but not limited to effects on neurogenesis 

and neurorepair which have been suggested in other forms of stroke.

Cytokines and Secreted Proteins

Several pro-inflammatory cytokines including interleukin-1 (IL-1), IL-6, tumor necrosis 

factor-a (TNF-a), and others have been demonstrated to be upregulated in CSF and serum 

after SAH in humans and animal models (Figure 1).35, 36 Pro-inflammatory cytokines can 

potentiate brain damage by triggering apoptotic pathways, interfering with the balance of 

endogenous vasodilators and vasoconstrictors, activating clotting factors leading to 

microthrombosis, and recruiting peripheral immune cells via upregulation of cellular 

adhesion molecules (CAMs). This initial release of cytokines and chemokines occurs from 

resident cells of the CNS such as microglia, but subsequent infiltration of peripheral immune 

cells further drives production of cytokines within the subarachnoid space and the brain 

parenchyma. IL-1, in particular, increases BBB permeability, enhances glial-mediated 

neurotoxicity, and promotes ischemic changes after SAH in preclinical models.37–41 Based 

on these results in experimental SAH and other forms of stroke, the SCIL-SAH study 

targeted the pro-inflammatory cytokines IL-1 and downstream IL-6 using the naturally 

occurring IL-1 receptor antagonist anakinra in humans.42–44 In addition to being safe and 

well-tolerated, results of the Phase II trial demonstrated reduction of IL-6, C reactive protein 

(CRP), and fibrinogen in the active arm, supporting a Phase III trial to investigate the effect 

on outcome.42, 43 Upstream targeting of TLR4 in experimental SAH through genetic 

knockouts and pharmacologic interventions has also been effective at reducing vasospasm 

and improving outcome highlighting the contribution of immune mechanisms to vascular 

tone regulation.16, 27, 45

Additional secreted immune molecules further promote inflammation and worsen outcome 

after SAH. Previous studies have demonstrated an association between elevated CSF and 

plasma levels of complement proteins C3a and C4a, and outcome.46, 47 In addition, 

alterations in members of the mannose-binding lectin pathway of complement activation, 

such as ficolin-1, have been described.48, 49 Changes in complement proteins are an 

attractive target for further investigation given their proposed role in microglial-mediated 
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synaptic alterations during development and aberrant reactivation in neurologic disease.50–53 

In contrast, anti-inflammatory mediators, such as IL-10 and various fatty acid-derived lipid 

mediators, may promote resolution of inflammation.54, 55 The results of these clinical and 

preclinical studies suggest a highly significant contribution of microglia, pro-inflammatory 

cytokines, and other secreted factors to poor outcome after SAH (Table 1).

Cellular Adhesion Molecules

The development of a pro-inflammatory state induced by secretion of cytokines and 

chemokines following SAH is also associated with increased expression of CAMs on the 

surface of endothelium, platelets, and leukocytes. CAMs such as E-selectin, vascular 

adhesion protein-1 (VAP-1), vascular cell adhesion molecule-1 (VCAM-1), intercellular 

adhesion molecule-1 (ICAM-1), macrophage-1 antigen (Mac-1), and lymphocyte function-

associated antigen-1 (LFA-1) promote leukocyte adhesion of immune cells to luminal 

endothelia.56–58 This robust inflammatory response leads to increased BBB permeability 

which facilitates the infiltration of peripheral leukocytes into the brain parenchyma (Figure 

1). CAMs including E-selectin, VCAM-1, and ICAM-1 are elevated in the CSF of SAH 

patients, and these elevations correlate with the occurrence of vasospasm and DCI.59–62 In 

animal models, similar elevations in CAM expression have been detected, and treatment 

with anti-CAM antibodies such as anti-ICAM1, anti-LFA-1, and anti-Mac-1 resulted in 

reduced leukocyte infiltration and arterial narrowing (Table 1).56, 58, 63–66 In our own lab, we 

have targeted endothelial VAP-1 using the VAP-1 inhibitor LJP-1586 in rats during the 

period of EBI, and demonstrated reduced leukocyte adhesion, enhanced microvascular 

reactivity, and improved short-term neurologic outcome.67 Most strategies targeting CAMs 

are non-selective inhibitors of leukocyte adhesion, and thus the neurological benefits derived 

from CAM inhibition may be from neutrophils, monocytes, lymphocytes, or a combination. 

Future studies may seek to identify and target CAM pathways which selectively block 

infiltration of specific peripheral immune cell populations.

