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Abstract

Understanding the genetic architecture of grain size is a prerequisite to manipulating grain development and improving 
the potential crop yield. In this study, we conducted a whole genome-wide quantitative trait locus (QTL) mapping of 
grain-size-related traits by constructing a high-density genetic map using 109 recombinant inbred lines of einkorn 
wheat. We explored the candidate genes underlying QTLs through homologous analysis and RNA sequencing. The 
high-density genetic map spanned 1873 cM and contained 9937 single nucleotide polymorphism markers assigned 
to 1551 bins on seven chromosomes. Strong collinearity and high genome coverage of this map were revealed by 
comparison with physical maps of wheat and barley. Six grain size-related traits were surveyed in five environments. 
In total, 42 QTLs were identified; these were assigned to 17 genomic regions on six chromosomes and accounted for 
52.3–66.7% of the phenotypic variation. Thirty homologous genes involved in grain development were located in 12 
regions. RNA sequencing identified 4959 genes differentially expressed between the two parental lines. Twenty differ-
entially expressed genes involved in grain size development and starch biosynthesis were mapped to nine regions that 
contained 26 QTLs, indicating that the starch biosynthesis pathway plays a vital role in grain development in einkorn 
wheat. This study provides new insights into the genetic architecture of grain size in einkorn wheat; identification of the 
underlying genes enables understanding of grain development and wheat genetic improvement. Furthermore, the map 
facilitates quantitative trait mapping, map-based cloning, genome assembly, and comparative genomics in wheat taxa.
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Introduction

Grain weight, which is underpinned by grain morphology, 
including two main components, grain length and width, is 
one of the most important traits in wheat (Triticum aestivum 
L.). During the domestication process and breeding history of 
wheat, grain size was a major selection and breeding target that 
has been widely selected and manipulated to increase grain 
yield (Gegas et  al., 2010). In China, improvement in wheat 
yield from ~1 T ha−1 in 1965 to ~5.4 T ha−1 today may be due 
to the large increase in grain weight (He et al., 2001; Wu et al., 
2014). Grain morphology directly influences milling perform-
ance and seedling vigor, which in turn determines the end 
products (Campbell et al., 1999; Gegas et al., 2010). Large vari-
ations in grain size and weight occur among domesticated and 
wild species of diploid, tetraploid, and hexaploid wheat (Jing 
et al., 2007; Gegas et al., 2010). Thus, understanding the genetic 
factors underlying grain size would provide the prerequisite 
information necessary to improve wheat yields.

High-density genetic maps play a fundamental role in 
dissecting the genetic components of agronomic traits and 
assembling genomes. As a basic tool, high-density genetic maps 
have been widely developed for crop species, including cereal 
crops such as wheat (Iehisa et  al., 2014; Kumar et  al., 2016), 
rice (Xie et  al., 2010), maize (Chen et  al., 2014), and barley 
(Chutimanitsakun et  al., 2011), and economic crops such as 
eggplant (Barchi et al., 2012), grape (Wang et al., 2012a), and 
sesame (Zhang et  al., 2013). A  high-density consensus map 
of tetraploid wheat was developed by integrating datasets of 
13 biparental populations that harbored 30 144 markers and 
covered 2631 centimorgan (cM) of the A and B subgenomes 
(Maccaferri et  al., 2015). In hexaploid wheat, a high-density 
genetic map was recently constructed that included 119 566 
single nucleotide polymorphism (SNP) markers, greatly 
facilitating the fine-mapping of a major quantitative trait 
locus (QTL) for grain number (Cui et  al., 2017). In barley, 
a high-density amplified fragment-length polymorphism map 
of 3H involving 84 markers covered 6.7 cM and was applied 
to narrow the genomic region for the important domestica-
tion loci, Brittle rachis (Btr1 and Btr2), which have been mo-
lecularly cloned and characterized (Komatsuda et  al., 2004; 
Pourkheirandish et al., 2015). Recently, with the demand for 
genome sequencing, high-density genetic maps have been 
widely exploited for genome assembly, especially to construct 
chromosomal pseudomolecules by anchoring and ordering 
scaffolds in wheat (Jia et al., 2013; Chapman et al., 2015), cotton 
(Zhang et al., 2015), and peanut (Bertioli et al., 2016).

