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Abstract

One way to interject knowledge into clinically impactful forecasting is to use data assimilation, a 

nonlinear regression that projects data onto a mechanistic physiologic model, instead of a set of 

functions, such as neural networks. Such regressions have an advantage of being useful with 

particularly sparse, non-stationary clinical data. However, physiological models are often 

nonlinear and can have many parameters, leading to potential problems with parameter 

identifiability, or the ability to find a unique set of parameters that minimize forecasting error. The 

identifiability problems can be minimized or eliminated by reducing the number of parameters 

estimated, but reducing the number of estimated parameters also reduces the flexibility of the 

model and hence increases forecasting error. We propose a method, the parameter Houlihan, that 

combines traditional machine learning techniques with data assimilation, to select the right set of 

model parameters to minimize forecasting error while reducing identifiability problems. The 

method worked well: the data assimilation-based glucose forecasts and estimates for our cohort 

using the Houlihan-selected parameter sets generally also minimize forecasting errors compared to 

other parameter selection methods such as by-hand parameter selection. Nevertheless, the forecast 

with the lowest forecast error does not always accurately represent physiology, but further 

advancements of the algorithm provide a path for improving physiologic fidelity as well. Our hope 

is that this methodology represents a first step toward combining machine learning with data 

assimilation and provides a lower-threshold entry point for using data assimilation with clinical 

data by helping select the right parameters to estimate.
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1. Introduction

We want to use data and our understanding of the world to better manage health — we want 

evidence and understanding to guide clinical and personal health-related decisions. Of 

course at a high level this is generally what medicine is about: interventions are undertaken 

only when they are understood or predicted to improve an individual’s health. However, 

traditionally this prediction is done in a non-personalized manner, meaning that 

interventions treat the ”mean” person or patient. Personalized and precision medicine were 

conceptualized to relax this constraint by tailoring an intervention to a person. While 

genetics offers a path to personalizing treatment, we can also use data science machinery 

together with personal ([1]) and population-scale data to better personalize treatment ([2, 3, 

4]). Specifically here, we want to leverage our knowledge encapsulated in mechanistic 

physiologic models and combine it with free living or clinical data to allow this knowledge 

and data to be used to make decisions related to health. In this context, computational 

problems related to personalized medicine can be broken into two broad categories: 

forecasting, where we make quantitative predictions about a patient’s future state that can be 

used by clinicians and patients to take corrective action, and phenotyping ([5, 6, 7, 8, 9]), 

where we identify properties of macroscopic observables that can be used to classify patients 

into subgroups that can give clinicians and researchers actionable insight into commonly 

occurring treatment outcomes and biological phenomena.

The idea of using mechanistic models and data assimilation in biomedicine or healthcare is 

old, but what is new is attempting to integrate models with variable complexity with sparse, 

noisy free-living and clinically collected data. Many mathematical biology models were 

designed to have variable degrees of biological fidelity, fidelity that we do not necessarily 

want to eliminate or reduce, but fidelity that we generally need to constrain in the usual case 

where we cannot estimate all the parameters because of data limitations that always exist in 

practice. This problem poses a significant barrier to using data assimilation—enough of a 

barrier that often data assimilation is not even attempted because the models, given data are 

hopelessly poorly resolved. This paper poses a machine learning solution to this problem—

by using machine learning to identify and rank-order which model parameters are the most 

necessary to estimate.

Returning to the more practical contexts of phenotyping and forecasting, both applications 

impose particular demands on certain aspects of computational machinery used to model 

data. The properties we focus on here are the selection of the model parameters to estimate 

and the ensuing identifiability of a model, or ability to uniquely solve for parameters that 

yield optimal solutions ([10, 11, 12]). Our goal is to strike a balance a between identifiability 

and model fidelity [5] in situations where a model is not fully identifiable, where estimating 

all model parameters is hopeless, and where choosing model parameters to estimate is non-
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trivial, given the available data. The method we develop here can facilitate both forecasting 

and phenotyping studies, and we evaluate this method in the context of modeling glucose 

dynamics using mechanistic models, machine learning and data assimilation.

The Houlihan, or the Houlihan throw, is a lasso throw used for roping livestock, e.g., a 

horse. It is used often under difficult circumstances such as picking out, from a substantial 

distance, a single horse from among a crowd of horses standing close together. It is a 

particularly flexible technique that can be used in a variety of circumstances. In this spirit we 

intuitively define the Houlihan method(s) as a collection of methods that can be used for 

selecting the most productive model parameters to estimate; specifically, the collection of 

methods uses machine learning techniques applied to simulated model output under 

parameter variation subject to a set of features, e.g., the mean of a state.

2. Background

The larger biomedical context of this work is the application of data science machinery used 

to personalize forecasts and phenotypes via a broadly defined regression. While there are 

many linear versions of regression that have been successfully applied to healthcare data 

([13, 14, 15, 16]), here we focus on a specific type of nonlinear regression—data 

assimilation—in an effort to take advantage of potentially important nonlinearities present in 

most biological systems. Nonlinear regression approaches such as deep learning and related 

methods ([17, 18, 9, 19]) have seen some success in a number of biomedical applications 

thanks to their ability to approximate arbitrary, non-linear functions. While the flexibility of 

universal approximator approaches ([20, 21]) is particularly useful when little is known 

about the system and data are plentiful, this approach does not always work well when data 

are sparse and non-stationary, leading to problems such as poor generalization to new or 

unobserved individuals, problems with quickly changing health conditions, and difficulties 

with fast, accurate prediction with very few, e.g., 20, data points. Unfortunately, many health 

data and healthcare situations fit one or more of these data pathologies ([22, 23]).

In order to exploit the complex yet rich quantity of available health data, it is natural to 

consider ways of constraining the search space for machine learning methods. One way to 

do this is to constrain the model search space in accordance with as much expert knowledge 

as possible. To achieve this here we turn to mechanistic models developed by mathematical 

biologists and physiologists [24], which are typically formulated as dynamical systems ([25, 

26, 27]), e.g., xt+1 = f(xt, θ), or differential equations ([28, 29]), e.g., dx
dt = f (x, θ, t), where x 

are the time-varying states of the system and θ are the physiologic parameters that govern 

the process. For example, in the case of phenotyping type 2 diabetes one way of constraining 

the search space of a regression is to regress the data onto a nonlinear physiologic model [1, 

30] instead of regressing the data onto a universal approximator [20, 21] function space such 

as neural networks. The way this is done is using data assimilation.

Data assimilation (DA) is a collection of methods ([31, 32, 33, 34, 35, 36, 37, 38, 39, 40]) 

concerned with performing the types of non-linear regressions we describe for dynamical 

systems, and centers itself around forecasting and inferring mechanistic states under 

available observations; it solves both forward and inverse problems ([41, 42, 43]). There 
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have been many successful applications of mechanistic modeling and data assimilation in 

biomedicine ([30, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 42, 

63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 1, 74]). However, mechanistic models that are 

typically developed in biological laboratory settings are often not designed to interface with 

health data collected in the process of delivering care or in free-living situations—in 

particular, the physiologic models often model macroscopic states that are observable from 

routinely collected data but are governed by a composition of unobservable or partially 

mechanisms such as the health care process [22, 16, 23, 5]. While these models capture the 

dynamics we are interested in and constrain the regression to a smaller class of functions, 

their high-fidelity creates issues of identifiability and ill-posedness, problems for which this 

paper develops a practical, machine-learning-based work-around.