Peripheral Immune Cells

Recruitment of peripheral immune cells into the brain after SAH is a well-documented 

phenomenon and occurs early in the course of disease in response to increased expression of 

chemokines and CAMs. Infiltrating leukocytes attempt to phagocytose RBCs and debris 

induced by aneurysm rupture. Leukocyte adhesion to pial venules occurs within 48 hours 

after SAH, corresponding to the period of EBI.67–69 The earliest peripheral immune cell to 

infiltrate the CNS after SAH is the neutrophil, believed to enter the CNS within 24–48 hours 

after injury.63, 64, 67, 69 Induction of neutropenia using anti-rat neutrophil serum reduced 

leukocyte adhesion to pial vessels and improved neurologic outcome suggesting that 

neutrophils play a predominant role in poor outcome following experimental SAH.69 These 

observations were also described in other studies which either depleted neutrophils or 

limited their function.68–70 Further, Provencio et al. (2016) showed that neutrophil depletion 

using an anti-Ly6G/C antibody after SAH results in improved spatial memory six days after 

SAH, and that this is mediated largely by attenuating dysfunction in long-term potentiation 

via NMDA receptors.71 In SAH patients, CSF neutrophil content has been shown to be an 

independent predictor of other delayed events including vasospasm.72 The extent of 

neutrophil infiltration into the subarachnoid space and CNS parenchyma helps determine the 
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extent of the acute inflammatory response, which in turn may influence delayed events such 

as vasospasm and neurologic outcome.

Some studies have shown a significant role of other infiltrating leukocyte subtypes. 

Infiltrating monocytes enter the subarachnoid space and CNS parenchyma as active 

macrophages around 2–5 days post-SAH, and like neutrophils engage in phagocytosis of 

RBCs, clots, and debris.73 Increased migration of monocytes across the cerebral 

microvasculature has been shown in vivo as well as in vitro using monocyte migration 

assays.74 Further, due to the number of overlapping markers between monocyte-derived 

macrophages and resident microglia, few studies have successfully distinguished between 

the contribution of these two cell populations in SAH. Recent studies using RNA sequencing 

technology have successfully identified unique markers of resident microglia in the CNS 

(e.g. Tmem119).75 Future studies in SAH would benefit from using more specific microglial 

and infiltrating monocyte markers to differentiate the unique role of these cells.

Lymphocytes as a prominent cell type of adaptive immunity may also play a role in post-

SAH pathophysiology; however, studies are limited and inconsistent. Therapeutic strategies 

targeting T lymphocytes such as corticosteroids or cyclosporine have shown efficacy in 

some studies;76–81 however, evidence supporting clinical use is lacking due to conflicting 

results or increased risk of adverse events.56, 82–84 Studies in our lab have employed the 

immunomodulatory agent fingolimod (FTY720) in a preclinical rat model of SAH.85, 86 

Fingolimod is a well-tolerated, orally bioavailable, FDA-approved drug currently used for 

multiple sclerosis that acts as a sphingosine-1-phosphate (S1P) analog.87 Its mechanism of 

action involves reversible phosphorylation and activation by sphingosine-kinase 2, which 

allows it to recognize and downregulate G-coupled S1P receptor (S1PR) type 1 expressed on 

peripheral lymphocytes. The immunomodulatory effect of fingolimod results from the 

sequestration of circulating mature lymphocytes in peripheral lymphoid tissues resulting in 

lymphopenia.88 In addition, fingolimod crosses the BBB and binds to S1PRs expressed on 

CNS cells including neurons, oligodendrocytes, astrocytes, microglia, and brain endothelia, 

resulting in direct effects on these cells.86, 89, 90 Studies in ischemic stroke models, for 

example, have shown that fingolimod is neuroprotective, can enhance remyelination, restore 

BBB integrity, and reduce microglial activation and astrogliosis.86 Treatment with 

fingolimod reduces intravascular leukocyte adhesion to pial venules, preserves pial arteriolar 

reactivity, and improves neurologic function at 48 hours after SAH in a rat model.85 While 

the benefit of immunomodulators such as fingolimod has been demonstrated in experimental 

SAH EBI, other readily available biomarkers can be used clinically to evaluate immune 

responses following cerebral hemorrhage. One such marker is the serum neutrophil-to-

lymphocyte ratio (NLR), which has not been thoroughly studied in EBI but has been 

associated with DCI.91–93 Taken together, alterations in leukocyte trafficking after SAH 

seem to play an important role in driving outcome; however, the role of resident versus 

infiltrating immune cells in SAH-associated EBI remains a key area of investigation.