For species with less available genomic information, there is an 
urgent need to develop a high-density genetic map with many 
genetic markers distributed over the entire genome. Advances 
in high-throughput sequencing technologies provide an ex-
cellent platform for genome-wide discovery of sequence vari-
ation and the development of polymorphic genetic markers. 
Of these technologies, genotyping-by-sequencing methods 
utilize restriction enzyme digestion to reduce the complexity 
of a genome and sequence large amounts of nucleotide frag-
ments using next-generation sequencing (NGS) platforms, 
such as HiSeq 2000. This process provides a large number 

of SNPs to develop a high-density genetic map. Moreover, 
methods such as restriction site-associated DNA sequencing 
(RAD-seq) (Baird et al., 2008) allow labeling of fragments with 
barcode sequences and pooling of several dozens of samples to 
one library, thus markedly reducing the per-sample cost and 
producing results in a reasonable time. Therefore, these NGS-
based methods have been widely used to develop high-density 
genetic maps in plants (Xie et al., 2010; Chutimanitsakun et al., 
2011; Pfender et al., 2011; Jia et al., 2013; Saintenac et al., 2013; 
Zhang et al., 2013; Chen et al., 2014).

Grain size or weight is genetically controlled by multiple 
genes, and a large number of QTLs for grain traits have been 
characterized in wheat in the past two decades (Gegas et al., 
2010; Tsilo et  al., 2010; Prashant et  al., 2012; Maphosa et  al., 
2014; Rasheed et al., 2014; Williams and Sorrells, 2014; Kumar 
et al., 2016; Brinton et al., 2017). The identified QTLs are dis-
tributed along all the wheat chromosomes, especially the stable 
and major QTLs on A  subgenome 1A (Gegas et  al., 2010; 
Williams and Sorrells, 2014), 2A (Tsilo et al., 2010), 3A (Gegas 
et al., 2010; Kumar et al., 2016), 4A (Prashant et al., 2012), 5A 
(Gegas et al., 2010; Williams and Sorrells, 2014; Brinton et al., 
2017), 6A (Gegas et al., 2010; Maphosa et al., 2014), and 7A 
(Tsilo et al., 2010; Kumar et al., 2016). Of those characterized 
QTLs, one QTL for grain weight on 5A was further validated 
with two near-isogenic lines and fine-mapped to a genetic 
interval of 4.32 cM corresponding to 74.6 Mb of genomic se-
quence (Brinton et al., 2017). However, it remains a challenge 
to identify the causative genes in such a long genomic interval 
due to functional redundancy (genetic buffering) of genes in 
three homoeologous genomes and the highly repetitive nature 
of the wheat genome (Slade et al., 2005; International Wheat 
Genome Sequencing Consortium, 2014). Until recently, most 
candidate genes for grain size and weight in wheat were char-
acterized by homology-based cloning (Maphosa et  al., 2014; 
Kumar et al., 2016). Several genes in rice have been proven to 
influence wheat grain size and weight, such as GW2 (TaGW2), 
GS3 (TaGS-D1), CKX2 (TaCKX6), GS5 (TaGS5), TGW6 
(TaTGW6), GASR7 (TaGASR7), and GIF1 (TaCWI) (Li and 
Yang, 2017). Moreover, the starch and sucrose biosynthesis 
pathway, including the genes TaAGPL, TaAGPS, and TaSus2, 
which was unraveled in model species, was suggested to func-
tion in wheat (Jiang et al., 2011; Hou et al., 2017). Thus, reverse 
genetics is an efficient approach to characterize the underlying 
genetic components of morphogenesis in wheat (Li and Yang, 
2017). Nevertheless, along with rapid progress in genome 
sequencing, forward genetics would greatly facilitate the char-
acterization of candidate genes involved in the development of 
wheat grain size and weight.

Einkorn wheat, Triticum monococcum ssp. monococcum L. (AmAm, 
2n=2x=14), the only cultivated diploid wheat, was domesti-
cated from its wild species, T. monococcum ssp. boeoticum (AbAb). 
As one of the remaining unaltered crops, wild einkorn wheat 
grew in a natural environment without selection for thousands 
of years (Jing et al., 2007). This species preserves a large number 
of phenotypic variations that would facilitate the dissection of 
genetic architectures for important agronomic traits (Jing et al., 
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2007; International Wheat Genome Sequencing Consortium, 
2014; Zaharieva and Monneveux, 2014). The leaf rust-resistant 
gene Lr10, the most important domestication gene Q, and 
the vernalization genes Vrn1 and Vrn2 were cloned with the 
help of einkorn wheat (Stein et al., 2000; Feuillet et al., 2003; 
Yan et al., 2003, 2004; Simons et al., 2006). Thus, the genome 
characteristics, high polymorphism, and diversified traits 
make einkorn wheat a good model for gene discovery and 
breeding improvement in hexaploid wheat (Triticum aestivum, 
2n=6x=42, AABBDD) (Stein et al., 2000; Shindo et al., 2002; 
Yan et al., 2003).

