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Virtual Issue Editorial

Plant–microbe interactions: tipping the balance

This virtual issue of the Journal of Experimental Botany 
for the XVIII International Congress on Molecular Plant 
Microbe Interactions in Glasgow (2019) focuses on re-
search that tackles the consequences of plant–microbe 
interactions, for both plant–mutualist and plant–pathogen 
scenarios. When organisms interact, there can be direct 
and indirect effects on both plant- and microbe-directed 
processes. The extent to which the balance is tipped to-
wards susceptibility, resistance, or mutualism depends 
on the degree of change for these plant and microbe 
processes. Moving from the study of key molecules and 
mechanisms underlying the balance, to the study of niche 
dynamics, it looks at the insights that could enable engin-
eering of more robust crops in the future.

Facilitating host–microbe interactions: 
making a connection

We know that recognition of microbes relies on a litany of 
specialized extracellular and intracellular receptors such as pat-
tern recognition receptors (PRRs) and resistance ‘R’ genes. 
However, despite our extensive understanding, new discov-
eries are continually being made. For example, by studying 
the well-known PRR, FLS2, Jelenska et al. (2017) found that 
FLS2 is internalized and acts as a transporter that enables mo-
bilization of its ligand, flg22, to distal organs. This is a rad-
ical finding, suggesting that the ligand–receptor complex is 
being transported over a long distance as part of a commu-
nication mechanism. Analogous examples have been found 
in animal models [such as the intercellular transport of sonic 
hedgehog (reviewed in Simon et al., 2016)], suggesting a con-
served mechanism could exist. Similarly, multiple examples of 
nucleotide binding–leucine-rich repeat (NB-LRR) activation 
during plant–microbe interactions are known. An additional 
layer of complexity was demonstrated in work by Meteignier 
et al. (2016) where it was found that activation of NB-LRR 
signalling during viral infection induces translational repres-
sion of viral transcripts and the formation of RNA processing 
bodies. This only occurs in cells in which a defence response 
has been activated and which also contain viral RNAs being 
translationally inhibited.

As well as molecular interactions, microbes require phys-
ical connections to their plant host cells. In the case of inter-
action between the blight pathogen and rice, this interaction 
has been found to occur after initial recognition, facilitating 

the delivery of effectors, even before the pathogen be-
comes virulent (Li et  al., 2019). Physical connections must 
be formed using cellular-derived material, and, by utilizing 
the pathosystem of barley-powdery mildew, Kwaaitaal et  al. 
(2017) found that the extra-haustorial membrane (EHM) is 
not simply dependent on conventional secretion from the 
endoplasmic reticulum (ER). This suggests that it is gener-
ated from an unconventional secretory pathway, raising the 
possibility that the pathogen is remodelling the host cell to 
gain benefit, possibly via effectors that control plant vesicle 
trafficking.

Taking advantage of the situation: tipping 
the balance

It is well known that pathogen effectors are targetted to mul-
tiple locations within the cell. Studying both the location 
and activity of effectors could help us understand how they 
regulate host processes and tip the balance towards disease 
(Wang et al., 2019). Combinatorial activity of effectors could 
enable stronger effects on plant cells. It has been found that 
co-expression of PiRXLR effectors that target different im-
mune pathways has an additive enhancement; those targetting 
the same pathway do not (Wang et al., 2019). Cell to cell com-
munication is not, however, a simple one-way process; plant 
molecules can regulate microbial functions. These molecules 
are often secreted from plant cells, but it has also been found 
that they can be released in packages. For example, extracel-
lular vesicles (EVs) from sunflower apoplastic fluid can be 
taken up by fungi such as Sclerotinia (Regente et al., 2017). In 
this case, the EVs were found to contain proteins including 
cell wall-remodelling enzymes and defence proteins that affect 
fungal viability.

Complexity of recognition: it’s complicated

Plant–microbe interactions are not simply differentiated by 
whether the microbes are friend or foe—the molecular and 
phenotypic outcome depends on which microbial strain is 
present. Liang et  al. (2019) demonstrate that Lotus can ex-
hibit duality in how it is colonized, with some rhizobial spe-
cies entering transcellularly via infection threads and some 
intercellularly via ‘peg’-like structures. Once microbes enter, 
the level of colonization and host physiological changes can 
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vary, for example in the well-known pathway of autoregulation 
of nodulation (AON) that modulates rhizobial colonization of 
legumes. In addition to strain-specific differences, legumes vary 
in how they regulate AON. In Lotus, the central controller 
TML is involved in CLE peptide-regulated AON (Tsikou 
et al., 2018) but in Medicago two TML genes exist (Gautrat 
et  al., 2019). MtTML1 and MtTML2 seem to be function-
ally redundant, but are expressed slightly differently (Gautrat 
et al., 2019). Regulation of plant–microbe interactions occurs 
with a high degree of spatial resolution, as has been found 
for many biotic and abiotic encounters (Walker et  al., 2017; 
Rich et  al., 2018, Preprint). This is also the case at the mo-
lecular level where modulation of spatio-temporal patterns 
and gene expression levels can fine-tune the production of re-
active oxygen species (ROS), a central element of the plant 
immune response. RbohD and RbohF were found to be ex-
quisitely regulated during Arabidopsis responses to both the 
hemibiotrophic bacterial pathogen Pseudomonas syringae pv. to-
mato and the necrotrophic fungus Plectosphaerella cucumerina, 
as well as upon treatment with microbe-associated molecular 
patterns (MAMPs) (Morales et al., 2016).