Microvascular Dysfunction

SAH-associated vascular dysfunction of large intracranial arteries has been the principal 

focus of preclinical and clinical studies over the last several decades. However, while large-
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vessel angiographic vasospasm is observed in up to 70% of patients, DCI is only observed in 

up to half of them.94, 95 Also, neurologic deterioration and radiologic evidence of cerebral 

ischemia can occur in the absence of vasospasm, and the reversal of vasospasm using ET-1 

inhibitors does not demonstrably influence outcome despite some evidence from preclinical 

studies.95–98 Moreover, the only medication that has been shown to be beneficial in SAH, 

the calcium-channel blocker nimodipine, does not seem to have a significant effect on 

vasospasm.99 However, nimodipine does in fact appear to inhibit vasoconstriction at the 

level of small-diameter arterioles,100 suggesting that targeting microvascular dysfunction 

could improve outcomes after SAH. The phase 3, multicenter, randomized NEWTON 2 trial 

was designed to compare the effect of an extended-release microparticle nimodipine 

preparation delivered directly to CSF to oral nimodipine.101 However, skepticism exists in 

relation to the efficacy of this approach as the Data Monitoring Committee has 

recommended discontinuation of the study due to low probability of meeting its primary 

endpoint for favorable outcome.102 This highlights the need for further mechanistic 

understanding of microvascular changes after SAH and identification of therapeutic targets.

Blood Vessel Reactivity

It has been estimated that at least 50% of the cerebrovascular resistance lies in arterioles and 

precapillary segments. Despite their central role in hemodynamic control, the contribution of 

microvessels to SAH outcome has received little attention. Increasing evidence suggests that 

microvascular dysfunction is associated with both EBI and DCI.103, 104 Various cell types 

within the cerebral microvasculature including endothelia, pericytes, and vascular smooth 

muscle cells (vSMCs) engage in constant communication with surrounding neurons and 

glia, collectively forming a functional neurovascular unit. The intense cross-talk between 

these various cells under normal conditions results in changes in microvascular tone and 

tissue perfusion in response to neuronal energetic needs.103, 105, 106 This process, called 

neurovascular coupling, is coordinated by neurons and astrocytes, which typically respond to 

increased extracellular glutamate and transmit signals to vSMCs in arterioles to promote 

vasodilation and enhanced blood flow in response to neuronal activity and increasing 

metabolic demands.107 Following SAH, there appears to be inversion of neurovascular 

coupling starting 24 to 96 hours after injury, whereby neuronal activity instead promotes a 

vasoconstrictive response in arterioles.108, 109 This aberrant response to neuronal activity 

creates a mismatch between neuronal energetic needs and blood flow that can further 

potentiate brain injury.

Further evidence from our lab and others has suggested that significant microvascular 

dysfunction after SAH occurs at the level of arterioles. Several studies have attempted to 

investigate microvascular reactivity after experimental SAH via direct visualization of 

vessels in vivo.67, 69, 85 Under normal conditions, cortical activation (achieved via sciatic 

nerve stimulation) or topical treatment of pial vessels with vasoactive agents, including 

adenosine, acetylcholine, nitric oxide (NO) donors, or carbon dioxide, result in pial 

arteriolar dilation. However, in the rodent model of SAH, impaired microvascular reactivity 

in response to these interventions was observed.17, 67, 103 These changes peak at 48 hours 

and slowly resolve within the subsequent 5–7 days post injury. In addition, Friedrich et al. 

(2012) showed that greater than 70% of arterioles were constricted in diameter up to 72 
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hours after SAH, with smaller arterioles having more constriction.103 Similar findings have 

been reported in other studies, and have described arteriolar constrictions in a “pearl string” 

pattern.57, 103, 110 Interestingly, microthombi which have commonly been observed 

throughout the brain following SAH, are commonly found in areas of arteriolar constriction.
6, 103, 105 Microthrombosis further compromises cerebral perfusion and can lead to ischemia 

and neuronal cell death (Figure 1). Activation of the coagulation cascade, formation of 

microthrombi, and neuroinflammation are closely linked to one another through a process 

known as thromboinflammation.6, 14, 111, 112 Microthrombosis has been reviewed elsewhere.
103, 113

Several other structural and cellular changes within the cerebral microvasculature can be 

observed after SAH. Microvilli have been shown to develop and extrude from the vessel 

wall, forming blebs that can detach from the basal lamina and obstruct the lumen.104, 106 In 

addition to affecting blood flow directly, these changes can lead to exposure of the basal 

lamina, triggering both platelet and leukocyte adhesion, promoting microthrombosis and 

neuroinflammation, respectively. The role of pericytes in various cerebrovascular conditions 

including SAH has received increasing attention for their contribution to vessel tone and 

alterations in CBF.114–116 Li et. al. (2016) showed that penetration of hemoglobin into the 

brain parenchyma following SAH in a rat model resulted in phenotypic transformation of 

pericytes to a hypercontractile form that resulted in reduction in microvessel diameter.116 

