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Label-free detection of transporter
activity via GPCR signalling in

living cells: A case for SLC29A1, the
equilibrative nucleoside transporter 1

AnnaVlachodimou, Adriaan P. IJzerman(® & Laura H. Heitman

Transporters are important therapeutic but yet understudied targets due to lack of available assays.
Here we describe a novel label-free, whole-cell method for the functional assessment of Solute Carrier
(SLC) inhibitors. As many SLC substrates are also ligands for G protein-coupled receptors (GPCRs),
transporter inhibition may affect GPCR signalling due to a change in extracellular concentration of

the substrate/ligand, which can be monitored by an impedance-based label-free assay. For this study,

a prototypical SLC/GPCR pair was selected, i.e. the equilibrative nucleoside transporter-1 (SLC29A1/
ENT1) and an adenosine receptor (AR), for which adenosine is the substrate/ligand. ENT1 inhibition
with three reference compounds was monitored sensitively via AR activation on human osteosarcoma
cells. Firstly, the inhibitor addition resulted in an increased apparent potency of adenosine. Secondly, all
inhibitors concentration-dependently increased the extracellular adenosine concentration, resulting in
an indirect quantitative assessment of their potencies. Additionally, AR activation was abolished by AR
antagonists, confirming that the monitored impedance was AR-mediated. In summary, we developed a
novel assay as an in vitro model system that reliably assessed the potency of SLC29A1 inhibitors via AR
signalling. As such, the method may be applied broadly as it has the potential to study a multitude of
SLCs via concomitant GPCR signalling.

Solute carriers (SLCs) are transmembrane transport proteins that control a cell’s intra- and extracellular commu-
nication with its environment by regulating the translocation of small molecules, inorganic ions or other proteins
across biological membranes. Their function as gatekeepers, their ubiquitous presence in the human body, and
the large number of SLCs (more than 400) render them potential therapeutic targets'. However, their in-depth
investigation has been limited as not many cellular assays are available to study transporter activity, making
drug discovery difficult. The main and most well-known assay format currently used is the uptake assay, which
measures the accumulation of a radiolabeled substrate in cells expressing the transporter under investigation?.
Such assay however, presents limitations as only the end-point of the assay can be measured and/or washing steps
are needed, which make this type of assay laborious and prone to artefacts. Moreover, the need for radioactive
substrates has disadvantages, such as high costs, handling of radioactivity and storage of radioactive waste®. In
addition, label-free electrophysiological methods have been applied and many electrogenic SLCs, i.e. transporters
the function of which results in a positive or negative intracellular net charge, have been studied as such (Grewer
et al. 2013)*. The best-known electrophysiological technique is patch-clamp, a well-studied concept that meas-
ures the direct current generated by ions that flow through the transporters, with a plethora of instruments being
commercially available (Priest et al. 2004)°. In addition to patch-clamp, solid supported membrane (SSM)-based
electrophysiology has been applied to transporters as a more sensitive approach, where SURFE’R N1 (Nanion
Technologies) is the main instrumentation used®. However, no label-free assays applicable to non-electrogenic
membrane transporters, which represent the majority of SLCs are available. Therefore, the development of a
homogenous, kinetic and label-free assay in the field of non-electrogenic membrane transporter research is of
utmost interest.
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Figure 1. Assay principle. ENT1 equilibrates adenosine concentrations inside and outside of the cell
membrane. Extracellular adenosine binds to ARs and causes their activation and signalling (black arrows). After
treatment with an ENT1 inhibitor, adenosine cannot be translocated intracellularly with the same efficiency,
depending on inhibitor’s inhibitory potency and concentration. The resulting higher extracellular adenosine
concentration will cause increased AR activation (thicker arrows).

Label-free whole cell assays typically use a biosensor that detects physical properties of cells, such as size,
adhesion and morphology, in order to measure cellular responses upon ligand stimulation’. The main advan-
tage of using biosensors and cell morphology to functionally assess a ligand-target interaction is that cells are
monitored in real time and in high sensitivity, making it possible to study cell systems with endogenous target
expression®’. As a result, no modification of the cells, for example transfection of an (engineered) target into an
artificial cell line, or the compounds, i.e. with a fluorescent or radioactive tag, is necessary, which avoids potential
artefacts'®. Over the last decade, the number of available label-free cellular assays has significantly increased,
and many of these have been used to study G protein-coupled receptor (GPCR) signalling'"'?. Examples are the
EPIC (Corning Inc.) and xCELLigence (ACEA Biosciences), which measure cell morphology optically and by
impedance, respectively. However, the use of label-free assays are still rather unexploited, if at all, for membrane
transporters.