Crosstalk of immunity and plant 
homeostasis: nothing is for free

As the plant–microbe interaction progresses to resistance, sus-
ceptibility, or mutualism, changes come with either a net cost 
or benefit that can tip the balance in one direction or the other. 
Some of these immune responses can directly change homeo-
stasis. For example, production of ROS at the plasma membrane 
(PM) has been found to increase membrane order in response to 
a wide range of elicitors (Sandor et al., 2016). This seems to be 
part of a general stimulation of defence response, with alterations 
of lateral membrane fluidity found in more specific cases (Sandor 
et al., 2016). Autophagy is a general process controlling abiotic 
and biotic stress responses but is also key for maintaining cel-
lular homeostasis and, when plant–pathogen interactions regu-
late autophagy, the balance between resistance and susceptibilty 
becomes complicated, as reviewed in Leary et al. (2018). Even 
more fundamental to the cell are transcriptional and transla-
tional mechanisms. Meteignier et al. (2017) used RNaseq and 
TRAPseq to identify effector responses at the transcriptome and 
translatome levels in Arabidopsis plants. They identified genes 
that have uncoupled transcription and translation during plant–
pathogen interactions, specifically during the effector-triggered 
immunity (ETI) response (Meteignier et al., 2017).

Crosstalk is found in plant-directed processes but also in 
microbe-directed processes. The phenotypic outcome depends 
on whether a particular balance is reached and held, or tipped 
in one direction or the other. The ubiquitin–proteasome system 
(UPS) has been found to be key for this balance since it brings 
together stress responses mediated by the phytohormones sali-
cylic acid (SA) and jasmonic acid (JA), to control growth and 
immunity (reviewed in Adams and Spoel, 2018). Similarly, his-
tone acetylation and deacetylation have been identified as key 
regulators of immunity (Ramirez-Prado et al., 2018). Recently, 
Liu et  al. (2019) found that the wheat WD40-repeat pro-
tein TaHOS15 functions with the wheat histone deacetylase 

TaHDA6 to fine-tune the defence response to Blumeria graminis 
f.sp. tritici, via controlling the expression of defence-related genes. 
TaHOS15 is also known to regulate plant acclimation to cold 
stress in Arabidopsis (Zhu et al., 2008), highlighting the degree 
of crosstalk complexity in multistress responses.

Crosstalk is also found to impact plant processes indirectly. 
For example, at a structural level, cell wall organization is af-
fected during plant defence responses (reviewed in Castilleux 
et al., 2018), and hormone pathways are frequently the site of 
indirect crosstalk action. Multiple developmental pathways are 
affected during plant symbiosis and it has been found that dif-
ferent symbiotic nodule types (indeterminate and determinate) 
produce auxin maxima in different mechanistic ways as part of 
the regulation of microbial housing (reviewed in Kohlen et al., 
2018). Plant-derived auxin can antagonize plant defences, viru-
lence gene expression, and stress responses. Microbe-produced 
auxins have been found to regulate plant cellular processes both 
indirectly and directly (reviewed in Kunkel and Harper, 2018).

It has long been known that different hormone pathways 
can act antagonistically during plant growth versus immunity 
responses, as a mechanism of crosstalk. Some organisms can dir-
ectly modulate these pathways; for example, it has been found 
that infestation of rice by the phloem-feeding brownhopper re-
sults in suppression of the brassinosteroid (BR) pathway while 
simultaneously activating the SA and JA pathways (Pan et al., 
2018). Brownhopper susceptibility is altered in BR signalling 
mutants and increased following treatment with high levels 
of BR that promote JA synthesis and signalling and reduce 
SA levels (Pan et al., 2018). Crosstalk also occurs during mu-
tualism; for example, strigolactones are key regulators of plant 
arbuscular mycorrhizal fungi (AMF) interactions and they are 
part of crosstalk with auxin, abscisic acid (ABA), and gibberelic 
acid (GA) pathways (reviewed in Lanfranco et  al., 2018). 
Strigolactones can also influence the AMF directly, resulting in 
changes in fungal gene expression and also microbial secretion 
of small proteins that could act as host non-specific effector 
proteins to modulate the outcome of AMF interactions (re-
viewed in Lanfranco et al., 2018).

Environmental input: we are not alone

The balance of disease versus resistance can be further tipped 
depending on environmental factors, something of clear im-
portance as we look to develop plants for a future of climate 
change. Identifying target genes that could be modulated in 
order to mitigate enhanced climate effects could be key for 
this. Tomato resistance to Frankliniella occidentalis (thrips) is 
modulated depending on UV levels, and Escobar-Bravo et al. 
(2019) find that this modulation is probaly associated with the 
activation of JA- and SA-associated signalling. Interestingly 
this seems to be an indirect effect, again highlighting the high 
degree of crosstalk between abiotic and biotic responses. The 
mitogen-activated protein kinase gene MPK4 has found to 
be CO2 responsive and to affect plant responses to aphids by 
regulating both stomatal aperture and JA-dependent resistance 
(Guo et al., 2017). This is certainly a checkpoint that could be 
manipulated, alongside the use of classical approaches to en-
hance resilience of crops (Piquerez et al., 2014).
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Finally, we must look both underground and overground for 
regulators. Plant–microbe interactions are mediated by other 
microbes in the environment, in both the rhizosphere and 
phyllosphere. Understanding root exudation to potentially en-
courage particular communities to develop, and investigating 
the bacterial genes that affect colonization are promising 
directions. We can exploit new advances in the methods to 
study plant–microbe interactions across chemical, molecular, 
metagenomic, and exometabolomic scales, as reviewed in 
Jacoby and Kopriva (2019).

Resistance, susceptibility, or mutualism—the outcome is 
finely balanced and comes with costs to plant and microbe. 
The latest research in plant–microbe interactions must take this 
into account, but could also exploit it to develop high-yielding 
and resistant new crop varieties. The key information that will 
enable us to realize food security comes from study of plant–
microbe interactions at a fundamental level and its implemen-
tation through traditional breeding and plant engineering.
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