To unravel the genetic architecture of grain traits in ein-
korn wheat, a recombinant inbred line (RIL) population of 
wild and cultivated einkorn wheat was explored to map QTLs 
and characterize the underlying candidate genes. We exploited 
population SNPs through a RAD-seq approach, developed a 
high-density genetic map, conducted a genome-wide QTL 
analysis for grain traits, and elucidated the candidate genes or 
gene pathways underlying the QTLs based on comparative 
genomics and RNA sequencing (RNA-seq) analysis. The data 
revealed complex genetic components determining grain size 
variation and positive alleles retained across domestication in 
einkorn wheat. The whole-genome transcriptomic profiling 
further elucidated the candidate genes underlying QTLs with 
significantly differential expression between cultivated and 
wild einkorn wheat. Furthermore, the superior alleles identi-
fied in this work provide opportunities for genetic improve-
ment of wheat.

Materials and methods

Plant material and phenotyping
The 109 RIL population (F10) of T. monococcum ssp. boeoticum (KT1-1) 
× T. monococcum ssp. monococcum (KT3-5) was selected for linkage map 
construction and QTL mapping. The population was kindly provided 
by the KOMUGI Wheat Genetic Resources Databases of Japan and fur-
ther developed in our laboratory. The growth habit of KT1-1 is winter 
type and that of KT3-5 is spring type. Field trials with two replicates 
were conducted in a randomized complete block design at Beijing in 
2010–2011 (E1, Beijing2011), 2011–2012 (E2, Beijing2012), 2012–2013 
(E3, Beijing2013), and 2013–2014 (E4, Beijing2015), and at Zhengzhou 
in 2013–2014 (E5, Zhengzhou2014) growing seasons, as previously re-
ported (Yu et al., 2017).

Each RIL, along with the parents, was planted in 2 m long rows spaced 
40  cm apart, with 20  cm between individual plants within each row. 
The seeds were harvested from five randomly selected representative 
plants from each line and replicate, and then manually threshed. Grain 
weight was determined using 100 grains with three replicates, and trans-
formed to thousand-grain weight (TGW, g). From each replicate, 100 
grains for each RIL were imaged and processed using SC-G software 
(WSeen, Hangzhou, China), and the average values of grain length (GL, 
mm), grain width (GW, mm), grain length/width (GLW), grain area (GA, 
mm2), and grain circumference (GC, mm) were calculated. TGW was de-
termined for grains from all five environments, while the grain size traits 
were collected from E2 to E5.

RAD library construction and sequencing
Genomic DNA was isolated from young leaves of 14-day-old seedlings 
using the cetyltrimethylammonium bromide protocol (Saghai-Maroof 
et al., 1984). Complexity-reduced genomic libraries prepared using the 
restriction endonuclease SbfI (CCTGCAGG) have been reported in 

other species with large genomes (Chutimanitsakun et al., 2011; Pfender 
et al., 2011). The genomic DNA of RILs was sufficiently digested with 
SbfI and processed into RAD libraries according to the protocol of Baird 
et  al. (2008). We used a set of 16 barcoded adapters with sticky ends 
complementary to the 3′ overhang (TGCA-3′) created by SbfI. RAD 
libraries with an average size of 500 bp were constructed. For each li-
brary, 16 RILs were pooled together with each 6 bp barcode sequence to 
distinguish them and loaded on to one lane, except for the seventh lane, 
which contained 13 RILs and two parental lines. The RAD libraries were 
sequenced for a single read (101 bp) on an Illumina Genome Analyzer IIx 
(Illumina, San Diego, USA).

RAD-seq data processing and SNP calling
RAD-seq data were processed by commands from Stacks v0.98 (Catchen 
et al., 2011). First, raw data were split into individuals according to the 
first 6 bp barcode sequences of reads and filtered using sliding window 
methods by process_radtags with parameters of ‘-e sbfI -c -q -r -i fastq -E 
phred33’. Any reads containing uncalled bases or phred33 quality scores 
less than 10 in any sliding window of 0.15× read length were removed 
and discarded. Then, SNP calling from these tag sequences with the SbfI 
site was performed by ustacks, cstacks, and sstacks. Finally, SNPs were trans-
formed to genotypes, filtered with a calling ratio >40%, and applied to 
construct a linkage map.

