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ABSTRACT To visualize the personalized distributions of pathogens and chemical
environments, including microbial metabolites, pharmaceuticals, and their metabolic
products, within and between human lungs afflicted with cystic fibrosis (CF), we
generated three-dimensional (3D) microbiome and metabolome maps of six ex-
planted lungs from three cystic fibrosis patients. These 3D spatial maps revealed
that the chemical environments differ between patients and within the lungs of
each patient. Although the microbial ecosystems of the patients were defined by the
dominant pathogen, their chemical diversity was not. Additionally, the chemical di-
versity between locales in the lungs of the same individual sometimes exceeded in-
terindividual variation. Thus, the chemistry and microbiome of the explanted lungs
appear to be not only personalized but also regiospecific. Previously undescribed ana-
logs of microbial quinolones and antibiotic metabolites were also detected. Further-
more, mapping the chemical and microbial distributions allowed visualization of mi-
crobial community interactions, such as increased production of quorum sensing
quinolones in locations where Pseudomonas was in contact with Staphylococcus and
Granulicatella, consistent with in vitro observations of bacteria isolated from these
patients. Visualization of microbe-metabolite associations within a host organ in
early-stage CF disease in animal models will help elucidate the complex interplay
between the presence of a given microbial structure, antibiotics, metabolism of anti-
biotics, microbial virulence factors, and host responses.

IMPORTANCE Microbial infections are now recognized to be polymicrobial and per-
sonalized in nature. Comprehensive analysis and understanding of the factors under-
lying the polymicrobial and personalized nature of infections remain limited, espe-
cially in the context of the host. By visualizing microbiomes and metabolomes of
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diseased human lungs, we reveal how different the chemical environments are
between hosts that are dominated by the same pathogen and how community
interactions shape the chemical environment or vice versa. We highlight that
three-dimensional organ mapping methods represent hypothesis-building tools that
allow us to design mechanistic studies aimed at addressing microbial responses to
other microbes, the host, and pharmaceutical drugs.

KEYWORDS GNPS, Pseudomonas, spatial mapping, Stenotrophomonas, antibiotic
distribution, cystic fibrosis, metabolomics, microbiome

An increasing rate of infection from multidrug-resistant opportunistic pathogens has
become a significant burden in recent years. Proliferation of these pathogens due

to overuse of antibiotics, including antibiotics of last resort (1–4), is a threat to human
health and is already associated with increased mortality (5, 6). One reason for indis-
criminate use of broad-spectrum antibiotics and combination therapy in complex
polymicrobial infections is the lack of knowledge with regard to how microorganisms
interact with each other, the host, and their chemical environment, leading to strategies
that target bacterial pathogens broadly. Thus, specific microbial pathways that are
involved in detrimental microbe-microbe interactions (7), microbe-host interactions (8),
and microbe-drug interactions (9) can serve as new targets for targeted drug discovery.
Knowledge of such interaction-mediating microbial pathways and their prevalence will
shape the future of drug discovery. In this regard, even though we have begun to
appreciate the presence of multiple subpopulations by imaging of community struc-
tures (10–12) and by genome sequencing (13–15), information about the specific
microbial pathways involved in mediating the interactions mentioned above, about the
molecular distribution of xenobiotic compounds, and about how such distributions are
associated with specific microbial structures within the context of a host is largely
lacking.

We developed a methodology to map microbial and metabolite distributions in a
human lung in three dimensions (3D) to identify pathways that may be mediating
microbial interactions and to visualize the distribution of antibiotics in relation to
microbial community structure (16). These three-dimensional organ maps allow visu-
alization of chemical and microbial microenvironments and consequently may provide
better insights into the complex processes that take place within a host. Here, we
applied this methodology to elucidate spatial variation within and between the lungs
of three individuals afflicted with cystic fibrosis (CF).

CF is a genetic disease caused by a mutation in the cystic fibrosis transmembrane
conductance regulator (CFTR) gene that results in defects of the encoded CFTR protein.
The primary function of CFTR protein is of an ion channel that regulates liquid volume
(mucus) on epithelial cells through secretion of chloride ions and inhibition of sodium
absorption. Due to defects in CFTR protein, sticky mucus accumulates in the upper airways
and lungs of CF patients and serves as a growth medium for various microbes, including
opportunistic pathogens, resulting in chronic and recurrent polymicrobial infections. In
the 1930s, children diagnosed with CF died as infants shortly after diagnosis (17). Due
to advances in modern medicine, including the use of antibiotics and better clinical
management of the disease, individuals with CF can now expect to live on an average
into their forties even though most patients are waitlisted for organ transplant by the
time they reach adulthood (18). Improved clinical management is partly made possible
by better understanding of the polymicrobial nature of the infections of the lung and
development of antibiotic-based management of chronic infections targeting the
polymicrobial community (19). However, the virulence of pathogens in microbial lung
diseases such as CF, pneumonia, tuberculosis, and chronic obstructive pulmonary
disease is mostly studied in cultures derived from pulmonary secretions, by genome
sequencing, which does not represent complex in vivo conditions. Emergence of
transcriptomics studies has revealed differences in phenotypes of pathogens in cultures
and pathogens in clinical samples such as sputum and wound infections (20). Further-
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more, failure in treating an infection in a complex organ such as a human lung may
simply stem from the inability to treat localized infection foci, which can then spread
to the entire organ or become systemic as in the case of infections caused by Burkholderia,
for example (13, 14, 21, 22). Understanding how the production of microbial small
molecules involved in pathogenicity and community interactions varies with lung
biogeography, leading to infection hot spots, will enable the development of targeted
antimicrobials and improved drug delivery vehicles (14, 21, 23). Thus, CF presents an
important test case for improving strategies for management of polymicrobial infec-
tions, given better understanding of community structures and chemical environments
within the host.

