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Introduction

Given that even elementary issues like simple statistical test-
ing have engendered no consensus in their 300-year history, 
how could we expect agreement about more subtle issues? 
Without consensus on the basics, it should be no surprise 
that such a complex topic as multiple comparisons is so 
widely misunderstood and in conflict.

Sjölander and Vansteelandt are leading contributors to 
epidemiologic statistics, with many fine works to their credit. 
Their article [1], hereafter SV (singular), ascribes aspects of 
multiple comparisons (MC) controversies to frequentist sta-
tistics, and advises using no formal MC adjustments, instead 
relying on “informal, qualitative” judgments to deal with 
multiplicity problems. That advice may be a pragmatically 
defensible heuristic in settings in which the analysis targets 
only one focused research question represented by a few 
closely related statistical hypotheses or parameters, and all 
analyses and estimates are reported with equal emphasis and 
detail. In these simple cases it is possible to hold in mind all 
relevant associations and their interactions and uncertainties 
at once, and accusations of “fishing,” “hacking,” or “dredg-
ing” can be deflected.

Unfortunately, SV appears to propose such “informal 
adjustment” as a general compromise for all MC analysis, 
when it is not really a compromise at all; it is too close to 

repeating the old extreme advice to do no formal MC adjust-
ment [2]. That advice remains common but is unwise when 
there are several interdependent parameters or hypotheses 
in the analysis (as in the studies of composite exposures or 
multiple outcomes that typify occupational, environmental, 
and nutritional studies), because their dependencies can be 
used to dramatically improve the overall accuracy of the 
multiple results [3–12].

Worse, providing no formal adjustment is likely to be very 
misleading when the setting is highly exploratory, aiming to 
inform decisions about which of many weak possibilities to 
pursue with focused efforts, and it is wildly impractical in 
large-scale searches [13–16]. In those settings multiplicity 
problems are not only real, but far beyond the capabilities of 
human intuition to grasp without applying appropriate MC 
adjustments to gauge their impacts.

We will here outline these problems and the extensive 
developments that neither SV nor their opponent [17] 
describe, but which are pivotal for MC debates and adjust-
ments. We will emphasize once more that hierarchical 
(multilevel) regression enables one to exploit dependencies 
among tests and parameters or hypotheses to improve sta-
tistical summaries used for reporting and decision-making 
[7, 8, 12]. We will also emphasize the central importance of 
decision costs (utilities or loss functions) implicit in every 
statistical method that claims to produce a conclusion or 
decision. Much of modern statistics abuse and controversy 
stems from these loss functions being ignored in typical 
research applications, even though every conclusion and 
decision is infinitely sensitive to error costs. As discussed 
below and in more detail elsewhere [10], the problems from 
this neglect are intensified in the MC controversy.

The present essay will begin by explaining how these 
problems have nothing to do with differences between fre-
quentist and Bayesian methodologies and everything to do 
with contextual justification of statistical procedures (algo-
rithms) and valid interpretation of their outputs. Here, valid-
ity is judged by pragmatic criteria that represent a mix of 
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frequentist, Bayesian, and other methodologic idealizations. 
We relegate to an appendix our comments on the example 
study in SV [18], because its major problems are more basic 
than general MC issues, comprising a mix of bad modeling 
and reporting practices.

Summary of the dispute

The term “Bayesian” is used today for any procedure that 
generates a posterior distribution for a parameter, whether 
or not that distribution is uninformed or well-informed by 
the context (and in particular by causal models). Following 
much of the literature at large, SV repeat a mistake com-
mon at all technical levels: they identify “Bayesianism” with 
incorporating contextual information into the analysis. But, 
as will be discussed below, every Bayesian method for using 
contextual (“prior”) information has parallel frequentist 
methods using the same information. Hence, the difference 
in incorporation cannot be fundamental to the methods; it 
is instead cultural, with Bayesians being more permissive, 
allowing what may be vaguely supported opinions to replace 
precise and firm design information, while many frequentists 
insist on physical justifications for all statistical assumptions 
(e.g., randomization to justify independence assumptions) 
[15].