This transformation was further shown to be dependent on reduction in NO/cyclic guanosine 

monophosphate (cGMP) signaling, a well-documented phenomenon after SAH described 

below. In addition to pericyte-mediated vasoconstriction, swelling of astrocytic end feet can 

further compromise blood flow.57, 104, 106 Astrocytes also appear to serve as a source of the 

endogenous vasoconstrictor ET-1 and undergo proliferation after SAH in the cortex and 

hippocampus.117, 118 Further, astrocytes following exposure to CSF containing blood appear 

to enter a metabolic crisis related to release of intracellular pools of calcium that also 

underlie alterations in neurovascular coupling.108, 119 Taken together, it appears that several 

cell types within the neurovascular unit collectively drive microvascular dysfunction after 

SAH.

Blood-Brain Barrier

SAH also disrupts the integrity of the BBB, which can further compromise cerebral 

perfusion and facilitate neuroinflammation. Leakage of endogenous proteins and injected 

dyes normally restricted from the CNS have been observed after experimental SAH.57, 110 

This increased permeability of the BBB drives cerebral edema and intracranial hypertension 

which further compromise cerebral perfusion. Mechanistically, loss of BBB integrity has 

been associated with the upregulation of matrix metalloproteinases (MMPs) and other 

proteases which degrade tight junctions and the basal lamina.16, 120 MMP-9 in particular has 

emerged as a key player in post-SAH pathophysiology based on several studies in patients 

and animal models, contributing to global cerebral edema following degradation of 

extracellular matrix proteins and disruption of tight junctions.121 Increased expression and 

subsequent activation of MMP-9 can occur in response to reactive oxygen species and pro-

inflammatory cytokines such as TNF-a and IL-17, all of which are increased after SAH.122 

The source of MMP-9 in SAH is not well described, but evidence obtained in ischemia-
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reperfusion models indicates that neutrophils may constitute the major source of MMP-9 

acting on the BBB.121 MMP-9 can also drive neuroinflammation via activation of pro-

inflammatory signals and clotting factors, triggering a positive feedback loop promoting 

thromboinflammation and neurotoxicity.122 Indeed, increased MMP-9 in both plasma and 

CSF of SAH patients have been observed and some studies have shown a correlation with 

the extent of EBI, vasospasm, and DCI.123–125 The correlation of MMP-9 with vasospasm in 

human cohorts; however, remains controversial.125 Beyond MMP-9, recent studies have also 

shown upregulation of sulfonylurea receptor 1-transient receptor potential melastatin 4 

(Sur1-Trpm4) after SAH in rats, and that this upregulation is associated with BBB 

dysfunction, neuroinflammation, and deficits in spatial learning and memory.126 

Importantly, blockade of this channel using antisense oligonucleotides or the Sur1 inhibitor 

glibenclamide reduced these deficits.126 While a detailed review of BBB changes after SAH 

is outside the scope of this review, it is clear that disruption of the BBB after SAH is closely 

linked to neuroinflammation and contributes to poor outcome.

Vasoconstrictors and Vasodilators

As mentioned above, SAH also results in an imbalance between endogenous 

vasoconstrictors (i.e., ET-1) and vasodilators (i.e., NO). Changes in these vasoactive 

substances may also be triggered by the initial inflammatory response following SAH 

(Figure 1).127, 128 Studies of SAH patients have shown that activated mononuclear 

leukocytes in CSF synthesize and release ET-1, and that this occurs in parallel with the 

release of pro-inflammatory cytokines such as IL-1b.128 ET-1 was the target of previous 

clinical trials targeting large conduit arteries using the ET-1 receptor antagonist clazosentan; 

however, despite a reduction in large-vessel vasospasm, there was no improvement in long-

term functional outcome.11–13 Clazosentan is currently being re-examined in a more focused 

manner in the REACT trial (clinical trial registration number , clinicaltrials.gov). Although 

results have not yet been published, the aim of this trial is to identify subgroups of patients 

which may derive benefit from targeting ET-1.