In this study, with the consent of the patients, we mapped the chemical and microbial
makeup of six explanted lungs, removed during surgery from three CF patients, by using
3D volume cartography to understand how microbes, microbial molecules, and med-
ications are distributed and metabolized throughout the organ, providing insights into
microbe-microbe interactions.

RESULTS AND DISCUSSION

The explanted lungs of three patients afflicted with CF were sectioned to inventory
and map the associated microbiome and metabolome in three dimensions onto lung
models built from computed tomography (CT) scans acquired prior to surgery (see
Materials and Methods) (16). To perform 16S rRNA gene analysis, the tissue sections
were swabbed, enabling detailed inventory of bacterial DNA present within the pa-
tients’ lungs. We refer to our analysis of 16S rRNA gene as inventory of the bacterial
DNA and not of the bacteria themselves, since lungs associated with CF are known to
contain a significant amount of DNA from dead cells as well as extracellular DNA (24).
In total, six lungs from three patients contained bacteria that spanned 40 genera (see
Table S1 in the supplemental material). Bar plots of the most frequently amplified
genera and their relative abundances pooled for all anatomical locations are illustrated
for each patient in Fig. S1a in the supplemental material. The relative abundances of
these genera in individual sections of each patient are available in 3D maps (see below).
The DNA of the most commonly occurring pathogenic organism in CF, Pseudomonas
aeruginosa, was detected at highest frequency throughout the lungs of patients 1 and
3, whereas the lungs of patient 2 were dominated by DNA from the emerging pathogen
Stenotrophomonas. Even though the microbial population within CF-associated lungs
can be heterogeneous (25), dominance of a single pathogen in end-stage CF disease
has been described extensively in previous studies (26–28).

The principal-component analysis (PCoA) of microbiome data with weighted UniFrac
distance showed clustering between both lungs of patient 1 and the right lung of
patient 3 along the first two principal axes (Fig. S1b). Samples from the left lung of
patient 3 clustered separately, and comparisons of the 10 most abundant operational
taxonomic units (OTUs) further highlighted the differences between the microbial
communities present in the left and right lungs of patient 3 (Fig. S1c; see also Fig. S2a).
Apart from the dominant pathogen, the overall microbiomes between and within
patients were different along the second and third axes (see Fig. S1d and e). The
unweighted UniFrac distance metric yielded a more homogeneous distribution of
patients’ microbiome data in the PCoA space (Fig. 1a and b).

To map the relative frequencies of microbes onto the 3D lung models, we used our
previously described methodology (16). The distribution of prevalent (Pseudomonas
and Staphylococcus) and emerging (Stenotrophomonas and Achromobacter) microbes in
the CF-associated lungs is displayed in Fig. 2. Although a nearly uniform distribution
of dominant pathogens (Pseudomonas in patients 1 and 3 and Stenotrophomonas in
patient 2) was observed, all other microbes were distributed unevenly, often being
relegated to niche spots. For example, Achromobacter was mainly localized in the apex
of the right lung of patient 3 whereas Staphylococcus was present in the lower lobe of
both lungs of patient 1, at the apex of the lungs of patient 2, and in the middle and
lower lobes of the lungs of patient 3. The dominant pathogen, Stenotrophomonas,
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showed uniform distribution in the lungs of the patient 2 and differential distributions
in the lungs of patients 1 and 3 (Fig. 2). A degree of stratification is expected based on
the availability of oxygen; Achromobacter and Stenotrophomonas are strict aerobes
whereas Staphylococcus and Pseudomonas are facultative anaerobes residing as bio-
films in airway mucus of CF patients with the potential of undergoing anaerobic metab-
olism (29). Furthermore, both lobes of patient 1 and the left lobe of patient 3 not only
shared the dominant pathogen; their microbial communities were also more similar to
each other than either was to that of patient 2 (Fig. S2a and b). Despite these
similarities, comparing the communities by host based on permutational multivariate
analysis of variance (PERMANOVA), we observe a strong personalized effect (P � 0.001;
pseudo-F � 220.984). Selection pressures from competing microbes and chemical mi-
croenvironments, including antibiotic distributions, further leads to stratification of
niches occupied by specific organisms. To compare the microbial and chemical envi-
ronments, we next annotated the mass spectrometry (MS) data acquired from the
tissue sections and mapped the data onto the 3D models of the lungs of these patients
(see below).