Genetic map construction
All collected genotypes for the RILs were subjected to linkage map-
ping, and the distorted markers (Chi-square test P<0.01, deviating from 
the expected 1:1 Mendelian segregation ratio) were excluded if these 
markers greatly affected the order of their neighbor markers or exces-
sively changed genetic distance. Linkage grouping and marker ordering 
were conducted using Joinmap V4.0 (Van Ooijen and Voorips, 2004) 
based on logarithm of the odds (LOD) scores ranging from 3.0 to 15.0 
and MSTmap (Wu et al., 2008), respectively. Recombination frequencies 
were converted into cM using the Kosambi function (Kosambi, 1943). 
The final graphical linkage maps were generated using MapChart2.0 
(Voorrips, 2002).

Syntenic analysis
BLASTN was used to align the SNP markers against the physical maps 
of hexaploid wheat (IWGSC WGA v0.4; accessed from https://urgi.ver-
sailles.inra.fr/; last accessed June 9, 2019) and barley (IBSC RefSeqv1.0) 
(Mascher et  al., 2017). We filtered the BLASTN output data based on 
e-value <1e−10 and query coverage ≥90%. Hits that did not meet the con-
ditions were discarded. To balance the relationship bias of alignment in 
different genomes, different percentage identity thresholds were set: 91% 
for the H genome of barley, and 98%, 96%, and 96% for the A, B, and D 
genomes of wheat, respectively. The cleaned alignment data were used to 
compare the genetic map with the physical maps using OmicCircos (Hu 
et al., 2014) implemented in R (R Core Team, 2016).

Statistical analysis and QTL mapping
All statistical analysis was conducted in R (R Core Team, 2016). The 
broad-sense heritability (H2) was estimated by using analysis of variance 
(ANOVA), and Pearson’s correlation coefficients among traits were cal-
culated. The coefficient of variation was independently calculated for 
each individual environment as σ/μ, where σ represents the standard de-
viation and μ represents the mean of the phenotypic data in the popula-
tion. QTL analysis was performed using the composite interval mapping 
(CIM) method in Windows QTL Cartographer V2.5 (Wang et al., 2012b) 
as previously described (Yu et al., 2017). QTLs were reported according 
to previous methods (Kumar et al., 2016; Yu et al., 2017), and QTLs de-
tected from at least two environments or linked with other trait QTLs 
or homologously mapped genes were also retained. QTLs linked with 
flanking markers or overlapping confidence intervals (CIs; ±1 LOD) 
were considered as one QTL for each trait with the CI reassigned by 

https://urgi.versailles.inra.fr/
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the overlapping genetic positions, while unique genomic regions were 
considered to be regions with at least one QTL included. The total ex-
plained variance by QTLs was estimated according to our previous study 
(Yu et al., 2017).

RNA-seq and data analysis
KT1-1 and KT3-5 seedlings at the one-leaf stage were grown in pots 
(8 cm2×8 cm) with nine seedlings per pot under 4–6 °C (8 h light) for 6 
weeks. The seedlings were then transplanted to 12 pots (25 cm2×25 cm) 
with four plants in each pot. They were grown in a greenhouse under 
conditions of 16 h light at 25 °C and 8 h darkness at 15 °C. The flowering 
time was recorded for each plant. After removal of their top and base two 
or three spikelets, the spikes were harvested at 0, 7, 14, and 21 days after 
flowering (DAF), starting from the anther emerging in the middle of the 
spike; three biological replicates were sampled, and three primary spikes 
from different plants in the same pot were collected for each replicate. 
For each line, nine primary spikes were collected from different plants 
at the end of the daylight period for each developmental stage and im-
mediately frozen in liquid nitrogen and stored at –80 °C. Three primary 
spikes for each replicate were pooled for RNA isolation. Total RNA ex-
traction and quality assessment were conducted as previously reported 
(Zhang et al., 2015). Library construction and RNA-seq were performed 
by BGI (Shenzhen, China). cDNA libraries with an average insert size of 
300 bp from 24 samples were prepared using the TruSeq RNA Sample 
Preparation Kit v2 (Illumina San Diego, USA) and sequenced on a 
HiSeq4000 (Illumina, San Diego, USA) according to the manufacturer’s 
standard protocols.