To understand how identifiability works for these machines, consider a trivial case of 

identifiability for the model dx
dt = abx. If we assume that a and b are unknown parameters, 

they cannot both be identifiable without another equation that could uniquely determine one 

of them. This topic and the the associated methods for handling this situation are too old and 

wide ranging to give complete background ([11, 10, 75, 12]). We can, however, give a broad 

sketch of how identifiability has been traditionally approached. Identifiability analysis 

generally follows one of three pathways: analytical methods, e.g., showing algebraically that 

all parameters can be uniquely solved for ([76, 77, 78]); numerical methods ([12, 10, 79]); 

and heuristic, knowledge-driven sensitivity analyses where certain parameters are chosen 

based on computational experiments or knowledge of the system. In many complex, non-

linear mechanistic physiologic models algebraic methods and linear computational methods 

are not tractable or applicable. In these situations nonlinear methods can be applied, but 

nonlinear methods usually have to be constructed for a particular situation ([80]), and, much 

like nonlinear optimization, generally do not have clearcut or simple resolutions ([80, 75]). 

These problems pose a significant roadblock to parameter inference in the context of DA. 
Nevertheless, there exist methods for working to remain within a traditional identifiability 

framework, e.g., [75] uses Bayesian inference to determine when parameters can be made 

identifiable.

The usual way of addressing these issues focuses on making sure the model is identifiable or 

finding ways of making it more identifiable ([75, 12, 10]). This work is often performed 

using substantial intuition about the important features encoded in the model, and 

parameterizing and grouping sub-processes. However, this creates silos of expertise and 

prevents wide-spread dissemination and evaluation of mechanistic models in potential 

application domains. Therefore, to progress toward understanding complex physiology via 

model refinement and selection, and to provide solutions in clinical situations that come with 

constraints of time-sensitive solutions, we must find a robust way of coping with brutally ill-

posed problems and accept certain impurities and inaccuracies.

Here, we develop and evaluate a method—the Houlihan method—for rank-ordering 

mechanistic parameters based on their ‘‘influence” on important dynamical features, in 

order to improve forecast accuracy and help determine which models most faithfully 
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represent a given system. This provides a starting point from which to estimate parameters, 

prune the model, etc., that can be automated.

3. Conceptual construction of the Houlihan approach

3.1. Conventional operational use of data assimilation with ill-posed problems

The standard method of applying data assimilation (DA) or control in generic situations 

follows roughly the following steps: (i) select a model, (ii) work out identifiability, (iii) 

select a filter or inference method, (iv) find an optimal solution for states and parameters. 

This requires very careful experimental constructions, generally dense data streams, can be 

expensive, and requires relatively simple models, all situations that lie outside of what is 

possible in applications and even many basic science settings. The approach for applying 

DA in operational, complex, high-dimensional settings where accurate real-time forecasts 

are imperative is to: (i) select or develop a model, (ii) tune and fix parameters offline, often 

by hand or using a combination of by-hand and numeric tuning that allows the model to 

reconstruct or forecast states within some tolerance, (iii) select an inference scheme, and (iv) 

estimate states only and make a forecast. This is a tried and true method and is used in 

situations such as weather and climate forecasting ([81, 39, 40]). Neither of these 

approaches apply to biomedical situations that, by comparison, have a different set of 

constraints and problems, including: (i) the models are smaller, so they can be simulated 

faster and estimated faster, allowing for potentially many models to be used simultaneously; 

(ii) there are less data relative to the number of unknown parameters, so while parameter 

estimation is necessary [1] not all parameters can be estimated; (iii) models are not 

generated from first principles and their application to given individuals is potentially highly 

variable necessitating the use and potentially the averaging of many models; and (iv) tuning 

would have to be done for millions of people frequently, e.g., every patient in every ICU 

potentially every day, a process that is not likely to be practically possible. Because of these 

reasons, choosing which parameters to estimate is a significant barrier to the adoption and 

use of DA in biomedical situations.

3.2. Houlihan approach to ill-posedness

Here we are operating under a different situation from the more canonical DA application 

setting, one more heavily constrained by imperfections of data that will never disappear 

because the data are collected in the process of managing health instead of data collected in 

a controlled manner explicitly for the DA. In particular we assume: (a) we do not know the 

right model but we have some models we can try, (b) we do not know whether a given model 

is identifiable and that we do not have enough data to estimate all model parameters well 

anyway but that we have enough data to estimate at least one parameter, (c) for a given 

model, we don’t know what parameters are the most useful to estimate, given that we cannot 

estimate all of them. Given this situation we develop a method for rank ordering which 

parameters to estimate, subject to features we want to capture, when we have no idea how to 

choose which parameters to estimate or when we must choose parameters in a more high-

throughput setting where we are using many models at once.
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This solution involves stacking machine learning on top of DA: machine learning is applied 

to simulated model output to select the important parameters to estimate to best synchronize 

the model with the data, and then we use DA restricted to estimation of the parameters 

chosen by machine learning. In this way, the method will scale to a high-throughput setting 

and can be applied to many different models with high dimensional parameter spaces more 

easily. And while we know that this method may not lead to a unique solution in function, 

parameter, or initial condition space, the set of solutions will be reduced to a workable set of 

solutions that allow forward progress to be made.

Conceptually, we are proposing to: (i) assume a model, (ii) simulate the model under 

discrete parameter variation creating a grid in parameter space for which at every point we 

have simulated data from the model (i.e., the instance of one attractor of the model for a 

given set of initial conditions at the parameter grid point), (iii) select features, e.g., the mean, 

of the attractors that are important for estimating the physiologic system, and then (iv) use a 

machine learning algorithm to identify the parameters that have the greatest impact on the 

features. While for the authors the geometric intuition of this method originates from 

bifurcation theory—we will discuss this in a later section [82]—one useful way to think 

about the problem is in the inverse problems context. As was the case for the bifurcation 
theory context, this discussion is allegorical; we are not proposing a formal inverse problems 
regularization framework. From a high level, given data, Y, and a model, ℱ with a state 

space x, the task is to find a set of parameter values, Θi, of which there may be many if the 

system is not identifiable, that minimize:

Y − ℱ(x, θ) Y
p (1)

for some p, p = 2 being the commonly applied least squares minimization. The core of the 

identifiability issue is that, for complex models, and especially given sparse data, there may 

be many sets of parameters Θi that minimize the distance between the model and the data. In 

this case a goal might then be to balance the number of potential minimizing parameter sets, 

the number of Θi’s, against the distance between the model and the data via an optimization 

algorithm, e.g.,

min
Θ

(w1( Y − ℱ(x, θ) Y
p) + w2( # Θi )) (2)

where the wi’s are continuous functions. This framework, a formal regularization 

methodology, has many advantages, but can induce many complexities that increase rather 

than decrease the barrier to using data assimilation in more data-poor environments. 

Moreover, this relatively complex methodology may not be applicable in more high-

throughput situations where, e.g., many models are used in a model averaging context. 

Therefore, motivated by the goal of an imperfect but practical solution, we postulate that if 

we carefully select the right parameters that maximize the parameter subspaces that can be 

explored relative to a set of desired features, we can often, effectively but imperfectly, solve 

the optimization problem. Effectively but not rigorously, we are regularizing a priori, by 
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selecting and reducing the parameter set to be estimated before we go about estimating the 

parameters given data. Given the framework above, such a solution may be well handled by 

a tool from sparse machine learning such as lasso [83] because it uniquely rank-orders 

parameters by their predictive power, but it is easy to imagine using other methods. But, it is 

important to be clear that we are hypothesizing that the parameter subspaces that allow 

maximal exploration of dynamics relative to a given feature, e.g., the mean, will contain sets 

of parameters, Θi that also find relatively good minima of Eq. 1. In our evaluation we will 

see cases where this hypothesis fails, but we will also see that this hypothesis generally 

holds true in our data set, and this conclusion is the point of the paper.