To annotate molecular ions detected using a high-resolution-MS-based untargeted
approach, molecular network analysis was performed using the Global Natural Product

Patient 1 Left Lung Patient 1 Right Lung

Patient 2 Left Lung Patient 2 Right Lung

Patient 3 Left Lung Patient 3 Right Lung

Patient 1

Patient 2

Patient 3

a)

c) d)

Axis 1 (15.89 %)

Axis 2 (11.41 %)

Axis 1 (15.89 %)

Axis 2 (11.41 %)

b)

Axis 1 (9.593 %)

Axis 2 (7.307 %)

Axis 1 (9.593 %)

Axis 2 (7.307 %)

FIG 1 Principal-coordinate plot of metabolome and microbiome from lungs of three patients in the study. (a and b) PCoA plots of 16S
rRNA sequencing with the unweighted UniFrac distance. (c and d) PCoA plots of the mass spectrometry data with Jaccard distance data.
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Social Molecular Networking (GNPS) infrastructure (30). Molecular networking allows
reduction and organization of the overwhelming amount of chemical information
generated (in terms of mass spectra) in a high-resolution untargeted MS approach. The
data reduction is performed by combining and displaying identical tandem MS (MS/MS)
spectra as a single node and by displaying similar spectra as connected nodes (30, 31).
Similarities in MS/MS spectra relate to similarities in chemical structures, so oftentimes
such connected nodes represent chemical and biological transformations of a mole-
cule. In this study, 676,451 MS/MS spectra were filtered and merged into consensus
spectra, producing 9,874 nodes (Fig. 3a). The patient-specific molecules were displayed
by assigning a specific color to the data from each patient in the molecular network
analysis (Fig. 3a). In addition to annotating known compounds, molecular networking
revealed related molecules that differed by oxidation, methylation, acetylation, hy-
droxylation, glycosylation, chain length, and saturation of alkyl chains, which enabled
identification of previously undescribed metabolites of administered pharmaceuticals
and microbial quinolones, as described below for azithromycin and Pseudomonas

ND

ND

Low High

P3

P2

P1

Pseudo Achromo StenoStaph

FIG 2 Distribution of microorganisms. Distributions of Pseudomonas, Achromobacter, Staphylococcus,
and Stenotrophomonas (left to right) are shown for all three patients. Pseudo, Pseudomonas; Achromo,
Achromobacter; Staph, Staphylococcus; Steno, Stenotrophomonas, P1, patient 1; P2, patient 2; P3, patient
3, ND, not detected. An intensity scale is provided at the bottom right. Full visualizations of microbial
maps can be accessed via the following hyperlinks: patient 1, patient 2, and patient 3.
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aeruginosa quinolones. The frequency of detection of the antibiotics across patients’
samples is shown in Fig. 3b, with corresponding clusters from the full network dis-
played for each antibiotic. The nodes in the antibiotic cluster represent the metabolic
transformations of the antibiotic. Thus, molecular networking provides a glimpse into
metabolic processes. The resulting molecular network revealed that among three
patients, remarkably, only about 27.6% of detected molecular features were shared,

FIG 3 Molecular network analysis of all six lungs from three patients afflicted with CF. (a) The molecular network is color
coded by patient as follows: blue, patient 1; green, patient 2; orange, patient 3. The network clusters corresponding to
antibiotics are highlighted in boxes. (b) The numbers of samples that contained a given set of consensus MS/MS spectra
(represented as nodes in panel a) are plotted. The frequency of occurrence of antibiotics detected in this data set is
highlighted on the plot. The number of nodes in a cluster is reflective of the number of transformations of the parent
compound that were detected. The node of each parent compound is highlighted an asterisk. The fragmentation patterns
of the most frequently observed drugs, azithromycin and its analogs, are shown in Fig. S4; the large number of nodes
shown in the piperacillin cluster stems from its structural similarity to small peptidic compounds abundant in biological
samples and its inherent chemical reactivity with biological molecules (48). (c) Venn diagram of the overlap of consensus
fragmentation spectra between three patients.
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highlighting the diversity of chemistry present in diseased human lungs (Fig. 3c). All
three patients in this study had different mutations in the CFTR gene (see Materials and
Methods), and patients 2 and 3 were diagnosed with CF-related diabetes. Two of the
three patients (patient 1 and patient 3) suffered from chronic infections by Pseudomo-
nas aeruginosa. Thus, various factors may play a role leading to the observed chemical
diversity, which may arise from microbial (e.g., virulence and quorum sensing metab-
olites such as quinolones), host (e.g., bile acids, amino acids, sugars, eukaryotic lipids,
fatty acids, sterols, peptides, immune-related molecules), and xenobiotic molecules.
The diversity of these metabolites in CF sputum has been previously characterized (32),
and many of the same compounds were found in the lung tissue in this study.