The raw reads were quality filtered for adaptor contamination and 
low-quality or unknown nucleotides. The resultant clean reads were 
aligned against the wheat accession Chinese Spring TGACv1.32 genome 
assembly (ftp://ftp.ensemblgenomes.org/pub/plants/release-32/fasta/
triticum_aestivum/; last accessed June 9, 2019). Transcript count infor-
mation for each gene sequence was calculated and normalized to the 
fragments per kilobase of transcript per million mapped reads (FPKM) 
values (Trapnell et  al., 2010). Significantly differentially expressed 
genes (DEGs) were screened using the bioconductor package NOISeq 
(Tarazona et al., 2011). Genes with |log2(FPKMKT3-5/FPKMKT1-1)| >1 
and probability >0.8 were identified as DEGs, while genes with prob-
ability >0.7 were considered as suggestive DEGs. Gene functions were 
assigned according to the best match of the alignments to the Kyoto 
Encyclopedia of Genes and Genomes (KEGG; http://www.genome.jp/
kegg/; last accessed June 9, 2019), NR (ftp://ftp.ncbi.nlm.nih.gov/blast/
db; last accessed June 9, 2019), and Gene Ontology (GO) databases using 
BLASTP (v2.2.23) with default parameters. GO terms and KEGG path-
ways of the investigated genes were extracted. GO and KEGG pathway 
enrichment analysis was performed using the phyper function imple-
mented in R (R Core Team, 2016). GO terms with corrected P values 
≤0.05 and KEGG pathways with Q values ≤0.05 were defined as signifi-
cant enrichments.

Results

Multigenic control of grain size traits in einkorn wheat

The grain size traits and TGWs for the 109 RILs and their 
parents were determined (Fig. 1; Supplementary Table S1 and 
Fig. S1 at JXB online). The wild einkorn wheat KT1-1 generally 
had a small seed size (GL=6.40 mm and GW=1.59 mm), while 
the cultivated einkorn KT3-5 had larger seeds (GL=7.59 mm 
and GW=2.60 mm in E2). Among the RIL population, GL and 
GW were continuously distributed and preserved a transgres-
sive inheritance; for example, GL varied from 6.17 to 8.85 mm 
with a mean of 7.71 mm in E2. High heritability (H2) was ob-
served in both traits (0.86 for GL and 0.82 for GW). However, 
significantly higher coefficients of variation were documented 

in GW across four environments (10.37% of GW versus 7.36% 
of GL; P=0.0094 based on t-test), demonstrating that GW had 
larger variations. Moreover, TGW showed the highest coeffi-
cient of variation across all environments, from 21.16% (E1) to 
32.64% (E3), but with high heritability (0.85); for other traits, 
values of H2 were not lower than 0.8 (Supplementary Table 
S1). Thus, the large variation of the observed traits was pro-
posed to be mainly under genetic control with multiple loci in 
this RIL population.

Significant correlations were observed among GL, GW, 
GLW, GA, GC, and TGW (Supplementary Table S2). GL had 
the highest positive correlation with GC (r=0.99, Bonferroni-
adjusted P<0.01), followed by TGW versus GA, GC versus 
GA, and GW versus GA (Fig. 1). TGW was positively correl-
ated with all the grain-size-related traits except GLW (–0.33), 
and had a stronger correlation with GW (range 0.73 to 0.93, 
mean 0.88) than GL (range 0.66 to 0.82, mean 0.78) across 
all surveyed environments (Fig. 1; Supplementary Table S2). 
GLW was significantly negatively correlated with GW (–0.67), 
but showed no significant correlation with GL (0.24, P=0.19). 
GC was correlated more strongly with GL (0.99) than GW 
(0.63), while GA had an almost equal significant positive cor-
relation with GL and GW (0.86 and 0.89, respectively). Thus, 
GW was a more important determinant of TGW, and GL and 
GW contributed differentially to the composite traits of GLW 
(grain shape), GA and GC (grain size) in this RIL popula-
tion. Principal component analysis also identified two ex-
tracted principal components, PC1 for grain size (65.5–77.8%) 
and PC2 for grain shape (20.8–31.5%), in four environments 
(Supplementary Table S3; Supplementary Fig. S2).

Development of a high-density genetic map through 
the RAD-seq approach

Seven SbfI reduced-representation libraries were constructed, 
and a total of 64.88 Gb of data, with 642 million reads, was 
subsequently generated. All reads were demultiplexed to the 
samples and subjected to quality control, and this resulted in 
~3.95±1.06 million (mean ±SD) reads per sample for fur-
ther analysis (Supplementary Table S4). Genomic variation 
calling resulted in 42 278 putative SNPs at 25 805 genomic 
tags (11.36% of the total 227 244 tags). Of these, 25 609 SNPs 
distributed at 16 566 tags were retained with >40% population 
calling rate, and these tags are hereinafter referred to as SNP 
markers for SNPs in one tag forming one haplotype.