It is important to understand that whether or not the parameter vector(s) that globally 

minimize Eq. 1 are contained within the parameter subset identified by the Houlihan method 

is unknown, and relative to the work in this paper, is a hypothesis. There are reasons to 

believe that, given a feature metric related to the cost function, e.g., a feature metric of the 

mean and a cost function related to mean squared error, the Houlihan method will find 

productive or useful local minima, but even this remains a hypothesis. Formulating a precise 

theorem—e.g., that the parameter vectors that minimize Eq. 1 are included in, or excluded 

from, the set identified by the Houlihan (or other ML-based method)—would be a lovely 

result but is beyond the scope of the current paper. Results addressing whether a parameter 

subspace identified by a method like the Houlihan is the parameter subspace that minimizes 

Eq. 1 is akin to, but not as strong as, proving that a method is able to identifies the global 

minimum of Eq. 1. As is the case with many nonlinear systems, providing convergence to a 

global minima is a difficult task. However, because the conceptual goal here is to reduce the 

parameter space that needs to be estimated to get a good solution, there is considerable 

flexibility for nice theoretical work. For example, one could imagine identifying the “first 

order” parameters or the “steepest gradient” parameters that lead to a global minimum. Or 

one could weaken the global minimum requirement and work towards convergence within 

some ϵ of the global minimum, or some minimum error related to Eq. 1; e.g., when using 

real data, the data themselves have error and therefore Eq. 1 could be recast in light of the 

error in data. Analysis along these lines is beyond the scope of the current paper, but we 

hope this formulation and these ideas will motivate work in the future.

In short, we are assuming a problem is ill posed and a system that is likely not identifiable, 

and given this situation, we are trying to cope. Therefore, we are not really solving an 

identifiability task because we are not trying to find the best or most representative model 

that admits unique parameter estimates; rather we are solving a problem more akin to, but 

not literally, a regularization task. We are starting from a point where the problem is both 

brutally ill-posed and likely non-identifiable, and where investigating identifiability using 

analytic methods, or even many numeric-by-hand methods are intractable. In this case we 

are assuming there will be a few different parameter combinations that represent reasonable 

parameter estimates. In this situation each combination of parameter represents a hypothesis 

for how the system works. More importantly, the method we present here is a flexible entry-

point for using data assimilation with a complex nonlinear model and data collected in an 

uncontrolled environment rather than directly solving an identifiability problem.
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4. Data cohort

We test and evaluate the Houlihan methodology in the context of modeling and forecasting 

blood glucose collected in a free-living setting — via a type 2 diabetes self-management 

moblie application. The blood glucose and nutrition data used here were collected 

retrospectively from four participants, two with type 2 diabetes and two without diabetes, 

using custom-designed mobile applications for capturing self-monitoring data ([84]). These 

data are summarized in Table 1. We acquired two types of data: 1) fingerstick blood glucose 

measurements taken at the discretion of each of the 4 participants (roughly 3-10 times per 

day) and 2) estimates of carbohydrate consumption over time (roughly 1-5 meals per day) 

determined by a certified dietitian’s analysis of the daily meal logs (with photos and 

descriptions) reported by each participant. The data are documented more completely in ([1, 

74]) and are available on PhysioNet upon request.

5. Methods

5.1. Glucose-insulin physiologic model

The Houlihan method was conceived in the context of DA with a mechanistic model, and 

while it could be used in any nonlinear regression context, this paper will be restricted to the 

setting where we begin by projecting data onto a mechanistic dynamical system and then 

work to decide which parameters of that dynamical system we should estimate to represent 

the data. The mechanistic model is more formally either a dynamical system when time is 

discrete or a system of ODEs when time is continuous. Explicit versions of such systems 

form parameterized families of functions that are physically meaningful but generally do not 

satisfy nice function space properties such as completeness and are not universal 

approximators. The more general theory of dynamical systems can be found in many books 

([25, 26, 27]), but here we will restrict our use of these details to an absolute minimum. We 

assume that the systems—ODEs or dynamical systems—have, for a given set of parameters 

and initial conditions, and invariant measure in the SRB ([85, 86, 87, 88]) sense, meaning 

that the system has an invariant or physical measure with respect to the expanding and 

neutral subspaces. In this way each state can have a probability density function associated 

with it denoted Λxi where xi delineates the state. This invariant measure can potentially 
depend on the parameters and the initial conditions for a set of parameters, as well as 
random perturbations of the orbit [89].

As previously noted, we want to use DA to model the glucose-insulin system of a human 

being. We begin with a particular mechanistic glucose-insulin model, here the ultradian 

model that has been detailed in [90, 24, 2, 4, 1], and has 6 states and 21 parameters; its 

details can be found in the Appendix A. The model has unknown identifiability properties, 

especially when only glucose is measured, but we have strong evidence that at least some of 

the model parameters and states are not identifiable ([74]). The Houlihan method rests on 

quantifying how the invariant densities of the synthetic data sets and their properties vary as 

parameters of the mechanistic model(s) vary. Specifically, the Houlihan method decides 

which parameters to estimate by varying the parameters of the ultradian model, observing 

how the invariant densities and their properties vary, and then using this information to select 

parameters to estimate by rank-ordering their importance using statistical inference or 
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machine learning. The synthetic data used to select parameters to estimate will be generated 

by solving the ultradian model using an adaptive version of Runga-Kutta, ode23 in Matlab 

and will consist of 105 simulated data points.

5.2. Stochastic filtering and inverse problems methods

We use two previously documented data assimilation formulations, an unscented Kalman 

filter ([91, 92, 93, 94, 95, 96]) (UKF) whose details can be found in [1] and a Metropolis-

within-Gibbs Markov Chain Monte Carlo (MCMC) method whose details can be found in 

[74, 97]. As previously mentioned, these DA methods are used with the ultradian model 

([90]) for performing the DA tasks. We only use these methods over the course of evaluating 

the Houlihan methods; the exact implementation of the DA methods can be found in [1, 74].

5.3. Analytical construction and intuition for throwing the Houlihan around the right 
parameters

While the approach we are proposing is new, the allegorical geometric intuition motivating 

this approach comes from bifurcation theory and in particular the bifurcation sets defined in 

the 1970’s ([98]) and the analytic geometry vision of bifurcation theory and singularities in 

parameter space [29]. Bifurcation sets are the low-dimensional sets or manifolds that denote 

transition/bifurcation surfaces between topologically equivalent invariant sets, partitioning 
the parameter space into a set of equivalence classes. It is this idea of partitioning the 

parameter space into equivalence classes that differently impact dynamical features we care 

about is the key motivational insight. In our context we want to partition the parameter space 

by influence on some feature or set of features, denoted the feature-metric, of the dynamics. 

Feature-metrics are calculated from the time-series of the simulated model (dynamical 

system), e.g., a mean. We do not want to be as rigid as requiring topological equivalence as 

was defined in the bifurcation sets framework, or necessarily strict classes, but we do want 

to partition the parameter space according to how parameters influence a dynamical feature 

we care about. The over-arching idea is that the subsets of parameter space that have the 

highest influence on the feature-metric are the parameters that will be the most useful to 

estimate to minimize Eq. 1. And, knowing the most useful parameters to estimate provides a 

systematic way of choosing the parameters to estimate until the system is either identifiable 

or identifiable enough to be serviceable; in practice serviceable might mean that the errors 

are within desired tolerances, that parameter estimates are unique, or that the parameter 

estimates have few enough equilibria or minima that they can be made useful. To make this 

more precise, begin with the following terms, which are functions of a parameter vector, p.