A Procrustes analysis of metabolomics data and 16S rRNA data with closed-reference
OTU picking revealed a close association between the microbiome and metabolome in
the lung samples (Mantel test r statistic � 0.2409, P � 0.001, n � 277) (Fig. S3a and b).
This analysis suggests that the microbial composition of each sample is associated in
large part with the corresponding chemical diversity. Additionally, Procrustes analysis
performed on metabolomics and 16S rRNA with deblurred sub-OTUs (sOTUs) (33)
resulted in the same trend (Fig. S3c and d) (Mantel test r statistic � 0.2488, P � 0.001,
n � 263). A PCoA plot of the metabolome data with Jaccard distance metric showed
that a vast range of chemical diversity exists not only between the patients (Fig. 1c) but
also within a patient’s own lungs (Fig. S3e). This suggests that the chemical makeup of
the patients with CF disease is highly personalized and that a single CF lung contains
unique chemical microenvironments that provide different niches for microbial patho-
gens to live in. While metabolic diversity between patients in relation to disease state
was previously described (30, 32), the mechanisms leading to such diversity within the
lungs remain poorly understood.

Two of the additional benefits of an untargeted metabolomics analysis approach are
the ability to track the medications that are taken by the patient, as medical records can
oftentimes be incomplete and/or inaccurate due to lack of patient compliance, and the
ability to identify metabolic transformations of the medications. For example, in the
present study, in addition to the prescribed medications listed in the clinical records
(different antibiotics, bronchodilators, two medications for digestive health, medica-
tions given during surgery, and over-the-counter medications that are used as cough
suppressants), antihistamines and multiple over-the-counter medications have been
detected (Table 1). Detailed knowledge of extant exogenous compounds in tissues of
interest is important, among other reasons, for evaluation of their effect on the microbiome
and microbial interactions for better understanding disease etiology. Another advan-
tage of a molecular networking approach for untargeted metabolomics data analysis is
that it allows postulating structures for unknown compounds, nodes of which are
connected to nodes of known compounds (annotation propagation), and is therefore
very useful for identifying drug metabolites (Fig. 3b). The distributions of drugs and the
metabolites can then be evaluated by 3D cartography even in the absence of a stable
isotope tracer. By the use of a molecular networking approach in this study, unknown
metabolites that had never before been reported in blood or tissue of humans and
animals were detected (Fig. S4). The unknown metabolite of azithromycin (m/z 382.26)
is annotated as methylated-azithromycin, where the methylation, based on the analysis
of the fragmentation data, occurs in the core macrolide ring of azithromycin and
another unknown metabolite is proposed to have oxidation in the macrolide ring
(Fig. S4). These modifications of the core macrolide structure of azithromycin have not
been described previously, and their biological activities are unknown. Although these
metabolites were not detected in in vitro cultures of microbes isolated from these
patients in the presence of azithromycin, the possibility that these are microbially
derived warrants further investigation and cannot be ruled out. Specific in vivo condi-
tions may be necessary for regulation of microbial genes involved in antimicrobial
metabolism.

As with the microbial heterogeneity, we have observed differences in metabolome
distributions. Molecular networking and 3D volume cartography of the antibiotics
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revealed patient-specific metabolism and drug distributions (Fig. 4; see also Fig. S5).
The distributions of antibiotics were also found to be different between the left and
right lungs of the same patient. For example, the antibiotic piperacillin and its metab-
olites were abundant in the upper lobes of the right lung of patient 3 but present in
relatively lower abundance in the left lung of this patient (Fig. 4). In patient 3, there was
higher penetration of piperacillin in the upper and middle lobes and poor penetration
in the lower lobes of both lungs. Similarly, the antibiotic linezolid detected in patient
2 had lower relative abundance in the lower lobe of the right lung (Fig. S5). Overall, the
drug metabolites largely follow the same distribution as the parent drug except for the
glucuronidated metabolite of sulfamethoxazole (Fig. S5), indicating that metabolism
may not be a significant contributing factor for the observed uneven distribution of

TABLE 1 Medications detected in the MS data and time of administration prior to the day
of lung explantation surgerya

ac, continuously administered. The numbers 1, 2, and 3 at the top of column 2 and the data in columns 3,
4, and 5 represent patient 1, patient 2, and patient 3, respectively. Dashes indicate that the drug was not
prescribed.
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detected antibiotics. Differential levels of vascularization and tissue necrosis also con-
tribute to nonuniform drug penetration in severe end-stage CF disease.