NO is an alternative target gaining attraction due to its ability to induce vascular dilation via 

cGMP-dependent relaxation of vSMCs and its involvement in the inflammatory response.
129–132 A constant supply of NO is important under normal homeostatic conditions in the 

maintenance of arteriolar diameter, in addition to preventing the activation of platelets and 

leukocytes.106 This constitutive production of NO is mostly provided by neuronal nitric 

oxide synthase (nNOS) and endothelial NOS (eNOS), whereas NO involved in inflammatory 

processes is mainly produced by inducible NOS (iNOS).127 Immediately following SAH, 

different mechanisms result in reduced bioavailability of NO, including decreased synthesis, 

uncoupling of eNOS, endothelial damage, upregulation of endogenous NOS inhibitors (such 

as asymmetric dimethyl arginine), and sequestration of NO by various byproducts including 

hemoglobin and reactive oxygen species through a sink effect.106, 116, 131 Free hemoglobin 

released from dying RBCs can undergo oxidation and serve as a strong NO scavenger in 

addition to suppression of NO signaling.116 NOS uncoupling refers to a pathological 

condition by which the NO synthesized by this enzyme reacts with superoxide anion (•O2−) 

and forms the reactive nitrogen species peroxynitrite (ONOO−) which has toxic effects on 

lipids, genetic material, and proteins, and contributes to endothelial dysfunction, 
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vasoconstriction, and thrombosis.104, 106 Different NOS isoforms also undergo different 

changes following SAH – nNOS is primarily downregulated, iNOS is primarily upregulated, 

and eNOS undergoes complex changes characterized by decreased endothelial expression 

and increased parenchymal expression.127 Upregulation of iNOS by cells such as microglia 

or astrocytes can generate large amounts of NO that leads to downstream inflammation and 

cytotoxicity through uncoupling.127 This suggests that rather than a simplistic model of 

decreased NO following SAH, the specific enzymes producing NO at a particular time and 

place may in fact regulate both neuroinflammation and microvascular function.

Therapeutic targeting of NO may thus serve two purposes – reduction of pro-inflammatory 

mediators and attenuation of microvascular dysfunction. After SAH, infiltrating immune 

cells such as neutrophils or macrophages may increase production of inflammatory reactive 

nitrogen species through upregulation of iNOS while impairments in constitutive NO 

signaling can interfere with microvascular function.127 Attempts to restore the balance of 

constitutive NO production have been effective in experimental models, including the use of 

genetic elimination of eNOS and more clinically-relevant NO supplementation using 

pharmacological NO donors and inhaled NO.56, 133–135 Drugs such as L-arginine and S-

nitrosoglutathione showed efficacy in improving outcome after SAH in animal models,
136, 137 but were associated with drops in systemic blood pressure.133, 138 However, inhaled 

NO has limited effects on systemic blood pressure and was shown in rodents to reduce the 

number and severity of microvascular constrictions with subsequent reduction in mortality 

and improvement in outcome.133 In SAH patients, NO donors including sodium 

nitroprusside and transdermal nitroglycerin have been used.139 Some of these studies 

showed promise; however, they were underpowered and side effects of systemic 

hypotension, headache, and rebound hypertension limit routine use.139–143

Beyond targeting NO directly, many therapeutic strategies have sought to modulate NO 

production by interfering with vSMC relaxation in other ways. Phosphodiesterase V (PDE-

V) is a key regulator of the eNOS-NO-cGMP pathway that hydrolyzes cGMP and prevents 

vSMC relaxation and subsequent vasodilation. Inhibition of PDE-V using sildenafil showed 

promising results in experimental SAH and was recently tested in a phase I safety and proof-

of-concept trial.144, 145 Other PDE inhibitors were tested which have more direct effects on 

vSMCs themselves, including the PDE-III inhibitor milrinone which showed some efficacy 

at reducing vasospasm and improving outcome (Table 1).146–151 Besides PDE inhibitors, 

magnesium sulfate showed promise in experimental SAH with reduction in cerebral infarct 

size, reversal of vasospasm, and improved cerebral perfusion based on its ability to promote 

vSMC relaxation.152–155 However, two large phase III clinical trials failed to demonstrate 

clinical benefit.156–158 Some recent studies have suggested that the use of higher dose 

magnesium sulfate may have some benefit, although this deserves further study.159 Thus, 

although targeting of vasoconstrictive mediators such as ET-1 did not appear to improve 

long-term outcome after SAH, perhaps targeting dysfunction of vasodilatory molecules such 

as NO may prove efficacious.