Feature metric: the feature of the dynamical system we wish to influence, denoted g(p); 

feature metrics are estimated from the time-series of the simulated model output and vary 

with parameter variation.

Influence: the amount that a parameter influences the feature-metric, denoted Fi(g(p)) for the 

i-th parameter.

Influence equivalence: a rule that defines equivalence of influence, e.g, all parameters i such 

that aj ≤ Fi(g(p)) < aj+1. This allows for us to introduce a partition over influence, {a}j
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J called an impact set, which represents the transitions or boundaries between influence 

equivalence classes.

Parameter influence sets: the sets of parameters with equivalent influence according to the 

influence equivalence rule.

Demonstrative example: Begin by defining the dynamical system f with state variables 

xi and parameters pi assuming at least four parameters. Next define the feature-metric as the 

mean of a single state variable x*, μx* (i.e. we are interested in how each parameter 

“influences” the state’s mean). Set the influence function to be the absolute linear 

correlation, |βi|, between the feature-metric, μx, and values of the parameter pi. In this 

example, the influence function is a vector-valued function, with a scalar metric (linear 

correlation between parameter and the state’s mean it induces) corresponding to each 

parameter. The influence per parameter defines a probability mass function (PMF) with 

support [0, 1] with values 
∣ βi ∣

Σ j ∣ β j ∣ . Finally, we define influence equivalence as membership 

in a given quartile of the PMF defined by the influence function. Note that the impact set is 

defined by the PMF quartiles, and the influence sets are the parameters in respective 

quartiles of the PMF. Depending on the separation observed in the impact sets, we could 

ultimately choose to estimate parameters only from the upper equivalence class(es); i.e. the 

set of parameters with |β| in the upper quartile. ◻

This example takes a narrow interpretation of the flexible construct we develop for 

identifying equivalence classes of parameter influence. However, even the above example 

allows for wild topological variation within a given equivalence class. For example, within a 

given equivalence class one would easily imagine there being many topologically distinct 

invariant sets due to both parameter variation and initial condition variation. Presumably 

there are other similar equivalence class violations such as ergodicity properties ([99, 100]), 

k – LCE stability ([101, 102]), etc. These issues can all be addressed by defining the various 

properties, e.g., the influence function, differently, or more restrictively such that we end up 

with increasingly more restrictive constructions such as the original notion of bifurcation 

sets. This flexibility in equivalencies is the point of this construction: we can, depending on 

our goals, data, etc., have substantial flexibility in how we set up how to choose what 

parameters to estimate all while explicitly acknowledging what we know we do not know we 
are preserving. For example, if we define the feature-metric to be the mean, we know we are 

allowing the system to explore or have many different coexisting invariant densities as long 

as they have a mean that lies within a given equivalence class.

Visual example: Figure 1 shows three potential equivalence class outcomes of the 

Houlihan analysis. The left-most plot in fig. 1 shows the case where the rank-ordering of 

influence is calculated on a by-coordinate basis; meaning, the equivalence classes include 

collections of entire coordinates. Here in the left-most plot in fig. 1 there are two 

equivalence classes each with a single member corresponding to the horizontal and vertical 

coordinates. The middle plot in fig. 1 shows a case where the influence can consist of 

subsets or portions of coordinates. In this example there are thresholds or points above and 

below which the equivalence classes are defined. In this case the definition of the 
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equivalence class for each coordinate does not depend on the other coordinates; meaning 

that there is no co-coordinate-dependence of equivalence class definitions. The right-most 

plot in fig. 1 demonstrates an example where the influence equivalence includes joint 

coordinate relationships. In this paper we will only address the first of these cases, leaving 

the more complex situations for later work.

5.4. Computational moving parts for throwing the Houlihan around the right parameters

The computational task of selecting parameters to estimate involves defining the 

equivalence-like classes, finding their boundaries, rank ordering the parameters by 

importance and has, broadly, five moving parts. First, select the feature-metric(s), g(p), e.g., 

mean. Second, formulate the representation of the space of parameters and their variation, 

including (i) parameter grid resolution, (ii) parameter perturbation range, (iii) parameter 

variation type, e.g., joint versus individual by-parameter parameter variation. Third, choose 

an influence function that defines how to model the parameterized variation of the feature-

metric variation with parameter variation. Fourth, choose a method for rank ordering these 

parameterizations by influence. Sometimes steps three and four can be done using a single 

method, e.g., linear regression with a L1 regularization or by using lasso with cross 

validation, and sometimes it is done in two steps, e.g., linear regression with a threshold on 

the β’s, partitioning the β’s into equivalence classes. And fifth, decide which parameters to 

keep or which equivalence classes, or which impact sets are important.

Feature metrics.—We use two feature metrics, mean and standard deviation of the 

invariant density generated by mechanistic model with set parameter values and initial 

conditions.

Parameter grid.—We begin with the nominal parameters ([90, 24, 1]), and then vary them 

in intervals of log2 over 10 decades in both directions. For example, for parameter i the 

parameter grid point for the kth decade was set as pi(nominal)2k. We did not consider joint-

variation of parameters, but varied parameters independently while holding all other 

parameters fixed at their nominal values.

5.4.1. Parameter selection methods: Influence functions, impact sets, and 
ranking—Given a feature metric as a covariate or input vector, e.g., the means of attractor 

densities for a set of parameter values, we use several methods for selecting the best set of 

parameters to estimate in a DA context. Some of these methods are stock—linear regression 

with lasso—some are standard practice—parameter selection using knowledge of the model

—and some are modifications of existing methods—see PCA-lariat below. We will see that 

the method for selecting the parameters matters, although not as much as the feature metric, 

and it is clear that sophisticated machine learning methods could be useful in this context.

Covariates or input vectors.: All of the methods below take a covariate matrix as input. 

The covariates correspond to vectors: one dimension of the covariate matrix corresponds to a 

feature metric calculated at every point along the parameter variation, e.g., the mean of a 

simulated attractor at every point along a one-dimensional parameter curve.
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By hand selection parameter selection — parameter selection using knowledge.: In our 

previous work we selected parameters to estimate by hand as they were tied to certain 

dynamical features, physiologic knowledge want to fit something in particular to solve a 

problem, e.g., phenotyping. We selected E and Vp because they seemed to have an impact on 

the mean ([4]) and tp because it was related to liver function; the results can be found in [1].

Automatic parameter selection using linear regression.: A basic method for determining 

influence is the linear dependence between the feature metric and parameter variation. In 

this setting we perform a linear regression between the feature metric and the parameters and 

we keep all β’s for which βi > (β1)(κLR). Here we set κLR = 20% or 0.2, meaning that we 

keep all the parameters that have a regression coefficient that explains at least 20% of the 

regression coefficient with the highest influence.

Automatic parameter selection using Lasso and cross validation.: A natural way of 

reducing the number of parameters in a model is to select parameters that have a lot of 

power explaining the feature metric while simultaneously being non-redundant. One way of 

achieving this is to use lasso, or L1 regularization to enforce a sparse representation of the 

parameter system ([83, 103, 104, 105]). We use the standard lasso formulation ([83]) with 

cross validation to determine the rank-ordering of parameters; the optimal value of λ, or the 

optimal number of parameters, is set using a cutoff of one standard error. Lasso 

automatically and uniquely rank orders parameters. We keep the parameters within one 

standard error of the minimum mean squared error (MSE) ensuring a sparse representation 

of the model.