To directly link microbiome and metabolome information and identify associations
of compounds detected in the lung tissue with specific microbes, isolates from lungs of
all patients were obtained from the clinical laboratory and cultured directly from swabs
of the lung tissue and MS data were acquired on the organic extracts of the in vitro
cultures by the use as the same protocol as that employed for the tissue extracts.
Molecular networking of MS/MS data from culture extracts and tissue extracts provided
insights into the molecules that are shared between microbes and the human host
(Fig. S6). These molecules included microbe-specific virulence factors, as well as various
other molecules such as lipids, fatty acids, amino acid metabolites, dipeptides, and
tripeptides. Similarly to our previously reported observation for one CF lung of a single
CF patient (16, 32), a larger diversity of quinolones was detected in cultured isolates

FIG 4 Distribution of selected antibiotics and the metabolites. P1, patient 1; P2, patient 2; P3, patient 3;
ND, not detected. An intensity scale is provided at the bottom (distributions of additional antibiotics and
their metabolites are shown in Fig. S5). The relative distributions should be compared within a patient
lung. Full visualizations of metabolite maps can be accessed via the following hyperlinks: patient 1,
patient 2, and patient 3.
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than in the lung tissue of all patients whose lungs were dominated by Pseudomonas in this
study, including a quinolone at m/z 268.170 that was never reported before (Fig. 5). On
the basis of MS (MS1) and tandem MS (MS2) data, the structure of this quinolone is
proposed to contain two double bonds in the alkyl side chain as opposed to the single
double bond found in unsaturated quinolones described in the literature (34) (Fig. S7).
Similarly to previous reports on patient sputum (32) and lung tissue (16), the Pseu-
domonas quinolone signal (PQS) was not detected in the lungs of patients 1 and 3. To
gain further insight into the variation in the distribution of quinolones in the patients
whose lungs were dominated by Pseudomonas, we investigated the distribution of
quinolones directly within the lungs of these patients (Fig. 5b; see also Fig. S8).
Previously, we reported that the quinolones were prevalent at the upper lobe of the left
lung of a single patient (16). In the present study, quinolones were found to be
exclusively present at the upper lobe of lungs of patient 1 and only in the middle of the
lungs of patient 3. This indicates that the patients whose lungs were dominated by
Pseudomonas showed individualized phenotypes with respect to the expression of
these quorum sensing molecules. Furthermore, rhamnolipids, the Pseudomonas bio-
surfactant, were not detected in the lungs of patients 1 and 3 in this study but were
detected in our previous study (16). Patient-specific production of rhamnolipids has
been reported previously by culturing isolates in the laboratory but not directly from
infected tissue (13). Such compartmentalization of microbial activity within patients, as
well as variations between patients, is a hallmark of complexity that is inherent to
polymicrobial infection in a complex organ, such as, in the present case, a CF lung.
Direct visualization of the individual phenotypes in diseased organs enables informed
understanding of divergent evolution as well as of the spatial molecular environment
within a host.

The spatial codistributions of microorganisms, antibiotics, and microbial molecules
were investigated to establish microbe-metabolite interactions. Although the presence
of a single dominant pathogen renders correlation analysis rather uninformative, several
trends have been observed. In particular, the distributions of certain microorganisms such
as Staphylococcus and Granulicatella were found to be associated with the distribution
of quinolones produced by Pseudomonas in patient 3, as shown for 2-nonyl-4(1H)-
quinolone (NHQ) in Fig. 5c. We have recently shown that the presence of Staphylococ-
cus aureus isolated from a CF patient resulted in increased quinolone and biofilm
production by coisolated Pseudomonas in vitro (35). Similarly, mixing cultures of Pseu-
domonas and Staphylococcus isolated from patient 3 in this study resulted in increased
production of 4-hydroxy-2-heptylquinoline (HHQ) and NHQ compared to the levels
seen with Pseudomonas grown alone under identical conditions (Fig. S9a). This obser-
vation indicates that the production of quinolone molecules is also modulated in part
by the microbial interactions present in a polymicrobial infection. The complexity of
these microbial interactions is further increased as antibiotics cause perturbations of
microbial communities reflected by suppression of the virulence factors. Variation in
production of quinolones by patient isolates of Pseudomonas was observed upon
exposure to sub-MICs (Fig. S9b). This, together with the other observations reported
here, supports the hypothesis that genetic changes may not be the only factors
responsible for changing metabolism and that microbial interactions, in conjunction
with multiple other factors, including sub-MICs of antibiotics and perhaps other xeno-
biotics, may also play a role, thus calling for the design of specific studies investigating
these phenomena in multiple patient isolates. Thus, it is reasonable to hypothesize that
both specific microbial interactions in the lungs and differential abundances of antibi-
otics could result in metabolic divergences, creating isolated regions of enhanced
biofilm formation and tissue damage in CF patients such as are often revealed by chest
X-rays and CT scans. Application of advanced techniques such as ultra-high-resolution
computed tomography in conjunction with the approach presented here could be a
focus of future studies (36).
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FIG 5 Molecules produced by P. aeruginosa in patients 1 and 3. (a) The molecular network cluster of quinolones detected in the lung tissue of patients 1
and 3 and in vitro microbial cultures of Pseudomonas isolated from sputum and the swabs collected from lung sections is shown. (b) The distributions of the
quinolone HHQ are shown for patients 1 and 3. All the other quinolones showed similar distributions in those patients (Fig. S8). (c) Inset views of the
distribution of Pseudomonas, Staphylococcus, Granulicatella, and the Pseudomonas quinolone NHQ in patient 3 suggestive of upregulation in quinolone
production by Pseudomonas in the regions where interactions of Pseudomonas with Staphylococcus and Granulicatella and possibly other microbes take place.
In agreement with this observation, the levels of production of HHQ and NHQ were also found to increase in cocultures of Pseudomonas and Staphylococcus
compared to Pseudomonas grown alone under identical conditions (Fig. S9).
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Conclusion. Cystic fibrosis is a devastating genetic disease affecting tens of thou-
sands of people worldwide. In this work, we have presented findings of spatial
distributions of microbes, medications, and their metabolites throughout lungs of three
patients afflicted with CF. We have found that although the microbiome is predomi-
nantly patient specific, the chemical differences between locations within patient’s own
lungs may be greater than interpatient variations. In-depth analyses revealed differen-
tial drug penetration, metabolism of prescribed medications, and microbial compart-
mentalization resulting in metabolic divergence governed by local microbial interac-
tions. Mapping of microbial communities and localized chemistries allowed visualization of
interactions among community members, such as production of quinolones by Pseu-
domonas when present in a community structure with other microbes such as Staph-
ylococcus or Granulicatella. Visualization of such local infection loci highlights the impor-
tance of development of effective drug delivery approaches. Considering recent advances
in the development of small-scale robots (as small as a few micrometers in size) that can
noninvasively access confined spaces (37), targeted access of internal tissues as well as
precision delivery of drug payloads may become feasible in the near future. In general,
a paradigm shift of considering localized regions of divergent microbial and chemical
distributions is an important next step for effective disease management of polymi-
crobial infections.