In addition to ET-1 and NO, additional potent vasomodulators have been described which 

may serve as therapeutic targets. Such targets include arachidonic acid and its metabolites.
160, 161 One of the most well-studied of this family is 20-hydroxyeicosatetraenoic acid (20-
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HETE), shown to be elevated following SAH in patients and animal models.160–163 

Produced by cytochrome P450 enzymes in vSMCs, neurons, and glia, 20-HETE can induce 

vasoconstriction.160 Mechanistically, 20-HETE levels are increased following loss or 

scavenging of NO.160, 161 Selective inhibition of 20-HETE synthesis using pharmacological 

inhibitors reverses delayed vasospasm and improves acute CBF recovery (Table 1).163–165 

20-HETE levels are elevated in the CSF of SAH patients, and this elevation is associated 

with acute and long-term outcomes.166, 167 Another arachidonic acid metabolite, 14,15-

epoxyeicosatrienoic acid (14,15-EET), may be protective against the actions of 20-HETE.168 

The cumulative data suggests that arachidonic acid metabolites play an active role in SAH 

pathophysiology, and may offer novel therapeutic targets.

Discussion

Through extensive has become investigation of neuroinflammation and microvascular 

dysfunction after SAH, it clear that they play an important role in EBI and contribute to poor 

outcome. These two mechanisms are also tightly linked, as pro-inflammatory signaling can 

promote disruption of the microvasculature and vice versa (Figure 1). The release of RBC 

components such as hemoglobin into the subarachnoid space following aneurysmal rupture 

likely triggers an initial inflammatory reaction by microglia, which secrete numerous pro-

inflammatory chemokines and cytokines. These signals increase expression of CAMs on 

endothelia, drive peripheral leukocyte transmigration, and may also promote microvascular 

dysfunction. Meanwhile, changes in NO bioavailability coupled with damage to BBB and 

neurovascular unit dysfunction likely compromise vascular tone regulation and lead to the 

formation of microthrombi. One exciting area of investigation is the role of cortical 

spreading depolarizations after SAH, which may be related to both neuroinflammation and 

microvascular dysfunction.169–171 Taking into account the various mechanistic changes 

occurring in the brain after SAH, management must be comprehensive and play close 

attention to acute and delayed brain injury as well as systemic complications. Systemic 

complications of SAH include hyperglycemia, fever, infection, and dysregulation of 

coagulation cascades, all of which can influence clinical outcome. Glycosylated 

hemoglobin, monomeric CRP, and other biochemical mediators have been associated with 

outcome in other stroke subtypes.172, 173 However, their value in SAH has not been 

conclusively demonstrated. While large vessel cerebral vasospasm likely contributes to poor 

outcome, it is no longer believed to be the determining factor and additional studies of 

neuroinflammation and microvascular dysfunction will likely provide both mechanistic 

information and therapeutic targets (Table 1).

Despite the evidence of a clear role of neuroinflammation and microvascular dysfunction in 

poor outcomes after SAH, there are some limitations to current studies. One such limitation 

is the lack of a standardized animal model of SAH. Studies use a variety of different animal 

models ranging from autologous blood injection to endovascular perforation models, 

contributing to variability both within species and between species.30, 174, 175 Within these 

models, those such as the endovascular perforation model have a relatively high mortality 

rate, and thus studies may only be conducted on those animals which survive and thus may 

have limited EBI. The endovascular perforation model provides translational relevance to 

human SAH by recapitulating a hemorrhagic lesion under arterial pressure but may also 
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have high variability in the location and severity of hemorrhage. The more commonly used 

blood injection models are easier to control and have lower mortality rates; however, a 

limitation to these models is that they do not reproduce the complex hemodynamic changes 

seen in SAH and therefore may have limited EBI.176 One additional shortcoming of using 

rodent models to investigate the role of inflammation in human SAH is related to differences 

in immune responses across species, including the major immune cells involved in the 

response as well as the timeline and major signaling pathways.177, 178 At the level of clinical 

studies, neuroinflammation and microvascular dysfunction are much more difficult to assess 

compared to large vessel vasospasm, although studies for various biomarkers in both the 

peripheral blood and CSF are underway.