ENT]I (also known as SLC29A1) is the most abundant nucleoside transport (NT) protein in the human
body"®. This SLC plays a crucial role in the provision of nucleosides, as it participates in the salvage pathways of
nucleotide synthesis in cells lacking de novo biosynthetic pathways'“. Therapeutically, ENT1 can be targeted by
drugs that are both substrates and inhibitors. In the cases of viral infections and in some types of cancer, ENT1
transports well-known drugs inside the cell in order to exert their action, e.g. gemcitabine and ribavirin, respec-
tively'>'6. As far as ENT1 inhibition is concerned, molecules that diminish ENT1 activity are proposed as an
add-on treatment of cancer, whenever ENT1 is overexpressed'’. Moreover, ENT1 inhibitors can potentially be
used in the treatment of ischemic heart disease'?, stroke'® and inflammatory diseases®. Of note, in many cases the
therapeutic effect of ENT1 inhibitors is induced by adenosine?, as its increased extracellular concentration can
potentiate neuroprotective and cardioprotective actions resulting from the activation of neighbouring adenosine
receptors (ARs).

In the current study, we describe the development of a novel cellular assay for the functional assessment of
SLC activity by using the label-free impedance-based xCELLigence instrument. Many endogenous substrates of
membrane transporters are also ligands for GPCRs, e.g glutamate, dopamine and adenosine?»?*. Thus, we hypoth-
esized that by inhibiting a transporter, the substrate concentration would increase outside of the cell, resulting in
increased GPCR signalling that is subsequently monitored with the xCELLigence (Fig. 1). For proof-of-principle,
we investigated the inhibition of ENT1 transporters by well-known ENT1 inhibitors, and monitored concomitant
adenosine receptor signalling. For validation purposes we performed radioligand binding studies on SLC29A1
as well.
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Figure 2. Concentration-dependent effects of adenosine (Ado) after cell pre-treatment with a single
concentration of ENT1 inhibitors (“Format 17). (A) Graphic representation of cell seeding, spreading, pre-
treatment and treatment protocol. (B) Representative xCELLigence traces of a full experiment when cells
were pre-treated with NBTI (107°M) and subsequently stimulated with adenosine. A representative response
(C) after NBTI, dilazep, dipyridamole pre-treatment and (D) after adenosine treatment of cells pre-treated
with NBTTI. (E) Concentration-response curves for adenosine with or without ENT1 inhibitors pre-treatment
(adenosine 107%° M response as 100%). Data shown are mean + SEM from at least three separate experiments
performed in duplicate.

Results

Assay development and optimization. To confirm the suitability of U-2 OS cells for studying ENT1
function via AR signalling, we performed a radioligand binding assay on U-2 OS membranes. U-2 OS mem-
branes were incubated with [*H]NBTI and increasing concentrations of reference inhibitors, i.e. NBTI, dilazep
and dipyridamole. All inhibitors fully displaced the radioligand from the ENT1. NBTI had the highest affin-
ity (pK;=8.7 £ 0.02), followed by dilazep (pK;=28.5+0.1) and dipyridamole (pK;="7.2+0.1) (Supplementary
Material; Fig. S1 and Table S1).

Subsequently, U-2 OS whole cells were used to monitor the inhibitors’ activity in the impedance-based
label-free technology. U-2 OS cells adhered strongly to the bottom of the wells and thus the gold-coated elec-
trodes of the E-plates, and therefore no additional coating was necessary to obtain a signal. Various concentra-
tions of cells per well were tested in order to achieve a uniform cell monolayer (Supplementary Material; Fig. S2),
which was the case for a concentration of 20,000 cells/well. After cell seeding, attachment, spreading and over-
night proliferation, this concentration resulted in a cell index (CI) ranging from 10.0 to 12.0 (Fig. 2A,B). Thus,