MATERIALS AND METHODS
Tissue collection and processing. To map the microbiome and metabolome of explanted lungs in

3D, the lungs of three patients were obtained in close coordination with the patient’s physician and the
surgical team. This work was approved by the University of California (UC) Institutional Review Board
(project no. 081500), and informed consents were obtained prior to tissue collection. The CFTR mutation
in patient 1 was dF508/G551D (with no clinical diabetes), in patient 2 was dF508/3120 � 1G�A (with
observed clinical diabetes), and in patient 3 was dF508/dF508 (with observed clinical diabetes). The
general workflow for tissue sectioning was described previously (16). Briefly, both the right and left lungs
were collected from subjects 1, 2, and 3. The tissue sectioning was performed at the hospital under the
guidance of a pathologist. The lungs were first sliced horizontally. The anatomical orientation of each
slice was recorded. Every alternate slice starting from the apex of the lung was further subsectioned into
small sections 1 to 2 cm3 in size, maintaining the recorded orientation. Each of the subsectioned tissue
pieces was swabbed with sterile soft foam swabs moistened with Tris-EDTA (pH 7.4). The swabs were
stored in 96-well bead plates from a PowerSoil-htp 96-well soil DNA isolation kit. The plate was placed
on dry ice prior to and during the collection step. The individual tissue pieces were stored in glass jars
placed on dry ice. The samples were kept frozen at �80°C until further processing. Bacterial DNA was
isolated from the swabs using a PowerSoil-htp 96-well soil DNA isolation kit following the manufacturer’s
instructions and was subjected to prokaryotic ribosomal 16S rRNA-based sequencing using the stan-
dardized Earth Microbiome Protocol (http://www.earthmicrobiome.org/protocols-and-standards/). Am-
plicons were cleaned, pooled, and then sequenced on an Illumina MiSeq sequencer. Because the lungs
were obtained at different times, the sequences analyzed for this study were obtained from two
individual sequencing runs (sequencing run 1, patients 1 and 2; sequencing run 2, patient 3). The
sequencing runs were performed at the Genomics Center of the Institute for Genomic Medicine of the
University of California, San Diego (UC San Diego). For untargeted metabolomics analysis, the tissue
sections were weighed and extracted with 1 ml/g of tissue with a 2:2:1 mixture of ethyl acetate,
methanol, and water. An aliquot of 150 �l of the extract was dried for each tissue section and analyzed
by MS.