Future experimental studies in preclinical models should focus on a multi-pronged effect of 

targeting both neuroinflammation and microvascular dysfunction to improve outcomes after 

SAH. While single molecular targets have shown promise in experimental SAH, they have 

not easily translated to success in clinical trials. Targeting neuroinflammation may alleviate 

the microvascular dysfunction observed after SAH, as the initial inflammatory response may 

serve as the primordial factor that contributes to abnormal vascular reactivity and imbalance 

of endogenous vasodilators and vasoconstrictors. Further, several drugs currently under 

investigation show promise in targeting both neuroinflammation and microvascular 

dysfunction, and may be effective in improving outcomes after SAH. Statins were 

considered an attractive target due to their pleiotropic effects including anti-inflammation, 

neuroprotection, and increase in eNOS.179–181 However, clinical trials have had less success 

demonstrating a significant effect on DCI, infarction, or mortality.182–184 More promising 

results have been obtained with low-dose, unfractionated heparin, which has several biologic 

effects independent of its anticoagulant properties. By complexing with oxyhemoglobin, 

heparin can block the formation of free radicals and act as an antagonist to ET-1-mediated 

vasoconstriction and cytokine-mediated neuroinflammation.185–188 Recently, clinical trials 

of low-dose unfractionated heparin in SAH patients have shown a favorable safety profile, 

reduction in DCI without a change in angiographic vasospasm, and improved cognitive 

outcomes.187, 189 These data have supported the initiation of an ongoing, large-scale, 

randomized control trial, the Aneurysmal Subarachnoid Hemorrhage Trial Randomizing 

Heparin (ASTROH, clinical trial registration no. , clinicaltrials.gov).

In summary, a body of evidence supports the notion that the pathophysiology of brain injury 

in SAH is multifactorial and targeting only one process will likely be insufficient to derive 

clinical benefit. The complex interplay of microvascular dysfunction and neuroinflammation 

point to new and exciting areas of current investigation that may result in the development of 

new therapeutics that reduce long-term impairments after SAH.
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Figure 1. Neuroinflammation and microvascular dysfunction after aneurysmal subarachnoid 
hemorrhage.
In addition to the well-studied phenomenon of cerebral vasospasm, release of blood products 

into the subarachnoid space can trigger a robust inflammatory response consisting of 

activated microglia, secretion of pro-inflammatory cytokines, increased expression of 

CAMs, peripheral leukocyte recruitment, and BBB disruption. This can further contribute to 

microvascular dysfunction including arteriolar vasoconstriction, microthrombosis, and 

imbalance of endogenous vasoconstrictors and vasodilators, which further compromises 

CBF and drives delayed ischemic damage.
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Table 1.

Major strategies in experimental subarachnoid hemorrhage aimed at targeting neuroinflammation and/or 

microvascular dysfunction.

Major Experimental 
Targets

Genetic or
Pharmacologic

Approach
Results Translated to

SAH Patients Reference(s)

Pattern-Recognition 
Receptors

Toll-like Receptor 4 (TLR4)

TLR4−/− mice Decreased vasospasm and neuronal 
apoptosis on days 7 and 15 after SAH Not applicable (27)

TLR4 antagonists 
(IAXO-102, TAK-242)

Higher neurological scores and 
reduced brain water content at 24 
hours compared to controls, reduced 
BBB disruption with decreased 
MMP-9 and preserved tight junctions

No (45)

Resident Cells of the CNS

Microglia

Clodronate liposomes

Depletion of microglia results in 
significant ablation of vasospasm at 
day 7 and 15 in mice, reduced 
neuronal death at day 7 but not at day 
15 compared to vehicle-treated 
controls

No (27)

CS11b-HSVTK+/− mice Depletion of microglia results in 
reduced neuronal cell death Not applicable (31)

Pro-inflammatory Cytokines

Interleukin-1 (IL-1) IL-1 receptor antagonist 
(IL-1Ra)

In rodents, treatment resulted in 
decreased BBB breakdown and 
subsequent brain injury

Yes. The SCILSAH 
study has shown 
safety, tolerability, 
and effective 
reduction in 
peripheral 
inflammatory 
markers, supporting 
a Phase III clinical 
trial

(42–44)

Cellular Adhesion 
Molecules

CD11/CD18 (includes 
LFA-1 and Mac-1, also 
known as CD11a/CD18 and 
CD11b/CD18, respectively)

Anti-LFA-1 antibody Reduction in femoral artery spasm 
following blood exposure in rats No (63)

Anti-CD11/CD18 
antibody

Reduction in non-human primate 
cerebral vasospasm from baseline 
angiography compared to vehicle-
treated animals; Reduction of rabbit 
basilar artery spasm and increased 
peripheral white blood cell count

No (64–66)

Intercellular adhesion 
molecule-1 (ICAM-1) Anti-ICAM-1 antibody

Reduction in rabbit basilar artery 
spasm, synergistic with effects of anti- 
CD18 Ab; reduction in femoral artery 
spasm following blood exposure in 
rats

No (63,65)

Vascular adhesion protein-1 
(VAP-1) LJP-1586

Inhibition of VAP-1 results in reduced 
leukocyte adhesion and infiltration, 
enhanced microvascular reactivity, 
and improved shortterm neurologic 
outcome