SCIENTIFIC REPORTS |

(2019) 9:13802 | https://doi.org/10.1038/s41598-019-48829-3


https://doi.org/10.1038/s41598-019-48829-3

www.nature.com/scientificreports/

Format 1 Format 2
Inhibitory

Adenosine pIC;y+=SEM | efficacy®

PECso £ SEM® | (IC,, (nM)) | (%) & SEM
vehicle 1 4240.1 n.a. 100£5.6
+NBTI 4.940.1 *xxx 8.34+0.3(2.6) | 2194 7.3%*%*
+Dilazep 5.140.1 ww (1(()).11)i 0.1 2864 19%555
+Dipyridamole | 5.2£0.1 **¥* | 8.640.5(8.1) | 5254 7.3%%*%*

Table 1. Potency of adenosine obtained with whole cell impedance-based experiments performed with U-2
OS cells after pre-treatment with different ENT1 inhibitors at 1 uM (“Format 1”), and potency (pICs,) and
inhibitory efficacy of ENT1 inhibitors obtained with whole cell impedance-based experiments performed with
U-2 OS cells followed by adenosine treatment at 10~*° M (“Format 2”). Values are mean + SEM of at least three
separate experiments performed in duplicate. *Significance compared to vehicle’s 1 pECs, was tested using
one-way ANOVA with Dunnett’s post-hoc test. ***#p < 0.0001. *Data are normalized to maximal response of
adenosine (10~** M) of vehicle 1 (100%). Significance compared to vehicle 1 was tested using one-way ANOVA
with Dunnett’s post-hoc test. ****p < 0.0001. n.a.: not applicable.

20,000 cells/well was selected for all further experiments, as it allowed reliable and reproducible measurements of
ENT1 inhibition and subsequent AR activation.

Validation of the Assay Principle. For the development of the label-free assay, we hypothesized that ENT1
inhibition can be detected via adenosine receptor signalling, due to changes in the extracellular concentration of
adenosine.

Firstly, it was examined if ENT1 inhibition would lead to an increased extracellular adenosine concentra-
tion. Hence, cells were pre-treated with a single concentration (107°M) of an ENT1 inhibitor and subsequently
treated with several concentrations of adenosine (i.e. “Format 1”). Upon pre-treatment of cells for 30 min with a
single concentration of an inhibitor (107°M) no change of impedance (expressed as ACl) was detected (Fig. 2C).
On the contrary, subsequent treatment of cells with various concentrations of adenosine led to a decrease of
ACI (Fig. 2D). Specifically, the signal decreased in a concentration-dependent manner reaching a minimum
ranging from —0.5 to —1.5 ACl after approximately 8 to 10 min. The initial decrease in ACI was followed by a
slow increase back to baseline within 90 min. From these impedance changes, the AUC was determined and a
concentration-response curve was obtained providing apparent potency values of adenosine for AR signalling
after pre-treatment with vehicle and NBTI, dilazep and dipyridamole, i.e. pECs, values of 4.2+0.1, 4.940.1,
5.1+0.1,5.2£0.1, respectively (Fig. 2E and Table 1).

Next, to confirm that the observed changes in impedance and the pECs, values of adenosine are AR-specific,
we used CGS 15943 as a non-selective AR antagonist and PSB 1115 as a selective A,5 AR antagonist. Cells were
pre-treated with either CGS 15943, NBTT and PSB 1115 or a combination of the first two. Upon pre-treatment
for 30 min with each of the compounds no change of impedance was detected (data not shown). As observed
in Fig. 2D, pre-treatment with NBTT and the consecutive treatment with adenosine led to an increased AUC
(219 £7.3%) (Fig. 3; Table 1). In contrast, pre-treatment with CGS 15943 followed by adenosine stimulation
resulted in a cellular response with a strongly diminished AUC (29.4 & 9%) (Fig. 3). Interestingly, when cells were
simultaneously pre-treated with CGS 15943 and NBTI, an AUC similar to pre-treatment with CGS 15943 alone
was observed (42.2 = 16%) (Fig. 3). This result indicates that the increased extracellular concentration of adeno-
sine, caused by NBTI inhibition of ENT1, cannot generate an increased cellular response when ARs are blocked
by CGS 15943. Similarly, pre-treatment of cells with PSB 1115 resulted in a decreased AUC (18.5 £ 5.4%) (Fig. 3),
indicating the A,z AR to be the most prevalent AR. Taken together, this shows that inhibition of ENT1 results in
an increased apparent potency for adenosine-mediated AR signalling.