Mischaracterization of the difference between frequen-
tist and Bayesian methods may arise in part because it has 
been traditional to label contextual information as “prior 
information,” which evokes Bayesian methods. But again, 
frequentist methods can incorporate the same information 
(e.g., by incorporating it into a hierarchical model, as in 
empirical and semi-Bayes analyses [3–12, 14, 16]). Thus, 
identification of MC controversies and solutions with fre-
quentist versus Bayesianism mistakenly identifies the dis-
tinction between the two systems as one of ability to use 
contextual information, when instead it is one of input and 
output formulation.

Frequentist and Bayesians need the same 
contextual basis for multiple comparisons

There is indeed no sound rationale for most of the popular 
“frequentist” MC methods outside of the narrow settings 
in which they were developed. For example, Bonferroni 
adjustment is based on a loss function justified in only 
special applications where, for all stakeholders,1 the prior 
probabilities of true positives are very low, and the costs of 

false-positives also vastly exceed costs of false negatives—
to the point that it is acceptable to have only a few percent 
statistical power for individual hypotheses [10].

Such methods have been vigorously pushed by many 
statisticians with no attention to cost or power issues or to 
dependencies among hypotheses. But that sorry fact is no 
basis at all for condemning all frequentist adjustments. Thus, 
as analysts who regards both frequentism and Bayesianism 
as nothing more than limited toolkits, we find this quote 
from SV about the scope of MC adjustment is completely 
wrong:

From the frequentist perspective all possible collec-
tions of tests seem equally valid to adjust for, and thus, 
any choice between these seems to be completely arbi-
trary.

No! The choice is determined by the context and target of 
inquiry—each adjustment addresses a different context and 
target. One broad MC context is an exploratory screening 
(“fishing expedition”), which targets decisions about which 
associations to study further, reckoning with costs for false 
leads and missed opportunities. A different broad MC con-
text is simultaneous estimation, which targets accurate sum-
marization of the total information about an entire ensemble 
of associations, reckoning with trade-offs of bias and random 
error.

In these and other contexts, there are both frequentist and 
Bayesian perspectives that provide parallel guidance on what 
to adjust and how to adjust, starting with the recognition 
of factors that contribute to observed associations and are 
shared by the variables under study. Examples include see-
ing industrial chemicals as factors that contribute to occupa-
tional and environmental associations with disease, and see-
ing nutrients as factors that contribute to dietary associations 
with health [5, 11]. This type of causal analyses of associa-
tions forms the basis for entering prior (external) informa-
tion into MC adjustments without full specification of a prior 
distribution, in both frequentist and Bayesian evaluations. It 
explains (for example) why one should not put age and sex 
coefficients into the adjustment set for MC-adjusted explora-
tions of occupational or dietary effects [5, 11].

Causal analysis of associations is but one aspect of how 
context and design information, including costs of informa-
tion and errors, should determine what collection of tests 
and estimates to adjust and how adjustment should be done. 
This need for contextual input about the scope of adjustment 
is no different than the need for contextual input to set the 
α-level (maximum acceptable false-positive rate) of a sta-
tistical test [19], or to set the form, center, and spread for a 
prior distribution [20]. The need for these inputs has nothing 
to do with frequentist versus Bayes methods or philosophy, 
and everything to do with the question being addressed by 
the analysis (e.g., “what evidence against these hypotheses 

1  Stakeholders are those with important expected loss or gain from 
any conclusion or decision from the comparisons.



803Multiple comparisons controversies are about context and costs, not frequentism versus…

1 3

does the study provide?” versus “what should we do in the 
face of this evidence?”). Any gaps in specific instructions 
are supposed to be filled in by an analyst who understands 
the contextual purpose and scope of the analysis as well as 
the statistical methods.