These 16  566 SNP markers were used to construct the 
genetic map, along with 939 genetic markers from a previous 
study (Yu et  al., 2017). The resulting genetic map contained 
10  876 genetic markers distributed on seven chromosomes, 
designated as Tm1A to Tm7A, based on the known mapped 
markers, and these markers were grouped into 1551 unique 
bins (Table 1; Fig. 2). The genetic map spanned 1873.04 cM 
with an average marker interval of 0.17 cM and average marker 
density of 5.8 per cM (Table 1). The number of markers on 
each chromosome varied from 1343 (Tm1A) to 1732 (Tm2A), 
and the number of genetic bins varied from 176 (Tm4A) to 
265 (Tm7A) per chromosome. The average bin length varied 
from 1.07 cM (Tm7A) to 1.50 cM (Tm4A).

ftp://ftp.ensemblgenomes.org/pub/plants/release-32/fasta/triticum_aestivum/
ftp://ftp.ensemblgenomes.org/pub/plants/release-32/fasta/triticum_aestivum/
http://www.genome.jp/kegg/
http://www.genome.jp/kegg/
ftp://ftp.ncbi.nlm.nih.gov/blast/db
ftp://ftp.ncbi.nlm.nih.gov/blast/db
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erz247#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erz247#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erz247#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erz247#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erz247#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erz247#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erz247#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erz247#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erz247#supplementary-data
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Fig. 1. Phenotypic performances, distribution, and correlation coefficients for six quantitative traits of parents and RILs, using the average phenotypic 
data. The frequency distribution of the phenotypic data for each trait is shown in the histograms. The X–Y scatter plots in the lower left panels show the 
correlations between traits, while the corresponding Pearson’s correlation coefficients and P values of multiple comparison tests are located in the upper 
right panels. *P<0.05, **P<0.01. GL, grain length (mm); GW, grain width (mm); GLW, grain length/width; GA, grain area (mm2); GC, grain circumference 
(mm); TGW, thousand-grain weight (g).

Table 1. Summary information of the high-density einkorn wheat genetic map

Chromosome Length  
(cM)

SNPs Other  
markers

Total number  
of markers

Bin  
number

Bin  
length (cM)

Marker  
interval (cM)

Maximum  
gap (cM)

Tm1A 245.33 1233 110 1343 206 1.19 0.18 4.85
Tm2A 265.16 1621 111 1732 230 1.15 0.15 6.71
Tm3A 293.50 1466 190 1656 242 1.21 0.18 6.28
Tm4A 264.33 1453 103 1556 176 1.50 0.17 20.82
Tm5A 283.08 1269 153 1422 245 1.16 0.20 8.16
Tm6A 238.61 1357 115 1472 187 1.28 0.16 5.02
Tm7A 283.04 1538 157 1695 265 1.07 0.17 12.17
Total 1873.04 9937 939 10 876 1551 1.21 0.17 20.82
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Fig. 2. QTLs detected genome-wide using the high-density genetic map of einkorn wheat. The genetic map showed 17 genomic regions harboring 
QTLs for six grain traits in an einkorn wheat RIL population of T. monococcum ssp. boeoticum (KT1-1) and T. monococcum ssp. monococcum (KT3-5). 
The detected QTLs for each trait from each environment were combined with confidence intervals and mapped on the genetic map. At each linkage 
group, each QTL is plotted on the right side, while the candidate genes in each QTL region are indicated on the left side. Detailed information on the 
QTLs is provided in Table 2. The candidate genes of each QTL region are shaded blue, and the red arrows show the QTL regions. Genes in red text were 
mapped through developing functional markers and genetic mapping, while black bold text denotes genes located inside the QTL region, and red or 
black normal text denotes genes surrounding the QTL region. The yellow shaded portions of each linkage group are the probable centromere regions. 
The positions of SNPs and other types of markers are denoted with black and red horizontal lines, respectively. GL, grain length; GW, grain width; GLW, 
grain length/width; GA, grain area; GC, grain circumference; TGW, thousand-grain weight.
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Compared with a previous map constructed with the same 
population (Yu et  al., 2017), this high-density genetic map 
has been extended by approximately 496 cM (from 1377 
cM to 1873 cM). The larger genetic map resulted primarily 
from additional intrachromosomal recombination (~439 cM) 
detected by the new mapped SNP markers. Meanwhile, 84 
SNP markers located beyond other markers at the distal ends 
of chromosomes (of which 21 were mapped on Tm1AS/L, 
six on Tm2AS, two on Tm4AL, 51 on Tm5AS/L, and four on 
Tm6AS) covered 29 bins with ~57 cM. Regarding gaps in this 
high-density genetic map, all intervals were <10 cM between 
two neighboring markers, other than one gap on Tm4A (20.82 
cM between bin3 and bin4) and two gaps on Tm7A (12.17 cM 
between bin263 and bin264, 10.02 cM between bin173 and 
bin174) (Fig. 2; Supplementary Table S5). The gaps detected 
here should be caused by lack of recombination in these inter-
vals, not only in this RIL population (Shindo et al., 2002; Hori 
et  al., 2007; Yu et  al., 2017) but also in other einkorn wheat 
populations (Jing et al., 2007; Singh et al., 2007). Thus, this gen-
etic map was greatly improved in terms of marker density and 
evenness, and represents a high-quality map with thousands of 
markers and limited gaps.