Pharmacological characterization of ENT1 inhibitors in U-2 OS cells using the xCELLi-
gence. Lastly, the inhibitory effect of different known ENT1 inhibitors was evaluated in a different assay set
up (i.e. “Format 2”). Cells were pre-treated with increasing concentrations of NBTI, dilazep and dipyridamole
ranging from 107! to 10~° M. Successive addition of a fixed concentration of adenosine (30 uM) led to a negative
response with a peak around 8 to 10 minutes depending on the concentration of the inhibitor. This phase was
followed by an increase of the response that in all cases reached plateau within 90 minutes after the adenosine
addition (Fig. 4A-C). Of note, the shape of these traces were similar for all experimental set-ups, indicative for
a typical signature of adenosine-mediated AR signalling in U-2 OS cells. Moreover, all compounds appeared
to enhance the adenosine-mediated AR signalling in a concentration-dependent manner as higher concentra-
tions of the inhibitors seem to decrease further the ACI especially after the initial negative peak is reached.
Interestingly, pre-treatment with various concentrations of dipyridamole generated a negative response with a
significantly higher inhibitory efficacy (% AUC at 1 uM) compared to dilazep and NBTI. In conclusion, using this
assay set up an ENT1 inhibitor’s potency and inhibitory efficacy could be obtained. Furthermore, different ENT1
inhibitors have different potencies for indirectly inhibiting adenosine-mediated AR signalling.
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Figure 3. The response measured is adenosine receptor AR-mediated. (A) A representative response of
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simultaneously. (B) Bar graphs represent the AUC after adenosine addition (normalized to vehicle 1 as 100%).
Data shown are mean & SEM from at least three separate experiments performed in duplicate. Significance
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Figure 4. Concentration-dependent effects of ENT1 inhibitors after subsequent AR stimulation with a single
adenosine concentration (“Format 2”). A representative adenosine response (10~*> M) after pre-treatment
with ENT1 inhibitors, i.e. (A) NBTI, (B) dilazep and (C) dipyridamole. (D) Concentration-response curves of
ENT1 inhibitors (normalized to the maximal response of adenosine alone (107> M, 100%)). Data shown are
mean £ SEM from at least three separate experiments performed in duplicate.
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Discussion

The significance of membrane transporters in drug discovery is widely recognized?* and their in-depth investi-
gation is essential as they play a vital role both in physiological conditions and in many diseases. Unfortunately,
membrane transporters are vastly understudied compared to other groups of target proteins, and the attention
they are getting from the scientific community is limited and not indicative of their biological relevance®. One of
the main reasons is that the available assays to study transporter activity have limitations, as already introduced
above. For another large membrane-bound protein family, GPCRs, label-free technologies are nowadays fre-
quently used to assess receptor pharmacology?¢-?%. Specifically, it has been shown that agonist-induced adenosine
receptor signalling causes cell morphology changes that can be monitored via both optical- and impedance-based
label-free assays?*~*. In addition, many efforts to study ion channels with label-free technologies are reported.
Typical examples are the monitor of TRP ion channel activity with an impedance based assay*?, as well as the
study of GIRK channel and GABA , receptor with an optical biosensor***. Of note, as far as membrane trans-
porters are concerned, there is currently a single report in which an optical-based label-free assay (i.e. Epic by
Corning) is used to study the electrogenic transporter SLC34A22. However, this method has not been applied
to other electrogenic transporters so far, and still leaves a need for the many non-electrogenic transporters. We
therefore established an impedance-based assay suitable for investigating the inhibition of non-electrogenic
membrane transporters via the indirect measurement of GPCR-mediated cell signalling on cells that, in this case,
endogenously express both targets.

Initial experiments with U-2 OS cells demonstrated that U-2 OS cell line can be used for xCELLigence exper-
iments as they strongly adhere to the bottom of the wells, which is a requirement for impedance measurements*.
This resulted in a CI, and thus provided a good window of detection for the assay (Fig. 2B). Additionally, radioli-
gand binding assays validated the presence of ENT1 on U-2 OS cell membranes, since, among others, the deter-
mined affinity for all ENT1 inhibitors was found to be in good agreement with available literature data®”*. The
presence of ARs on U-2 OS cells has already been reported previously, hence it was not re-examined**.