One can find absurd MC discussions and analyses that 
ignore this need for contextual expertise, in which adjust-
ment sets included every regression coefficient, as if age and 
sex effects are expected to be similar to exposure effects. 
These bad practices help generate the false impressions 
conveyed by SV that “from the frequentist perspective all 
possible collections of tests seem equally valid to adjust for” 
and that from the Bayesian perspective, everything should 
be adjusted for. But context immersion, not mathematical 
statistics, is essential to specify a contextually sensible point 
between the poor extreme of no adjustment and the absurd 
and impossible extreme of adjustment for everything. In this 
regard, any failure of a method to formally specify the adjust-
ment set is an honest response to a question that cannot 
be sensibly answered by using abstract, decontextualized 
statistical rules.

By recognizing the causal foundation of MC adjustments, 
one may see advice to avoid MC adjustment as akin to advis-
ing avoidance of confounding adjustment—it is advice to 
avoid use of contextual information to improve the accu-
racy of our estimates. At the other extreme, to claim that 
every comparison should be adjusted for every other com-
parison (even comparisons never carried out by the analyst) 
is as detached from reality as claiming that every causal 
analysis of an observed association between two variables 
must adjust for every conceivable shared cause of the vari-
ables going back to start of our universe. Both extremes 
reflect failures to understand the crucial role of context in 
all applied statistics, and consequent failure to properly inte-
grate contextual information into analyses.

There is far more in our toolkit 
than the extremes of “frequentist” 
and “Bayesian”

In indicting frequentism and absolving Bayesianism for a 
limitation both share, SV fails to recognize that there are 
practical methods that fuse frequentist and Bayesian ideas 
to address deficiencies in each. In response to Rothman [2], 
we pointed to alternative MC methods known as empirical-
Bayes (EB), pseudo-Bayes, shrinkage, random-coefficient, 
hierarchical, and multilevel modeling [4], and followed that 
with detailed illustrations of how these methods work on 
real epidemiologic data [5–7, 11], as well as deploying them 
in primary study reports (e.g., [21]). These methods began 
appearing in epidemiologic examples by the 1970s [3], and 
since then have become widely available in applied-statistics 

books and common software. They come in both frequentist 
and Bayesian versions [22, 23], with many hybrids between 
such as partial-Bayes, semi-Bayes, quasi-Bayes, mixed-
model, and penalized regression [5, 7, 8, 20, 24]. All of these 
methods can be easily applied to common epidemiologic 
analyses using the same standard software used to fit ordi-
nary regressions [25–27], as well as via simulation methods 
[22, 23].

As with ordinary regression and its causal extensions, 
hierarchical methods can be used both for information sum-
marization and for decision making. Unfortunately, much of 
the statistical literature (including SV) fails to distinguish 
between these two tasks, perhaps because the two tasks rely 
on the same modeling methods and computer outputs. Yet, 
unlike frequentism versus Bayesianism, this distinction is at 
the heart of the MC controversy, largely due to the pivotal 
role of error costs in decision making.

The frequentist‑Bayes distinction 
is a technical difference, not a philosophical 
one

Too many of the discussions of the frequentist-Bayes distinc-
tion we see miss at least one and usually all of the following 
issues:

First, the distinction is a huge distraction in most methods 
controversies, not just MC, because it buys into the deep 
confusion between philosophies and toolkits that pervaded 
the founding literature of modern statistical theory—a con-
fusion that remains endemic in applied fields. Nonetheless, 
it has been long and widely recognized in various terms that 
both frequentism and Bayesianism are incomplete as learn-
ing theories and as philosophies of statistics, in the prag-
matic sense that each alone are insufficient for all sound 
applications [15, 20, 28–38]. For a working scientist or 
statistician, frequentist and Bayes methods are instead tool-
boxes that address a given statistical problem from differ-
ent perspectives, and address different aspects of proposed 
solutions.