Automatic parameter selection using elastic net approximation of ridge regression.: In 

addition to lasso regularization, we also use ridge regression, or L2 regularization ([83, 105, 

106]). We compute the ridge regression selected parameters using an elastic nets formulation 

with α set to 0.0001 where elastic nets formulation approachs L2 regularization, and select 

the number of parameters using cross validation in the same way as is done in the lasso 

setting. We keep the parameters within one standard error of the minimum mean squared 

error (MSE) ensuring a sparse representation of the model.

Automatic parameter selection using PCA-lariat with a single metric.: To add diversity 

to the set of methods for selecting parameters beyond linear regression-based methods, we 

devised a principle component analysis (PCA) ([107, 108, 109]) based algorithm for 

computing an influence function, then implement a rank-ordering scheme for defining 

influence equivalence. The method we develop, PCA-lariat, follows seven steps. First, 
estimate the PCs for the feature-metric, g(p), taking care to de-trend the summary. Second, 

estimate the percentage of the variance captured by the i – th PC, σPC(i). Third, identify the 

important PCs, or the PCs that explain variance above a threshold, κPC; we use 5%. Fourth, 

for each important PC, rank-order the contribution of each parameter or coordinate to the 

PC. Fifth, collect all the coordinates for all the important PCs that contribute proportionally 

to a given PC above a set threshold, κC, PCj(i) > κC; we use 10%. Sixth, for the important 

parameters for the important PCs, estimate the contribution per parameter:
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PCR(i) =
j

σPC( j) * PC j(i) . (3)

And seventh, rank order the important parameters by PCR and select the parameters above a 

given threshold, κI; we use 0.1, or 10%.

Multi-directional parameter wrangling.: Combining models, or model averaging can be 

very useful for improving results ([110, 111, 112, 1]), especially when you either know you 

want to adjust to multiple feature-metrics, or you do not know what feature metrics are 

important. Here, we only consider using set operations over methods, and consider three 

cases. First, we take the union of: (number of rank-ordered parameters, feature-metric, 

influence function) using one parameter per influence function, two feature metrics, mean 

and standard deviation. Second and third, we take the union of: (number of rank ordered 

parameters, feature-metric, influence function) using one parameter per influence function 

and one feature metric, either mean or standard deviation.

5.5. Evaluation scheme

The evaluation of the Houlihan methods is done in four steps. First, we apply the Houlihan 

methods to the ultradian model to select parameters to estimate and compare the parameter 

selections as the method is perturbed. Second, we use both the UKF and the MCMC DA 

methods to estimate these Houlihan-selected parameters for the four people in our cohort 

and calculate the mean squared error (MSE) between the data and the model state estimates 

(MCMC methods) and forecasts (UKF methods). Third, we use both the UKF and the 

MCMC DA methods to estimate parameters for both parameters that were previously chosen 

by hand in previously published work ([1]) and parameters that the Houlihan methods 

determined were low-influence parameters and again calculate the MSE between the data 

and model state estimates and forecasts. Fourth, we compare the MSE for the variously 

selected parameter sets.

6. Results

The results come in two stages. First, we present the rank-ordered parameters selected by 

different methods in order to demonstrate: (i) which parameters the methods selected, (ii) 

that the methods selected some but not all parameters, (iii) how the parameter selection 

varied across methods, and (iv) the rank-ordering of parameters by method. Second, we 

evaluate the methods by using the parameters selected in each method to forecast glucose 

with the UKF and smooth glucose with MCMC; methods are compared via the MSE 

between measurements and predictions.

6.1. Parameter selections by method

Table 2 shows the rank-ordered parameters selected by each parameter selection method. 

The methods were sensitive to the feature metric; the mean and standard deviation-based 

methods did not select the same parameters as important.
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For a given feature metric, all selection methods identified the same top two parameters — 

all methods ranked a1 and C1 as the top influencers of the mean, and ranked Rg and C3 as 

the top influencers of the standard deviation. However, the entire influence sets differed 

substantially. This indicates that influence set structure, as defined (upper quartile of 

influence), is sensitive to choices of influence functions and influence equivalence 

definitions.

Interestingly, the equivalence classes of high and low parameter influence are preserved 

under perturbations to the influence function. Fig. 2 shows how the l1, l2 and PCA-based 

methods rank-order parameters according to how they influence the mean. While lasso is 

expected to preserve the ordering with different λ (it fits one-at-a-time), ridge regression 

also remains robust to variations in the regularization term, λ, adding parameters one at a 

time.

Most methods find only 5 – 6 influential parameters out of 21, greatly reducing the 

dimension of the parameter space. In all cases, the methods gave an entry point for which 

parameters to begin estimating; the next question, then, is whether using the Houlihan 

approach helps to reduce forecasting errors and improve convergence of parameter 

estimates.

Redundancy and influence.—Our goal is to select parameters to estimate during 

forecasting and smoothing tasks. We aim to facilitate this goal by identifying small 

parameter sets that have significant, minimally redundant influence over important 

dynamical features. Accomplishing this can minimize problems in identifiability, multiple 

coexisting invariant sets, etc. Fig. 3 visualizes variation of the feature-metric, mean and 

standard deviation of the invariant density with parameter variation, as well as how the 

methods partitioned parameters into a high and low-influence equivalence class. It is clear 

that some variations in some parameters create large shifts in the mean and variance (e.g. 

a1), whereas the mean and variance features are far less sensitive to other parameters, like E 
and td.

While the mean and standard deviation are not always influenced by the same parameters, 

the methods select parameters that have both high influence and relatively orthogonal 

influence; e.g., in the case of the mean the methods generally select a1 and C1, both 

parameters managing insulin secretion whereas the standard deviation-based methods often 

select Rg that controls insulin dependent glucose use. The low influence parameters, by 

comparison, are not able to move the mean or standard deviation appreciably and are 

therefore not able to fully explore the space. Similarly, the low influence parameters are 

relatively redundant. Following this logic one might predict that estimating alpha and C2 

would lead to the most accurate model estimates while estimating E and td would lead to the 

least accurate model estimates.

Comparison with by-hand selection.—In our previous work ([1]) we selected 

parameters to estimate by hand based on our desire to estimate certain parameters related to 

physiologic function, e.g., tp, and because of their obvious influence on parameters, e.g., Vp 

as could be deduced from other previous work ([4]) to influence the mean state. The 
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automated methods selected Vp and tp as high influence parameters, but not E, a parameter 

the methods determined was a low-influence parameter.

6.2. Parameter selection method evaluation

To evaluate the effectiveness of the machine-selected parameters compared to low-influence 

parameters as characterized by their βi’s, and the by-hand-selected parameters we used in 

our previous work, we compare the mean squared error (MSE) between the data and the 

forecasts for the various parameter combinations as shown in table 3. Fig 4 provides a visual 

summary of the results in table 3—the plots are calculated directly from table 3—for the 

MCMC smoothing setting, and demonstrates that all Houlihan-based parameter sets (of any 

size) noticeably out-performed the by-hand and low-influence parameter sets. Moreover, we 

see that most Houlihan-based methods achieve similar overall accuracy for parameter sets of 

cardinality ≤ 3. In addition, Houlihan-based methods that selected parameter sets with 4 or 

more parameters achieved the best performance, and there is a general trend of improved fit 

with more parameters—this contrasts sharply with the by-hand parameter selections, whose 

performance tapered with more than 3 parameters (probably due to unforeseen issues of 

identifiability).