As adenosine is the endogenous substrate and agonist of ENT1 and ARs, respectively, it was chosen as the
compound for assay development. Concentration-response curves of adenosine to cells pre-treated with or with-
out a single concentration of ENT1 inhibitors yielded significant differences on the apparent pECs, value of aden-
osine (Fig. 2, Table 1). The low pECs, value of adenosine measured in the absence of ENT1 inhibitor (4.240.1),
might indicate that mainly A,z AR is expressed in this cell line, as potency values for the other ARs are reported
to be at least 100-fold higher*!. This hypothesis is compatible with the data publically available from “The Human
Protein Atlas” showing that A5 is the most prevalently expressed AR subtype on U-2 OS cells*>-*. Moreover,
pre-treatment of cells with the non-selective ARs antagonist CGS 15943%, led to a large decrease of subsequent
adenosine signalling, evidence that an AR-specific signal had been captured (Fig. 3), while pre-treatment with
the selective A, AR antagonist PSB 1115, resulted in a further decrease of adenosine signalling, confirming the
hypothesis of A,z AR being the main player in the signalling pathway. It is important to note that intracellular
adenosine concentrations are strictly regulated to be kept low*”*. Specifically, adenosine kinase (ADK), is the
principle enzyme to regulate intracellular adenosine and metabolise it to adenosine monophosphate (AMP),
which could be further phosphorylated to adenosine diphosphate (ADP) and triphosphate (ATP). Consequently,
the intracellular and extracellular adenosine concentrations will not be equilibrated, leading to a fast and contin-
uous adenosine transportation inside the cell by ENT1. As a result, the extracellular adenosine concentration are
significantly higher when an ENT1 inhibitor is present.

Subsequent experiments established that the current assay allowed the inhibitory effect of ENT1 inhibitors
to be measured in two different assay formats: (1) pre-treatment with a fixed concentration of ENT1 inhibi-
tors and subsequent addition of different concentrations of adenosine (Fig. 2) and (2) pre-treatment with differ-
ent concentrations of ENT1 inhibitors and subsequent addition of a single concentration of adenosine (Fig. 4).
In case of the first format, apparent pEC;, values were obtained for adenosine in the absence and presence
of different inhibitors, while in the second format the changes of the apparent pECs, values are caused by a
concentration-dependent effect of ENT1 inhibitors, which thus are best quantified as pICs, values for the inhib-
itors. For NBTT, a selective inhibitor of ENT1, a potency value (8.3 &0.3) comparable to the radioligand binding
data (8.7 £0.02) (Supplementary Material; Table S1) as well as previously reported data was found*. Dilazep
appeared to be approximately 10-fold more potent compared to the literature* and the radioligand binding data,
which may be explained by the fact that dilazep is a not selective ENT1 and ENT2 inhibitor*. The second format
also provides information on the inhibitory efficacy of ENT1 inhibitors (i.e. the efficacy of adenosine signalling
via AR that results from ENTI inhibition) on adenosine-mediated receptor signalling (Fig. 4D). Here it was
found that dipyridamole had the highest efficacy, which might be explained by the fact that dipyridamole is a
non-selective ENT inhibitor, i.e. it has been shown to have high affinity to ENT1, ENT2, ENT3 transporters®'
and lower affinity to ENT4° as well. Together, this could lead to significantly higher extracellular concentrations
of adenosine that explain dipyridamole’s increased inhibitory efficacy compared to an ENT1 selective inhibitor,
such as NBTIL. In addition, dilazep seems to follow the same trend of increased inhibitory efficacy as it is also a
non-selective inhibitors for ENT1. Such hypothesis is reinforced by the fact that it has been shown that all ENTs
are endogenously expressed on U-2 OS cells®*-*¢. The inhibition of ENT2, ENT3 and ENT4 on U-2 OS cells using
this novel method merits further investigation.

Conclusions

In conclusion, we developed and validated an assay to detect SLC activity via GPCR signalling in living cells, using
a label-free whole cell impedance-based system (xCELLigence), which is to our knowledge the first case where a
biosensor technology is used to study the activity of inhibitors for non-electrogenic membrane transporters. As
a proof-of-concept the inhibition of ENT1 via subsequent AR signalling in human osteosarcoma cells (U-2 OS)
that endogenously express these targets, was studied. We were able to show that its inhibition could be monitored
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sensitively and quantified accurately via the indirect measurement of adenosine-mediated ARs signalling. Thus,
this approach offers the possibility to study membrane transporters that are or can be linked to a GPCR via their
common substrate/ligand. Ultimately, this label-free whole-cell assay technology opens novel opportunities for
membrane transporter drug discovery.