Second, there is no singular frequentist or Bayesian phi-
losophy or methodology any more than there is just one 
form of (say) Christianity. A half-century ago, Good [39] 
offered a classification scheme that produced 46,656 types 
of Bayesians, noting of course that most types weren’t held 
by anyone; but one may find a dozen types in the litera-
ture [36]—most presented as if they were the one and only 
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true Bayesianism. The situation is not much simpler for fre-
quentism, with perhaps a half-dozen variants. The conflicts 
between sects within these statistical “philosophies” is larger 
than the conflict between the absurdly broad categories of 
frequentist versus Bayesian (a dichotomy as informative as 
distinguishing “Eurasian” from “North American”). In these 
conflicts, “philosophy of statistics” has more resemblance 
to theology than to an open quest for sound methods. Yet 
most of these conflicts can only be resolved within a context, 
reflecting that there is no such thing as a universal inference 
method.2

Third, statistical methods make it perfectly reasonable to 
claim different evidence with the same data. This is in fact 
obvious from Bayes theorem: when total evidence or infor-
mation is measured through the posterior distribution, it is 
sensitive to both the prior distribution and the sampling dis-
tribution. Different researchers will have different prior dis-
tributions leading to different posterior distributions. They 
may also differ on the proper sampling distribution, leading 
to different evaluation of evidence—even for frequentists. 
This kind of conflict is the norm when the researchers have 
very different views of the context, such as conflicting views 
of previous research, or conflicting stakes (investments) in 
the impressions, conclusions, and decisions derived from 
the analysis.

The conflict problem is sometimes dismissed with the 
false notion that the data must eventually swamp the dif-
ferent priors and render agreement. Unfortunately, data do 
not identify and therefore cannot force agreement about all 
aspects of their sampling distribution [40]; hence statistics 
cannot force agreement about inferences when that distribu-
tion is in dispute. Furthermore, data do not force agreement 
about loss functions, and so cannot force agreement about 
conclusions or decisions even if there is no dispute about the 
data or sampling model.

The complementarity of frequentist 
and Bayesian methods

As a fourth point that is still overlooked in lower-level dis-
cussions but increasingly recognized in advanced textbooks, 
every statistical method can be analyzed as if it were a pro-
posed frequentist procedure and also as a proposed Bayesian 
procedure [22, 23]. This complementarity may be easier for 
nonstatisticians to see from a computer-science perspective: 
any data-analysis method can be viewed as a data-processing 
algorithm (program) that takes in data and puts out numbers; 

this is so regardless of whether the original rationale for the 
algorithm was frequentist, Bayesian, both, or something else 
entirely (e.g., minimum description length [41]).

How those outputs are interpreted is in the eye of their 
beholder, whose interpretation will be a function of their 
understanding of both the theoretical (logical, mathemati-
cal) and contextual rationale for the algorithm—especially 
their causal model for the data-generation process [42]. That 
interpretation can suffer from misunderstanding of the algo-
rithm’s logic, as well as from theoretical misunderstanding 
(e.g., arising from flawed statistics education) and contex-
tual misinformation (e.g., arising from ignorance, misre-
porting, or misinterpretation of previous research). Whether 
the resulting misinterpretation is frequentist or Bayesian in 
form is but one aspect of the problem (and may even be 
unimportant if the algorithm has justifications from both 
perspectives) or may have little consequence compared to 
the contextual misinformation.

Bayesian statistics has focused on tools for incorporating 
imprecise contextual (background) information into algo-
rithms; this is done via a prior distribution (tuning func-
tion), so that the program outputs are interpretable in terms 
of parameter or hypothesis probabilities. Frequentist statis-
tics has focused on tools for evaluating algorithm behavior 
under inputs with known deterministic and random forms, 
which is to say it calibrates methods against data-sampling 
models (both mathematically, and via data simulations).3 
In a given application, each of these perspectives is help-
ful to the extent the sampling model incorporates accurate 
information about the behavior of the actual data-generating 
mechanisms—information which is contextual and largely 
causal in form [40, 42].