In particular, lasso chose parameters with the lowest MSE between forecasts and 

measurements in 7 of 8 cases. In one case, taking the union over methods shared the same 

MSE with lasso. And, in one case, the lowest MSE was observed with a pair of low-

influence parameters. In this case it was the parameter-pair combination, α with E, that 

mattered. This result implies that generally low influence parameters may, for some people, 

be physiologically important and explore particular pathophysiology necessary to 

synchronize to the individual. We also know that as the number of parameters increased to 3 

≥, some of the MCMC parameter estimates with the lowest MSE found multiple, competing 

equilibria, were not unique, and sometimes did not fully converge. For example, Fig. 5 

shows parameter estimates of two different parameters—one that converges and one that 

does not—for two parameter sets for P1 with standard deviation as the feature-metric. When 

lasso-selected parameters are restricted to two parameters for P1, then both parameters, Rg 

and C3 converge producing a MSE of 600; C3 is shown in Fig. 5. In contrast, lasso restricted 

to the one standard error minimum selects eight parameters, has a lower MSE of 375 but at 

least one of the parameters, tp, does not converge well as shown in Fig. 5. This means that as 

we increased the flexibility, we lowered the MSEs but possibly came at the expense of 

physiology or convergent parameter estimates.

7. Discussion

Summary

Our most broad conclusion is that the machine-selected parameters work better than hand-

selected parameters and that the Houlihan methods are a scalable method for selecting which 

parameters of a mechanistic model to estimate using DA methods. This means that stacking 

machine learning techniques on top of, or together with, DA is a helpful strategy, especially 

when models are complex and data are sparse, as in our glucose modeling example.
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Houlihan methods

We intuitively define the Houlihan method(s) as a collection of methods for selecting the 

most productive model parameters to estimate with machine learning techniques applied to 

simulated model output under parameter variation subject to a set of features, e.g., the mean 

of a state.

Feature metric selection matters:

For all methods, the feature metric (mean or standard deviation) was the first-order driver of 

differences in parameter rank orderings. This implies two key questions, one applied and one 

abstract. The applied question involves how to make an appropriate choice of feature-metric 

for a given application, problem or to capture a given desired dynamical feature. The more 

abstract question addresses how to quantify the impact, variability, or dependence of a given 

feature-metric selection on the parameters the Houlihan method identifies as important—in 

other words, variance or invariance of the feature-metric relative to the Houlihan-selected 

parameters.

Regarding the applied problem, choosing a metric is highly problem-dependent. In some 

biomedical applications, sensitivity of the mean to parameter perturbation is not especially 

important for a good fit; e.g., there are physiologic systems where variation in the mean 

across people is small, but excursions, peaks, number of peaks, location of peaks, dynamical 

features related to invariant measures, etc., may be a more important types of features to 

capture. The way we constructed the Houlihan method allows for a great deal of flexibility 

in the metric choice for this reason. One can imagine developing feature metrics based on 

many features of the model such as spectral properties of the system, e.g., a feature metric 

based on the L2 (Euclidean) distance from a baseline power spectrum, the proportion of 

power found at certain frequencies, Lyapunov exponent magnitudes or numbers, types or 

features of the invariant structures, e.g., fixed points, as well as broad ergodic type averages, 

etc. Given the wide possible choices, anchoring the metic to explicit clinical decision-

making or to a scientific hypothesis and its evaluation will help guide the feature metric 

choice.

The diversity available for choosing a feature-metric motivates some very natural 

theoretical/mathematical questions related to sensitivity to the metric choice and necessary 

conditions for global and/or unique or even satisfactory convergence. For example, we might 

want to quantify how sensitive—here we did this by comparing the mean and standard 

deviation as feature-metrics—a Houlihan identified parameter set is to a given feature-

metric, whether there is there an equivalence between classes of or individual feature-

metrics, and a more ambitious goal of identifying whether there are certain classes of 

feature-metrics might be universal or yield the same results via some sort of ergodic-like 

hypothesis, etc. Similarly, one could imagine placing constraints on the model spaces; e.g., 

compactness, such that all metric of a type converge to the same answer. These types of 

questions follow in the lineage of dynamical systems and mathematics in general.
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The cutoff matters:

The cutoff for influence has a substantial impact on the ability to estimate parameters. For 

example, lasso-selected parameters usually minimized MSE, but the induced MSE and 

MCMC convergence were both sensitive to the influence cutoff. All the methods had this 

sensitivity, and estimating optimal cutoffs automatically would be beneficial.

The selection method sometimes matters:

For the high-ranked parameter choices, the feature-metric was the primary difference 

between selected parameter sets. However, as the number of parameters included was 

increased, the methods diverged. We suspect that as the complexity of feature metrics and 

ranking methods increases, e.g., using nonlinear regressions, there will be more sensitivity 

of the parameter selections to the methods.

Physiology matters:

We know from carefully considering the convergence properties of the MCMC chains that 

some of the lowest MSEs for the runs with three or more parameters didn’t converge well. 

Meaning, as we increased the flexibility, we lowered the MSE but possibly at the expense of 

physiologic fidelity or convergent parameter estimates. For pure forecasting applications this 

may or may not matter, but when we want the parameters to be meaningful, we need the 

parameter estimates to converge, not necessarily to a unique set of parameters, but to 

distinctly different parameter estimates that can be treated as hypotheses. Another problem 

that can arise because of physiology is that different people with different physiology can be 

sensitive to different parameters. For example, the physiological feature that is important to 

personalize the model for a particular person may not be related to the properties captured 

by the feature metric, e.g., the mean, and in this circumstance parameters identified as low 

influence relative to the feature-metric will not be estimated. A potential example of this is 

P1, for whom estimating α and E achieved the lowest MSE despite E and α being low-

influence parameters relative to both the mean and standard deviation.

Effective parameter space exploration:

Abstractly, a mechanistic model is a parameterized family of functions whose parameters, 

depending on the model, have varying degrees of independence. From this perspective, the 

goal of the Houlihan methodology is to find a way to explore the maximal amount of the 

parameter space while minimizing the redundancy between parameters. The feature-metrics 

and the influence functions define which subsets of the parameter space are most useful to 

open for exploration, which in turn defines which dynamics can be explored. For example, 

focusing on variations of the mean may close off other dynamical features such as amplitude 

variations or any feature that is not uniquely defined by the variation of the mean. We do not 

yet have a good method for understanding how a feature-metric may influence other, 

potentially valuable explorations. We acknowledge that understanding and quantifying how 

limited feature-metrics influence the effective parameter space of a model is an important, 

unexplored problem.
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Incorporating knowledge into the Houlihan method:

There are several ways—both systematic and ad hoc—that knowledge can be incorporated 

into the Houlihan framework; here we will discuss four. First, the selection of the feature 
metric or the feature by which rank-ordering of parameters is calculated can include a great 

deal of knowledge. The feature metric is somewhat akin to the creation of a cost function, 

although it differs from a cost function in that it is not explicitly optimized; this is a 

systematic method for incorporating knowledge. A second systematic way to incorporate 

external knowledge into the Houlihan method is to incorporate constraints into the ML 

machinery, e.g., by limiting the space over which parameters can vary or how parameters 

must co-vary according to a functional relationship. A third and more ad hoc but powerful 

way—a way we often use-of incorporating external knowledge is to apply the Houlihan rank 

ordering to select parameters and then include or keep any additional parameters known to 

be important; e.g., parameters that are dynamically important such as bifurcation parameters 

or parameters that are know to be physiologically meaningful for a given application. And a 

fourth ad hoc way of incorporating knowledge into the Houlihan method is to apply the 

Houlihan method to a limited set of parameters selected because they are useful to estimate 

for some reason, e.g., because external knowledge has determined that the other parameters 

can be held fixed because they cannot change in a meaningful way. From these examples it 

is clear that there are likely other ways of incorporating external knowledge into the 

Houlihan workflow.