Methods

Materials and reagents. Dipyridamole was kindly provided by Janssen Pharmaceutics and dilazep was
obtained from Asta-Werke (Degussa Pharma Gruppe, Bielefeld, Germany). NBTT and adenosine were purchased
from Sigma-Aldrich (St. Louis, MO, USA), while CGS 15943 was purchased from Tocris Bioscience (Bristol, UK).
PET E-plates 16 and 96 for the xCELLigence DP and SP system (ACEA Biosciences, San Diego, CA, USA) were
obtained from Bioké (Leiden, the Netherlands). Homo sapiens bone osteosarcoma cells (U-2 OS) were a kind gift
from Mr. Hans den Dulk (Leiden Institute of Chemistry, department of Molecular Physiology, Leiden University,
the Netherlands). All other compounds and materials were obtained from standard commercial sources.

Cell culture. U-2 OS cells were cultured in Dulbeccos Modified Eagle’s Medium (DMEM) supplemented with
stable glutamine 10% (v/v) New Born Calf Serum (NBCS), 100 IU/ml penicillin and 100 mg/ml streptomycin
at 37°C and 7% CO,. Cells were cultured as a monolayer on 10 cm ¢ plates and used for whole cell experiments
when a confluency of ~90% was reached.

Membrane preparation. U-2 OS cells were grown as a monolayer in 15 cm @ plates to 80-90% confluency.
Then they were detached by scraping into 5ml of phosphate-buffered saline (PBS) and subsequently centrifuged
for 5min at 1500 rpm to remove PBS. The pellets were resuspended in ice-cold 50 mM Tris-HCl buffer, pH 7.4 and
homogenized with an Ultra Turrax homogenizer (IKA-Werke GmbH & Co.KG, Staufen, Germany). Membranes
and the cytosolic fraction were separated by centrifugation at 31,000 rpm in an Optima LE-80 K ultracentrifuge
(Beckman Coulter, Fullerton, CA) at 4°C for 20 min. The pellet was resuspended in 10 mL of Tris-HCI buffer
and the homogenization and centrifugation step were repeated. Finally the membrane pellet was resuspended
in 50 mM Tris-HCl bufter, pH 7.4, and aliquots were stored at —80 °C. Membrane protein concentrations were
measured using a BCA protein determination®.

Radioligand binding assay. U-2 OS membranes were thawed, homogenized using an Ultra Turrax homog-
enizer at 24,000 rpm (IKA-Werke GmbH & Co.KG, Staufen, Germany) and diluted to the desired concentration
(6 pg/well) using assay buffer (50 mM Tris-HCI pH 7.4). Displacement experiments were performed using 10
concentrations of competing ligand in the presence of a final concentration of 4nM ['H]NBTL. At this concen-
tration, total binding (TB) did not exceeded 10% of the radioligand present in the assay in order to prevent ligand
depletion. Nonspecific (NSB) binding was determined in the presence of 10~>M NBTTI. Total reaction volume
was 100 pL and final concentrations of DMSO were <0.25%. The experiment was initiated by addition of mem-
branes. Samples were incubated at 25 °C for 60 min to reach equilibrium. The incubation was terminated by rapid
vacuum filtration over GF/C filter using Brandel Harvester 24w (Brandel, Gaithersburg, MD, USA). Filters were
subsequently washed three times using ice-cold wash buffer (50 mM Tris-HCI, pH 7.4). After drying the filters at
55°C for 30 min, filter-bound radioactivity was determined by liquid scintillation spectrometry using a Tri-Carb
liquid scintillation counter (PerkinElmer, Groningen, The Netherlands).