Frequentist calibrations can provide checks of sampling 
models against prior information and data, making them 
important for Bayesian data analysis [23, 29, 32]. Bayesian 
tools can also provide useful checks on frequentist methods 
[30]. An example is reverse Bayes: if handed a frequentist 
method (an algorithm calibrated according to a sampling 
model), one may reverse engineer the algorithm’s outputs to 
find a prior distribution that makes those outputs posterior 
summaries under the sampling model [20, 30, 43–45]. This 
implicit prior can be checked against contextual information 
and modified to accommodate that information. A prior can 
and should be checked against the sampling model as well 
[29]—although to preserve calibration, any update based on 
that check must adjust for the double-counting of the data 

2  Even pure mathematics has had controversies over what are admis-
sible methods (e.g., some mathematicians have rejected proof by con-
tradiction).

3  Even of so-called “nonparametric” and “model-free” methods are 
derived from sampling models; they simply limit the deterministic 
model components to assumed design features (e.g., matched alloca-
tion).
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(first in the check, then in the update), as in empirical-Bayes 
adjustments [5, 6, 22, 46, 47].

A method may fail either of these evaluations. The 
method may be poorly calibrated under realistic sampling 
models, e.g., it may give P values that are not uniform over 
samples drawn from the model, which degrades their infor-
mation content and thus fails frequentist demands to maxi-
mize efficiency (information use) [48, 49]. Or the method 
may entail prior distributions or loss functions that are unac-
ceptable when translated into the application, as typifies 
Bonferroni adjustments in most contexts [10, 14]. Fortu-
nately, in practice4 it is usually possible to construct algo-
rithms whose outputs satisfy both frequentist and Bayesian 
demands, being well calibrated under a contextually realistic 
sampling model and derivable from a realistic prior distribu-
tion as well.

A relatively easy way to generate such a dual frequentist-
Bayes (FB) method is via hierarchical modeling [6–8, 12, 
22, 23, 50]. These methods do not by themselves address 
the loss-function problem, but do account for parameter 
(prior) and estimator dependencies, and thus provide a 
better-informed basis for inferences than do unadjusted or 
traditional MC adjusted analyses. As Berry and Hochberg 
[14] wrote

Some statisticians regard the Bayesian view as sup-
porting frequentists who are proponents of a per-
comparison [unadjusted] approach. As we discuss 
in Section 2, this is true in cases when the (prior 
and) posterior probabilities of one parameter are 
not changed by considering other parameters. How-
ever, we argue that more realistic situations gen-
erally involve dependent parameters, and in such 
situations adjustments are legitimate and often 
required from the Bayesian perspective. A conveni-
ent approach to modeling exchangeable depend-
ent parameters is to postulate a hierarchical prior 
model… [emphases added]

They then go on to advocate Bayesian methods that are cali-
brated to meet frequentist performance criteria—which is 
to say, Bayesian methods that are frequentist methods also.

Fitted models as information summaries

One may avoid some of the loss-function controversy by 
limiting analysis to basic data tables and tables of fitted 
model parameters, showing compatibility of the data with 
various models. Any fitted model provides summaries of 
information in the data within the dimensions allowed by the 
model.5 This is so whether the model is labeled frequentist 
or Bayesian, and whether the problem is considered a sin-
gle or a multiple comparison. For example, the coefficients 
of a linear model can capture information about average 
changes in the outcome across the ranges of the regressors 
(covariates), but nothing more. The model dimensions are 
supposed to be determined from the context (including the 
study design); thus if one needs to capture more than just 
linear relations, a model allowing more than those relations 
is needed.