Computational complexity:

We consider only the case here where we vary any one single parameter while leaving all 

other parameters fixed at their nominal values; this means that the dimension of the input for 

regression used to select the most useful parameters scales linearly in the number of 

parameters. If we were to co-vary parameters, meaning if varied all parameters at once, 

depending on how one choose to partition the parameter space, the computational 

complexity would explode. In this way, the framework we present here does not solve the 

computational complexity problem of exploring parameter space. Instead, the results in this 

paper show that even by only considering feature-metric variation along one-dimensional 

subspaces of the full parameter space we can gain substantial insight into which parameters 

have the most impact on the features we are interested in approximating. Moreover, we can 

also see the limitations of this approach — we do observe synergy between parameters 

where combinations of some low-influence parameters for some people can end up having a 

high influence on the model fit.

Obvious extensions:

In this paper, we stack machine learning on top of DA, which has many potential extensions; 

here we identify six directions we find particularly compelling in order of increasing 

difficultly. First, feature-metrics could be generalized to be multi-dimensional both over 

states and over types of feature-metrics. Second, feature selection methods could be 

developed or employed to select feature metrics from among many. Third, estimates of 

influence could be calculated to include jointly varying parameters—this would be 

computationally expensive and would require computational innovation in high-dimensional 
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settings, e.g., the computational complexity discussion above. Moreover, this problem is not 

necessarily a simple extension because the parameter spaces of mechanistic models are not 

likely to form a basis for the model space, in contrast to the parameters of the space of 

polynomials which do form a basis. Of course this lack of a basis structure is part of the 

problem—parameters of mechanistic models and likely the physiology they represent are 

redundant, likely for biological reasons such as robustness. Fourth, we use linear regression 

and PCA-based machine learning methods; it is likely that more sophisticated machine 

learning methods e.g., full elastic nets, support vector machines which are a direct 

generalization of both lasso and ridge regularizations [106], deep learning, sparse machine 

learning (compressed sensing), Bayesian methods, model averaging and ensemble learning 

could all be used and would likely improve the parameter selections. However, it does seem 

that methods that preform both regularization and parameter selection are particularly 

helpful, e.g., lasso regression. Fifth, further stacking of machine learning techniques on top 

of the Houlihan methods would likely be productive. For example, greedy, Gibbs-sampling-

like rotation between sets of parameters that are identifiable to explore different subsets of 

the parameter space could minimize both model errors and identifiability issues. And sixth, 

feature-metrics could be made substantially more sophisticated, insightful and tailored to 

circumstance or physiologic knowledge, such as preserving power in certain frequency 

bands. More sophisticated feature metrics could also be used to gain insight into potentially 

meaningful constraints on parameters for use in operational DA.

8. Conclusion

We devised a methodology for rank-ordering parameters of a mechanistic model and using 

this rank-ordering to select an effective subset of parameters to estimate when projecting 

biomedical data onto the model via data assimilation. This methodology specifically targets 

parameter sets that avoid issues of model identifiability and parameter-estimation 

convergence problems, improving forecasting and phenotyping performance of data 

assimilation methods that use mechanistic biological models. Using machine learning to 

select parameters to estimate worked: the machine-chosen parameters reduced the mean-

squared error between estimates and forecasts and data in nearly all cases by factors as large 

as three. These results imply that combining mechanistic and non-mechanistic machine 

learning could be a particularly productive direction of future research and could greatly aid 

in our ability to use computational machinery to both help deepen our physiologic 

understanding and help clinicians achieve more positive outcomes in clinical settings.

Acknowledgements

We would like to acknowledge the helpful comments from three anonymous reviewers.

We acknowledge financial support from NIH RO1 LM012734 “Mechanistic machine learning” and LM006910 
“Discovering and applying knowledge in clinical databases.”

Appendix A.: Ultradian model

The model is comprised of a set of six ordinary differential equations; the model is non-

autonomous because it has an external, time-dependent driver, consumed nutrition. The six 
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dimensional state space made up of three physiologic variables and a three stage filter. The 

physiologic state variables are the glucose concentration G, the plasma insulin concentration 

Ip, and the interstitial insulin concentration Ii. The three stage filter (h1, h2, h3) which 

reflects the response of the plasma insulin to glucose levels [90]. The model was designed to 

capture ultradian oscillations missing in previous models. The ordinary differential equations 

that define the model are [24]:

dI p
dt = f 1 G − E

I p
V p

−
Ii
V i

−
I p
tp

(A.1)

dIi
dt = E

I p
V p

−
Ii
V i

−
Ii
ti

(A.2)

dG
dt = f 4(h3) + IG(t) − f 2(G) − f 3(Ii)G (A.3)

dh1
dt = 1

td
I p − h1 (A.4)

dh2
dt = 1

td
h1 − h2 (A.5)

dh3
dt = 1

td
h2 − h3 (A.6)

The state variables include physiologic processes that have been parameterized, including: 

f1(G) represents the rate of insulin production; f2(G) represents insulin-independent glucose 

utilization; f3(Ii)G represents insulin-dependent glucose utilization; f4(h3) represents delayed 

insulin-dependent glucose utilization. These functions are defined by:+

f 1(G) =
Rm

1 + exp( −G
Vgc1

+ a1)
(A.7)

Albers et al. Page 20

Math Biosci. Author manuscript; available in PMC 2020 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



f 2(G) = Ub(1 − exp( −G
C2Vg

)) (A.8)

f 3(Ii) = 1
C3Vg

(U0 +
Um − U0

1 + (κIi)
−β ) (A.9)

f 4(h3) =
Rg

1 + exp(α(
h3

C5V p
− 1))

(A.10)

κ = 1
C4

( 1
V i

− 1
Eti

) (A.11)

The nutritional driver of the model IG(t) is defined over N discrete nutrition events [4], 

where k is the decay constant and event j occurs at time tj with carbohydrate quantity mj

IG(t) =
j 1

N m jk
60 exp(k(t j t)) N {t j t} (A.12)

Table A.4.

Full list of parameters for the ultradian glucose-insulin model [24]. Note that IIGU and 

IDGU denote insulin-independent glucose utilization and insulin-dependent slucose 

utilization, respectively.