Furthermore, the quality and genome coverage of the gen-
etic map was evaluated with 9937 SNP markers against the 
barley (IBSC RefSeqv1.0) (Mascher et  al., 2017) and hexa-
ploid wheat (IWGSC WGA v0.4) genomes. In total, 1834, 
2187, 1693, and 922 hits were retained for the A, B, D, and H 
genomes, respectively, after alignment filtration. These align-
ments corresponded to 3102 SNP markers, and 2758 markers 
were mapped to the expected homologous chromosomes and 
showed high collinearity [average Spearman’s rank correlation 
coefficient (ρ)=0.76] except the Tm4A–Ta4A and Tm7A–
Ta7B comparisons (Fig. 3A). The 4AL/5AL/7BS transloca-
tions (Devos et al., 1995) were observed with a genetic distance 
of ~50 cM in Tm5A and physical lengths of ~35 Mb, ~28 Mb, 
and ~20 Mb in Ta4B, Ta4D, and Hv4H, respectively, and two 
SNPs from Tm4A covering ~1 cM mapped to Ta7BS (Fig. 
3B, C; Supplementary Fig. S3A, B). It is noteworthy that the 
mapped SNP markers cover >97% of all the chromosomes, 
except for Ta4A (92%) and Ta3B (93%) (Supplementary Fig. 
S3C). Therefore, the high collinearity provides syntenic blocks 
between einkorn wheat and available genomes, which would 
facilitate the identification of interesting genomic regions for 
further analysis.

Genetic architectures of grain size traits in 
einkorn wheat

Using the CIM method, a total of 42 additive QTLs were 
identified and distributed across six chromosomes (except 
Tm4A); they had a LOD peak score of >3.4 and explained 
6.4–38.1% of the phenotypic variation (Supplementary Fig. 
S4; Supplementary Table S6). Among the QTLs, 31 (74%) 
loci involved positive alleles from KT3-5 for increasing 
phenotypic values, while the other 11 (26%) had positive 
alleles from KT1-1 for increasing phenotypic values, sug-
gesting that positive alleles for grain-size-related traits were 
present even in the parent with low phenotypic values. These 

42 unique QTLs were assigned to 17 genomic regions for 
QTLs of several traits co-located at the same chromosomal 
region. This resulted in an average number of 2.5 QTLs per 
region, of which 3A-2 (273.6–282.9 cM) harbored the most 
QTLs, which were related to all six phenotypic traits (Table 
2; Fig. 2).

To investigate the candidate genes underlying QTLs, hom-
ologous genes with functions related to grain size or weight 
reported in rice, barley, and wheat were retrieved and mapped 
to this genetic map. Except 1A-1. which was homologous to 
the chromosomal centromeric region, the remaining 16 QTL 
regions had homologous blocks in the hexaploid wheat and 
barley genomes. These syntenic blocks had average physical 
lengths of 24.29 Mb and 18.85 Mb in the hexaploid wheat 
A and barley H genomes, respectively (Supplementary Fig. S5). 
This process allowed 41 collected genes to be mapped, 40 in the 
wheat genome and 36 in the barley genome (Supplementary 
Table S7). Among these genes, 30 were mapped in the QTL 
confidence intervals, and seven (Flo2, GIF1, SRS5, AGPL-
plas, Vrn2, GS1a, and DWARF2) were closely linked with 
their target QTL; however, four genes had a genetic distance 
>10 cM from the identified QTL, corresponding to five loci: 
Sus2 (83.67 cM) and GW7 (75.70 cM) on Tm2A, and Sus1 
(32.65 cM), Sus2 (83.67 cM), and GASR7 (103.17 cM) on 
Tm7A (Supplementary Tables S5 and S7). To confirm their 
concordant locations, AGPL, Sus1, Sus2, Vrn1, Vrn2, Vrn3, 
NAL1, GS1a, GASR7, and GW7 were mapped by developing 
polymorphic markers (Supplementary Table S8), such as an in-
sertion–deletion (InDel) marker for Vrn3 (Supplementary Fig. 
S6). Collectively, AGPL, Vrn1, Vrn3, and NAL1 were mapped 
to 1A-3, 5A-2, 7A-1, and 2A-1, respectively, and Vrn2 and 
GS1a were located to within 5 cM of 5A-2 and 6A-1, which 
is consistent with the comparative homologous regions.