The summarization goal is to find a model that captures 
all dimensions of nonrandom data variation that are informa-
tive about the relations targeted for study, which for infer-
ence and reporting allows one to replace the bulky original 
data set with the fitted model. The reduction from the full 
data to the fitted model is thus a form of data compression in 
which the original data set is replaced by the model descrip-
tion and its fitted parameters, along with residual summa-
ries showing how much data variation was removed by this 
replacement [41]. This view applies whether the model 
incorporates MC adjustments or not, and applies whether 
the model is fit with methods satisfying frequentist, Bayes-
ian, hybrid, or other sets of criteria.

The hope of course is that the model captures all sys-
tematic data features (true signals) supplying information 
about the targeted relationships, so that nothing but features 
uninformative about the target given the fitted model (like 
random noise) are filtered out by the compression. But if 
as usual we cannot be sure of the correct model, that hope 
cannot be assured. Minimization of relevant information loss 
and avoidance of misleading models then requires model 
checking and revision. For example, one should compare 
the prior against the sampling model, and revise one or both 
(violating strict Bayesian principles) when they appear to 
be in serious conflict, for then at least one of the two infor-
mation components in Bayesian updating (the prior and 
the likelihood function) must be seriously inadequate [20, 
23, 29, 32, 51]. Nonetheless, to preserve calibration (and 
thus accuracy of the compression), the revisions must be 
accounted for in subsequent summaries.

If the analysis goal is to summarize information about 
multiple associations or effects, then hierarchical modeling 
provides a coherent framework for fine-tuning models to 
maximize valid information (signals) in the compressed 
data while minimizing random artefacts (noise). Standard 

4  In contrast to the academic world of mathematical statistics, where 
unrealistic counterexamples are given vastly more weight than the 
actualities of practice.
5  The model space, whose dimensionality is the model degrees of 
freedom.
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regression models are the special case in which there is only 
one level in the model, that of individual outcomes regressed 
on individual covariates (e.g., occupations, food intakes). 
Comparison of standard with hierarchical results show how 
the most dramatic improvements can be obtained by add-
ing just one more model level in which the covariate coef-
ficients are regressed on characteristics of those covariates 
(e.g., occupation coefficients are regressed on occupational 
exposures, food coefficients are regressed on nutrient con-
tents of foods) [5, 8, 11]. This approach supplies superior 
estimates both of individual-covariate effects, and of effects 
on individuals of the covariate characteristics—estimates 
far superior to treating those covariate (2nd-level) charac-
teristics as if they were individual (1st-level) covariates, as 
is standard in occupational and nutritional studies. It also 
provides a coherent alternative to stepwise regression and 
other poorly-calibrated but popular variable-selection meth-
ods [6, 8, 9, 24, 50].

Conclusions and decisions

Loss functions are central to justifying any conclusive state-
ment about a relation. Whether a claim is of no effect, or 
harm, or benefit, it entails an implicit belief that the conclu-
sion is justified because the cost of being mistaken (which 
is always a risk) is less than the cost of being inconclusive 
or incorrectly concluding something else. Even to merely 
state unconditionally that “more research is needed” is to 
conclude that the information gained from further research 
will be worth the cost [52].

Both frequentist and Bayesian methods incorporating 
explicit loss functions had been worked out in theory by 
1950, where it had been shown that the algorithms for opti-
mal decisions were identical in strict frequentist-calibration 
and strict Bayesian-coherence theories (e.g. [53]). As noted 
by Berry and Hochberg [14], the importance of loss func-
tions for multiple inferences was recognized by the 1960s. 
By the 1980s there were many applied books displaying loss 
functions, and the methods were becoming computationally 
practical for large regression analyses.

Unfortunately, methods using explicit loss functions are 
still only a limited part of statistical training, and loss func-
tions continue to be neglected in statistical practice and 
debates. This neglect may be an excusable heuristic when 
modeling can provide an information summary acceptable 
to all stakeholders. But in practice the neglect can void any 
conclusion or decision derived from a statistical analysis, 
and will conceal the values implicit in methodologic asser-
tions and standard statistical practices [54, 55].