Ultradian model parameters

Name Nominal Value Meaning

Vp 3 1 plasma volume

Vi 11 1 interstitial volume

Vg 10 1 glucose space

E 0.2 1 min−1 exchange rate for insulin between remote and plasma compartments

tp 6 min time constant for plasma insulin degradation (via kidney and liver filtering)

ti 100 min time constant for remote insulin degradation (via muscle and adipose tissue)

td 12 min delay between plasma insulin and glucose production

k 0.5 min−1 rate of decayed appearance of ingested glucose

Rm 209 mU min−1 linear constant affecting insulin secretion
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Ultradian model parameters

Name Nominal Value Meaning

a1 6.6 exponential constant affecting insulin secretion

C1 300 mg l−1 exponential constant affecting insulin secretion

C2 144 mg l−1 exponential constant affecting IIGU

C3 100 mg l−1 linear constant affecting IDGU

C4 80 mU l−1 factor affecting IDG

C5 26 mU l−1 exponential constant affecting IDGU

Ub 72 mg min−1 linear constant affecting IIGU

U0 4 mg min−1 linear constant affecting IDGU

Um 94 mg min−1 linear constant affecting IDGU

Rg 180 mg min−1 linear constant affecting IDGU

α 7.5 exponential constant affecting IDGU

β 1.772 exponent affecting IDGU
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Highlights

• Data assimilation using sparse data and complex models with many 

parameters can lead to non-unique or non-convergent parameter estimates.

• When identifiability failure arises it can be difficult to decide which 

parameters to estimate from among the 10s to 100s of potential parameters.

• The parameter Houlihan is a framework for selecting which parameters to 

estimate using data assimilation in the context of sparse data and 

identifiability failure to minimize non-uniqueness of parameter estimates and 

error.
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Figure 1. 
Shown are three different Houlihan constructions: left shows equivalence class by coordinate

—this is the construction we use in this paper; middle shows equivalence by subsets of 

coordinates but retains the non-joint parameter dependency assumption; right shows a fully 

joint equivalence where combinations of parameters can generate influence when individual 

parameters do not, similar to the notion of bifurcation sets.
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Figure 2. 
The rank-ordered influence function with a feature-metric set to the mean for lasso, ridge 

regression, and PCA-lariat methods. Note that βi delineates the ith parameter of the lasso/

ridge regression and λ is the Lagrange multiplier associated with the lasso/ridge 

regularization where λ = 0 is the un-regularized regression. As λ increases the 

regularization is increased, decreasing the magnitude of all βi for i > 1 while increasing the 

influence of β0 [113].
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Figure 3. 
The influence for two feature metrics, mean and standard deviation, versus parameter 

variation for high impact and low impact parameters.
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Figure 4. 
The overall performance of each method in the smoothing setting. The vertical axis indicates 

the %-optimal MSE for a given method, averaged over the four patient data sets. Note that 

methods are labeled as blue to red, where the minimally-performing methods are blue and 

the maximally-performing methods are red. The plots are estimated directly from the 

information in Table 3.
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Figure 5. 
The posterior densities, Markov chains, and MSE surfaces, for two parameters taken from 

two sets of parameters. The top set of plots shows C3 estimates for P1 where lasso is allowed 

to select two parameters with standard deviation set as the feature metric; C3 converges well. 

The bottom set of plots show tp estimates for P1 for lasso-selected parameters at one 

standard error minimum—eight parameters are selected in this case—with standard 

deviation set as the feature metric; tp does not converge to a unique minimum but has a 

lower MSE than cases where the parameters are uniquely identified.
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Table 1.

Demographic information and summary statistics are reported for the four participants whose retrospectively 

collected data are included in the study.

Data Summary

Participant ID P1 P2 P4 P5

Age 40 – 50 40 – 50 40 – 50 40 – 50

Disease Status T2D T2D No Diabetes No Diabetes

Medications metformin metformin — —

Total # glucose measurements 304 211 520 322

Total # meals recorded 124 76 370 184

Total # days measured 16 16 53 52

Mean measured glucose 113 ± 25 127 ± 32 92 ± 17 101 ± 16
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Table 2.

The rank ordering choice of the four parameter selection methods for the feature-metrics mean, μ, and 

standard deviation, σ.

Rank-ordered parameters per selection method out of 21 possible parameters

method 1 2 3 4 5 6 7 8 9 10 11

LASSO μ a1 C1 Vp tp Rm C3 — — — — —

LASSO σ Rg C3 Um a1 C1 tp Rm Vp – — —

Linear regression μ a1 C1 C3 Rm tp Vp Um Rg C4 Ub U0

Linear regression σ Rg C3 Um a1 C1 Rm Vp tp kdecay — —

Ridge regression μ a1 — — — — — — — — — —

Ridget regression σ Rg — — — — — — — — — —

PCA μ a1 C1 C3 Rm tp Vp Um — — — —

PCA σ Rg C3 Um a1 C1 — — — — — —
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Table 3.

The mean squared error (MSE) between forecast/smoothed and measured glucose. The machine-based 

methods, almost always selected the parameter set that achieved the MSE minimum, but for some individuals, 

certain hand-chosen parameters matter.

Rank-ordered parameters per selection method

MSE for MCMC MSE for UKF

parameter P1 P2 P4 P5 P1 P2 P4 P5 method-feature-metric 
pairs

a1 822 1140 338 296 809 1270 304 356 LASSO(μ), LR(μ), 
PCA(μ)

Rg 655 1180 475 288 672 1490 470 401 LASSO(σ), LR(σ), 
ridge(σ), PCA(σ)

tp 807 1020 448 349 788 1050 407 420 by-hand, high-influence

Vp 820 1120 332 320 805 1300 313 362 by-hand, high-influence

E 681 1250 655 500 721 1380 704 724 by-hand, low-influence

α 501 1250 526 346 526 1580 528 394 low-influence

td 530 1080 730 674 NaN 1260 NaN 480 low-influence

Rank-ordered parameter pairs per selection method

(a1, C1) 570 1080 285 276 698 1290 258 330 LASSO(μ), LR(μ), 
PCA(μ)

(Rg, C3) 593 923 210 297 613 1260 215 385 LASSO(σ), LR(σ), 
ridge(σ), PCA(σ)

(a1, Rg) 578 1130 292 296 614 1400 269 343 Union of rank 1 over 
methods

(α, E) 454 1174 518 345 483 1310 535 520 low-influence

(α, td) 432 993 525 347 NaN 1120 NaN NaN low-influence

(E, td) 462 1030 592 487 643 1190 NaN 490 low-influence

Rank-ordered parameter 3-tuple per selection method

(a1, C1, Vp) 569 1060 284 276 663 1310 260 329 LASSO(μ) (1st)

(a1, C1, tp) 518 864 247 275 NaN NaN 234 294 LASSO(μ) (2nd)

(Rg, C3, Um) 590 922 190 294 618 1140 228 391 LASSO(σ), LR(σ), 
PCA(σ)

(a1, C1, C3) 431 1020 261 274 1330 1110 251 340 LR(μ) PCA(μ)

(C2, E, α) 442 1020 518 346 479 1250 535 515 low-influence

(td, C2, α) 432 894 525 347 NaN 1190 NaN NaN low-influence

(td, E, α) 398 956 479 343 NaN 1120 NaN 520 low-influence

(td, E, C2) 464 941 592 489 630 1190 NaN NaN low-influence

Rank-ordered parameter 4-tuple per selection method

(a1, Rg, C1, C3) 398 864 182 288 649 985 265 324 Union of rank 2 over 
methods

Full Houlihan for μ and σ

(a1, C1, Vp, tp, Rm, C3) 414 862 217 229 661 NaN 236 291 Lasso(μ)
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Rank-ordered parameters per selection method

MSE for MCMC MSE for UKF

parameter P1 P2 P4 P5 P1 P2 P4 P5 method-feature-metric 
pairs

(Rg, C3, Um, a1, C1, tp, 
Rm, Vp)

375 863 182 231 632 942 224 289 Lasso(σ)

Method with the lowest MSE

Lasso Lasso Lasso/Union Lasso low-influence Lasso Lasso Lasso
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