MS data acquisition. The tissue extracts and extracts of bacterial isolates from the subjects were
cultured on sheep blood agar and MacConkey agar and were then resuspended in 80% methanol
containing 1 �M sulfadimethoxine and analyzed with a UltiMate 3000 ultra-high-performance liquid
chromatography (UHPLC) system (Thermo Scientific) using a Kinetex C18 reversed-phase UHPLC column
(50 by 2.1 mm, 1.7-�m pore size) and Maxis quadrupole-time of flight (Q-TOF) mass spectrometer (Bruker
Daltonics) equipped with an electrospray ionization (ESI) source. The column was equilibrated with 2%
solvent B (98% acetonitrile, 0.1% formic acid, and LC-MS-grade water, with solvent A as 0.1% formic acid
in water) for 1 min followed by a linear gradient from 2% solvent B to 100% solvent B over 10 min and
then by a hold at 100% solvent B for 2.5 min. A small wash segment was employed to wash the column
(100% solvent B for 0.5 min, 100% to 10% solvent B over 0.5 min), following which the column was kept
at 2% solvent B for 1 min at a flow rate of 0.5 ml/min throughout the run. MS spectra were acquired in
positive-ion mode in the range of 50 to 2,000 m/z. A mixture of sulfamethazine, sulfamethizole,
sulfachloropyridazine, sulfadimethoxine, amitriptyline, and coumarin-314 (10 �g/ml each) was run after
every eight injections for quality control. An external calibration was performed with ESI-L low-
concentration tuning mix (Agilent Technologies) prior to data collection, and Hexakis(1H,1H,3H-
tertrafluoropropoxy)phosphazene was used as an internal calibrant throughout the runs. A capillary
voltage of 4,500 V, a nebulizer gas (nitrogen) pressure of 2 bar, an ion source temperature of 200°C, a dry
gas flow of 9 liters/min at source temperature, and spectral rates of 3 Hz for MS1 and 10 Hz for MS2 were
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used. For acquiring MS/MS fragmentation patterns, the 10 ions showing the highest level of signal
intensity per MS1 were selected and fragmented. A basic stepping of collision radio frequency (RF) values
of 550 and 800 peak-to-peak voltage (Vpp) with a timing of 50% for each step and transfer time stepping
of 57 and 90 �s with a timing of 50% for each step was employed. The MS/MS active exclusion parameter
value was set to 3, with release after 30 s. The mass of the internal calibrant was excluded from the
MS/MS list, and a mass range of m/z 921.5 to 924.5 was used.

The microbial isolates of Pseudomonas aeruginosa, Staphylococcus aureus, and Stenotrophomonas
maltophilia collected from the patients were obtained from the Center of Advanced Clinical Medicine, UC
San Diego. The culturing of the isolates and the extractions were performed as described previously (16).
The MS data were collected using the same conditions as described above for lung tissue.

LC-MS/MS data analysis. All mzXML files were cropped with an m/z range of 50.00 to 2,000.00 Da
and a retention time (RT) range of 0.5 to 18.5 min. Feature extraction was performed using MZmine2
(http://mzmine.sourceforge.net/) with a signal height threshold of 5.0e3 (38). The mass tolerance was set
to 10 ppm, and the maximum allowed retention time deviation was set to 0.01 min. For chromatographic
deconvolution, the local minimum search algorithm was used with a minimum relative peak height of
1% and a minimum retention time range of 0.01 min. The maximum peak width was set to 1 min. After
isotope peak removal, the peaks in the lists of all samples were aligned with the retention time and mass
tolerances mentioned above. After the creation of a feature matrix containing the feature retention times
and the exact masses and peak areas of the corresponding extracted ion chromatograms, the metadata
of the samples were added. The signal intensities of the features were normalized (using probabilistic
quotient normalization [PQN]) (39).

Statistical analysis was carried out as follows. QIIME 2 was used to perform principal-coordinate
analysis (PCoA) (Jaccard distance metric). The PCoA plots were visualized in EMPeror (40).

Molecular networking. (i) Explanation of molecular networking analysis. In a mass spectrometer,
the MS/MS spectra acquired with identical parameters of collision energy are highly similar, if not
identical. For the majority of compounds, the spectra do not significantly differ even with small variations
in collision energy. Thus, automated matching of experimental MS/MS spectra with MS/MS spectra
available in spectral libraries is routinely performed to annotate known molecules. Molecular networking
algorithms further extend the capability of spectral comparisons, and their use is based on the fact that
molecules that are similar in structure and contain common substructural motifs fragment similarly in a
mass spectrometer. Thus, molecules that differ in the presence of small functional groups such as
additional methyl groups, hydroxyl groups, and sugar groups and with respect to saturation of chemical
bonds, cyclization, etc., have similar MS/MS spectra. This similarity in MS/MS spectra is quantified by
spectral alignment, and the result is assigned a similarity score. The output is displayed as nodes
connected by edges. Here, the nodes that are connected to each other represent molecules that are
structural analogs. The nodes that are not connected to each other represent molecules that deviate
significantly with respect to their structural similarity. Simply put, a cluster of connected nodes represents
a structurally related molecular family. For example, the drug sulfamethoxazole and its glucuroniated
counterpart consist of structurally similar molecules with similar fragmentation patterns and hence are
displayed as two connected nodes. Furthermore, all identical MS/MS spectra from different samples are
combined under one node. This allows rapid and efficient comparisons of data to identify molecules that
are common between samples and molecules that are unique. In summary, molecular networking allows
one to annotate known molecules, to predict analogs of known molecules, and to annotate biotrans-
formations of known molecules and allows comparisons across samples and across data sets. Detailed
descriptions of molecular networking fundamentals and use are available at https://ccms-ucsd.github
.io/GNPSDocumentation/massspecbackground/networkingtheory/.