Label-free whole-cell assay. Detection principle. Label-free whole-cell assays were performed using the
xCELLigence real-time cell analyser (RTCA) system®’, as described previously?. In short, the RTCA system
measures the electrical impedance generated by cells adhering to gold-coated electrodes embedded on the bot-
tom of microelectronic E-plates. Variations in number, degree of adhesion, cellular viability and morphology of
cells result in relative changes in impedance (Z), which are recorded continuously at 10kHz and displayed in the
unitless parameter coined Cell Index (CI)”®. CI is a relative measure defined as (Z;-Z,) Q/15 Q, where Z; is the
impedance at each individual time point and Z, represents the baseline impedance in the absence of cells, which
is measured prior to the start of the experiment.

General Protocol. U-2 OS cells were harvested by re-suspending in cell culture medium after brief trypsini-
zation (treatment with trypsin/EDTA for about 5 min) and centrifuged once at 200 x g (1500 rpm) for 5 min.
Background impedance (Z,) was measured after the addition of 40 pL culture media to 16 or 96 well E-plates.
Cells were seeded by adding 50 pL of cell suspension containing 20,000 cells per well. After resting at room tem-
perature for at least 30 min, the E-plate was placed into the recording station situated in a 37 °C and 5% CO,
incubator. Impedance was measured every 15 minutes overnight.

Cell pre-treatment: Cells were pre-treated by an ENT1 inhibitor (107°M or 107 to 10~ M, depending on the
assay), adenosine receptor antagonist or vehicle control (0.25% dimethylsulfoxide (DMSO) in Phosphate-buffered
saline (PBS)) in 5 pl after 18 h. CI was recorded for at least 30 minutes with a recording schedule of 15 second
intervals for 20 minutes, followed by intervals of 1 minute.

Cell treatment: Afterwards, cells were stimulated with adenosine (10~*% or 107 to 10> M depending on
the assay) or vehicle control (0.125% DMSO in PBS) in 5pL and CI was recorded for at least 90 minutes with a
recording schedule of 15 second intervals for 20 minutes, followed by intervals of 1 minute for 10 minutes and
finally 5 minutes. In all cases, final well volumes and DMSO concentrations upon cell and ligands addition were
100 nL and 0.375%, respectively, for all wells and assays.

Data analysis. Radioligand binding assay. Data analyses were performed using GraphPad Prism 7.0 soft-
ware (GraphPad Software Inc., San Diego, CA, USA). pICs, values in radioligand displacement assays were
obtained by non-linear regression curve fitting into a sigmoidal concentration-response curve using the equation:
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Y = Bottom + (Top — Bottom)/(1 + 10" (X—LogIC50)).
pK; values were acquired from pICs, values using the Cheng-Prusoff equation®®:
K; = IC;y/(1 + [radioligand]/Kp)

The Kp, value of 1.89 nM for [*H] NBTI, was obtained by fitting the data from homologous displacement
experiments (Supplementary Material; Fig. S1) to the model “One site - Homologous”.

Label-free whole-cell assay. RTCA software 2.0 (ACEA Biosciences, Inc.) was used to obtain the experimental
data. All data were analysed using GraphPad Prism 7.00 (GraphPad software, San Diego, CA, USA). After sub-
tracting baseline (vehicle control), ligand responses were normalized at the time of ligand addition to obtain A
Cell Index (A CI) values to correct for ligand-independent responses. Cells that were not pre-treated were used
as control (vehicle 1) for the ENT1 inhibitor addition, while cells that were not treated with adenosine (vehicle 2)
were used as control for the adenosine addition. The time of normalization was either 18h or 18 h 30 min after cell
seeding for analysis of ENT1 inhibitor/ARs antagonist or adenosine effects, respectively.

The absolute values of Total Area Under the Curve (AUC) up to 90 min after adenosine addition were exported
to Graphpad Prism for further analysis yielding bar graphs or concentration-response curves. pECs, values of
adenosine after pre-treatment of cells with one concentration of ENT1 inhibitors (format 1; Table 1) and pICs,
values of ENT1 inhibitors (format 2; Table 1) were obtained using non-linear regression curve fitting of Total
AUC data into a sigmoidal dose-response curve with variable slope. Data shown are the mean & SEM of at least
three individual experiments performed in duplicate.

Statistical significance was determined using one-way ANOVA, followed by a Tukey’s post test for comparison
of all columns or a Dunnett’s post test when comparing to vehicle. If p-values were below 0.05, observed differ-
ences were considered statistically significant.

Data Availability
The datasets generated during and/or analysed during the current study are available from the corresponding
author on reasonable request.
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