No (67,69)

Peripheral Immune Cells

Neutrophils Anti-neutrophil serum

Reduction in leukocyte infiltration 
into CNS, preservation of pial 
arteriolar dilating function, and 
protection of neurobehavioral l 

No, may prolong 
bleeding time from 
ruptured artery based 
on preclinical data

(69,70)
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Major Experimental 
Targets

Genetic or
Pharmacologic

Approach
Results Translated to

SAH Patients Reference(s)

function; reduction in vascular 
collagenase activity

Anti-Ly6G/C antibody

Reduction in middle cerebral artery 
(MCA) vasospasm and improved 
behavioral testing via Ymaze and 
Barnes maze tests; reduced cerebral 
inflammation and decreased 
impairment in long-term potentiation 
(LTP) at day 6 after SAH in mice

No (68,71)

Lymphocytes

Corticosteroids 
(Dexamethasone, 
Methylprednisolone, 
etc.)

Reduced alterations in contractile and 
cytoskeletal proteins of rabbit cerebral 
arteries; decreased CSF citrulline 
(contributor to NO production) and 
leukocytosis; mixed results related to 
effect on vasospasm

Yes, with conflicting 
results. Overall, no 
strong evidence of 
beneficial or adverse 
effect

(76–78,82)

Cyclosporine

Reduction in canine basilar artery 
vasospasm with prophylactic 
treatment; reduction in neuronal 
apoptosis and BBB disruption in mice 
with improved neurological outcome

Yes, with conflicting 
results. Some have 
shown improved 
neurological 
outcome while others 
have shown no effect 
on vasospasm or DCI

(79–81,83,84)

Fingolimod (FTY-720)

Reduced intravascular leukocyte 
adhesion to pial venules, preserved 
pial arteriolar reactivity, improved 
neurological outcome

No (85)

Endogenous 
Vasoconstrictors

Endothelin-1 (ET-1) Clazosentan (ET-1 
receptor antagonist)

Prophylactic treatment in rats 
prevented continued reduction in 
cerebral blood flow after acute 
hypoperfusion; reduced largeartery 
vasospasm but did not prevent 
formation of microthrombi, neuronal 
cell death, or loss of LTP

Yes, reduction in 
angiographic 
vasospasm but no 
statistically 
significant effect on 
morbidity, mortality, 
or functional 
outcome

(11,12,97,98)

20-hydroxyeicosatetranoic 
acid (20-HETE)

TS-011, 17-
octadecynoic acid, 
HET0016 (selective 
CYP450 inhibitors)

Pre-treatment resulted in faster 
recovery of cerebral blood flow in the 
acute setting following SAH; reversal 
of delayed vasospasm in vitro and in 
vivo

No (163–165)

Endogenous Vasodilators

Nitric Oxide (NO)

NO donors (Larginine, 
Snitrosoglutathione, 
sodium nitroprusside, 
transdermal 
nitroglycerin, etc.)

Improved CBF recovery, reduction in 
cerebral vasospasm, decreased 
glutamate excitotoxicity, and transient 
decrease in systemic blood pressure

Yes, with conflicting 
results. Side effects 
including systemic 
hypotension, 
headache, and 
rebound 
hypertension 
possible, limiting 
clinical use.

(135–
137,140–143)

Inhaled NO

Reduction in microvascular 
constriction with limited effects on 
large artery spasms, decreased 
cerebral edema, hippocampal neuronal 
loss, and mortality; improved 
neurological outcome

No (133)

Phosphodiesterase 
(PDE)-V inhibitors 
(sildenafil)

Reduction of vasospasm and neuronal 
cell death with improved neurological 
outcome in mice

Yes, Phase I study 
demonstrate d safety 
and tolerability, with 
some data suggesting 
potential 

(144,145)
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Major Experimental 
Targets

Genetic or
Pharmacologic

Approach
Results Translated to

SAH Patients Reference(s)

improvement of 
vasospasm

Vascular smooth muscle cell 
(vSMC) relaxation

PDE-III inhibitors 
(milrinone)

Prevented angiographic vasospasm in 
canine model; improved CBF and 
neurobehavioral l outcome, reduced 
DCI in mice

Yes, reduction in 
delayed cerebral 
vasospasm 
warranting further 
study

(146–151)

Magnesium sulfate

Reduction of infarct size, reversal of 
vasospasm in vivo and in vitro, and 
improved cerebral blood flow 
recovery

Yes, MASH-II and 
IMAGES trials failed 
to show clinical 
benefit

(152–158)
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