(ii) Parameters. The molecular network was created using the online workflow at the GNPS platform.
The data were then clustered with MS-Cluster with a parent mass tolerance of 0.1 Da and a MS/MS
fragment ion tolerance of 0.1 Da to create consensus spectra. Further, consensus spectra that contained
less than 3 spectra were discarded. A network was then created where edges were filtered to have a
cosine score above 0.7 and more than 4 matched peaks. The edges between two nodes were kept in the
network if and only if each of the nodes appeared in the list of respective top 10 most similar nodes of
the other. The spectra in the network were then searched against GNPS’s spectral libraries. All matches
kept between network spectra and library spectra were required to have a score above 0.7 and at least
4 matched peaks. The molecular networks and the parameters used are available at the hyperlinks below
(see “Data availability”).

In total, 1,776 (7.8%) of the nodes were annotated, representing a rate higher than the typical rate
of annotations of 1.8% in an untargeted metabolomics experiment (30). This difference is likely a
consequence of the fact that many of the reference MS/MS libraries in the public domain were populated
from studies of human samples and contain most of the therapeutics used in the clinic. The error rates
of these annotations have been assessed by the GNPS community; with the scoring settings used to
obtain the annotations, 1% were classified as incorrect, 4% were classified as having insufficient
information available, and 4% were classified as representing an isomer or correct, while 91% were
presumed to be correct (30).

16S rRNA gene analysis. As described above, sequences were obtained over the course of 2 months
through two independent sequencing runs. The samples for patient 1 and patient 2 were sequenced in
one batch, and samples for patient 3 were sequenced separately. All sets of sequences were processed
and analyzed using Qiita (41). First, the sequencing runs were quality trimmed and filtered using default
parameters, resulting in 15,629,914 sequences with a mean length of 150 nucleotides. Next, after the
sequences were trimmed (at 150 nucleotides), they clustered into operational taxonomic units (OTUs)
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using the closed reference OTU picking method at 97% sequence similarity. UCLUST was used as the
underlying clustering algorithm, and Greengenes (August 2013 release) was the reference database used
(42). This resulted in 340 samples with a mean of 25,078 sequences per sample. After rarefaction at 3,369
sequences per sample, 277 samples were used for downstream analyses, including the creation of
taxonomy summaries and the calculation of the unweighted and weighted UniFrac distances. The most
abundant OTU for patient 2 was identified as representing an unclassified genus in the family Xan-
thomonadaceae. BLAST analysis of the sequence corresponding to this OTU from patient 2 revealed that
it belongs to the genus Stenotrophomonas. As controls, a total of 49 wells (either containing a blank swab
or empty) were interleaved between each of the two sampling sites (left lung and right lung) of the three
subjects. The vast majority of the samples (72%) yielded zero sequences. The remaining 14 samples had
a nonzero amount of sequences. Of these, 7 samples were represented by fewer than 4 sequences, a
negligible amount compared to the 3,500 sequences per sample used for analysis. And the last 7 samples
were represented by over 6,000 sequences each. Although the last sample set was processed without any
DNA, the well-to-well contamination that occurred during the DNA extraction step yielded these
sequences. We removed these samples since the DNA was biological and not representative of a type of
actionable contamination (43, 44).

For statistical analysis, QIIME2 (45) was used to compute the PCoA data and the weighted and
unweighted UniFrac distances (weighted UniFrac distances were described previously [46]) and Pro-
crustes analysis with metabolomics data. The PCoA and Procrustes plots were visualized in EMPeror (40).
The Mantel test was used to calculate r2 scores from comparisons between mass spectrometry data and
for both closed-reference and deblur 16S rRNA gene analysis data using scikit-bio’s 0.5.5 Mantel’s test
implementation.

3D lung model generation and visualization. The procedure for creation and visualization of 3D
models has been previously described (16). Briefly, the CT-scan images obtained from the radiology
department at the Hillcrest hospital in San Diego were combined to create a 3D lung model and the data
were exported in the .stl format using InVesalius 3.0. The extraneous pixels corresponding to the chest
and back of each model were manually deleted using Geomagic Wrap 3D modeling software. The
relative abundances of detected microbes and molecules were plotted onto these models using a
modified version of the �ili software available at http://mwang87.github.io/ili/ (16, 47).

Data availability. All data presented in this article are publicly available. The molecular network
analysis and parameters for the patient data are available at https://gnps.ucsd.edu/ProteoSAFe/status
.jsp?task�6f92a21af31d4569bcdb3cce803c600c. The molecular network analysis and parameters for the
patient data and data acquired on cultured microbial isolates are available at https://gnps.ucsd.edu/
ProteoSAFe/status.jsp?task�45d70e56faae4081bbba1f7a9ce38019. All raw and processed 16S amplicon
sequencing data and metadata are available with Qiita study identification no. 10169 and as an EBI study
with accession no. ERP110498. All figures in this article have associated raw data available through the
accession numbers given above. The code for 3D mapping via the browser tool github �ili is available at
https://github.com/mwang87/ili, and the tool can be accessed via the hyperlink http://mwang87.github
.io/ili/. The data determined in the analyses of MS/MS fragmentation patterns were deposited in an
online repository, namely, MassIVE (https://massive.ucsd.edu/ProteoSAFe/static/massive.jsp), and are
available under identifiers (ID) MSV000079652 and MSV000079398.

SUPPLEMENTAL MATERIAL
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