As a consequence, when considering use of any statistical 
method, we need to know not only its frequency calibration 
and its (often implicit) prior distribution, but also its loss 

function, which may well be hidden and thus will have to 
be back-calculated (reverse engineered). When this is done 
in controversial topics, it may be seen that many standard 
procedures are heavily loaded in favor of certain sides or 
stakeholders [10, 55]. In multiple-inference problems, 
exposing loss functions becomes even more pivotal because 
of the many possible error patterns; for example, multiple-
hypothesis testing goes beyond alpha/Type I and beta/Type 
II errors, to all the combination error patterns across all the 
hypotheses [10].

Rationales for adjustment strategies (including no adjust-
ment) are especially vulnerable to investigator biases when 
important gain or loss rides on the conclusions (as when a 
“discovery” entails prestigious publication or legal liability). 
Demands to base conclusions or decisions on one particular 
adjustment (whether no adjustment, “informal adjustment,” 
Bonferroni, or anything else) can thus be viewed as attempts 
to impose values on statistics and science using unstated 
assumptions about costs. So we end with a warning: when 
you see a dispute about MC adjustments, ask: who are the 
stakeholders in the topic? Which ones gain or lose from spe-
cific methodologic recommendations? What precisely are 
the effects or hypotheses addressed by each recommenda-
tion? What are the conclusions and decisions each side seeks 
to reach? What are the priors and loss functions implicit 
in their recommendations? After doing so, you may well 
decide (as we have) that the MC controversy has arisen from 
divergent goals, values, and stakes, so that no resolution is 
possible beyond showing how methods vary under different 
assumptions about those factors.
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Appendix: The Bygren et al. example

The example used by SV is from a report relating cardio-
vascular mortality to grandparent’s food supply [18]. The 
analysis reproduced by SV (Table 1 in SV and [18]) involves 
only 8 coefficients, stratifying the data on sex of the child, 
parent, and grandparent. There are several problems with the 
analysis, among them that the model implied by the strati-
fication is contextually absurd: it places no constraint at all 
on the variation in direction or the size of modification of 
the food-supply effect by generation-specific sex indicators. 
No attempt was made to fit a more reasonable model, despite 

http://creativecommons.org/licenses/by/4.0/
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the fact that a test for differences among the 8 coefficients 
computed from SV Table 1 appears to have P ≈ 0.2.

As Häggström [17] rightfully complained, the report then 
committed the usual error of overemphasizing one estimate 
with P < 0.05, even though the observed P = 0.04 represents 
far too little evidence against the null to warrant such empha-
sis (translating to only − log2(0.04) = 4.6 bits of information 
against the null) [56]. Any contextually or statistically rea-
sonable model would have made the one “statistically sig-
nificant” finding disappear, so the problem with the example 
analysis is less one of multiple comparisons and more one of 
incompetent (albeit standard and commonplace) modeling 
and reporting practices geared toward those intent on finding 
“statistical significance.”

To see how hierarchical modeling could have helped, note 
that the 8 food-supply coefficients in Table 1 could have been 
shrunk toward a no-modification (“no-interaction”) model 
derived from all the data simultaneously; this model has just 
one food-supply coefficient for all 8 sex combinations, and 
appears to produce a hazard ratio of 0.95, 95% limits 0.73, 
1.23. One semi-Bayes (penalized likelihood) version of this 
approach would weight this simple constant-effect model by 
a fixed prior variance that represented a contextually reason-
able bound on modification (deviations from the average 
coefficient) across the 8 categories; a more sophisticated 
version would use generation and sex as 2nd-stage covari-
ates [57]. The resulting shrinkage would have eliminated 
the huge disparities among the point estimates, treating their 
differences as mostly noise, and in doing so would raise the 
one P = 0.04 result above the magic 0.05 threshold. Such an 
analysis would have staunched the report’s prominence and 
publicity, making it easy to see why not only these authors 
but the general research community has been loathe to adopt 
hierarchical MC adjustments.
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