GL and GW QTLs
In total, 11 genomic regions contained QTLs for GL and 
GW (Supplementary Fig. S7). For GL, six QTLs were dis-
tributed over chromosomes Tm2A, Tm3A, Tm5A, Tm6A, and 
Tm7A, explaining 7.27–35.43% of the phenotypic variation 
(Supplementary Table S6). The KT1-1 alleles on Tm2A, Tm3A, 
Tm5A, and Tm6A decreased GL by 0.14–0.45 mm, while the 
allele on Tm7A increased GL by 0.16–0.34 mm. All detected 
QTLs represented by peak markers could explain 59.1% of 
the total phenotypic variation (Supplementary Table S9). 
Multiple comparison showed that when RILs inherited two 
or three positive alleles that would increase phenotypic values, 
GL increased significantly (P<0.01) (Supplementary Fig. S8; 
Supplementary Table S10). Eight GW QTLs were detected 
across all six QTL-located chromosomes, jointly explaining 
56.8% of the total phenotypic variation (Supplementary Table 
S9). Most of these QTLs showed a negative effect of KT1-1 
alleles, decreasing GW by 0.07–0.13 mm, while only QGw.
igdb-7A.1, mapped in 7A-3 (242.2–250.2 cM), increased GW 
by 0.07 mm (Table 2). Three regions containing QTLs for both 
GL and GW, 3A-2, 5A-2, and 6A-2, were located on multiple 
genes, including TmLUX1, CWI2, and CCS52B for 3A-2, 
Vrn1, PHO1, Shattering1, and GL3 on 5A-2, and BSG1 on 
6A-2 (Fig. 2). For GL, 2A-1 contained NAL1, 7A-1 contained 

http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erz247#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erz247#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erz247#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erz247#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erz247#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erz247#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erz247#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erz247#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erz247#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erz247#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erz247#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erz247#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erz247#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erz247#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erz247#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erz247#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erz247#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erz247#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erz247#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erz247#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erz247#supplementary-data
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Vrn3, PUL, HGW, TEF1, and DSG1, and 7A-2 contained 
GW6a. For GW, 1A-3 contained AGPL, TEF1, and ETT, 
7A-3 contained SBEI, and the remaining QTLs overlapped 

with QTLs for other traits. Of these genes, Vrn1, Vrn3, AGPL1, 
TmLUX1, and NAL1 were genetically mapped. Specifically, a 
9 bp deletion in the AGPL1 promoter region (~1 kb upstream) 

Fig. 3. Genomic collinearity and chromosomal structure variation revealed by the high-density genetic map of einkorn wheat. (A) SNP markers were 
aligned against four einkorn wheat-related genomes (A, B, and D from hexaploid wheat, and H from barley), and the positions of the hit markers were 
compared with physical locations from the four genomes. (B) Comparisons of the marker positions on homologous groups 4, 5, and 7 elucidate 
4AL/5AL/7BS translocations using the einkorn wheat genetic map. The detailed information is given in (C).



Genetic architecture of einkorn wheat grain size | 4679

Ta
b

le
 2

. 
Q

TL
s 

de
te

ct
ed

 w
ith

 th
e 

C
IM

 m
et

ho
d 

us
in

g 
th

e 
hi

gh
-d

en
si

ty
 e

in
ko

rn
 w

he
at

 g
en

et
ic

 m
ap

Tr
ai

t
Q

T
L

E
nv

ir
o

nm
en

t
C

hr
o

m
o

so
m

e
Lo

ca
ti

o
n 

(c
M

)
LO

D
P

V
E

 (%
)

D
ir

ec
ti

o
n

A
d

d
it

iv
e

Q
T

L 
 

re
g

io
n

LO
D

 
th

re
sh

o
ld

G
ra

in
 le

ng
th

 (G
L)

Q
G

l.i
gd

b-
2A

.1
E

2,
 E

4 
(G

A
, G

C
, T

G
W

)
2A

16
3.

9–
17

1.
4

9.
3

21
.4

–
0.

25
2A

-1
3.

31
Q

G
l.i

gd
b-

3A
.1

E
2,

 E
3,

 E
4,

 E
5 

(G
W

, G
LW

,  
G

A
, G

C
, T

G
W

)
3A

27
3.

6–
28

3.
3

3.
5–

14
.2

7.
3–

35
.4

–
0.

14
–0

.4
5

3A
-2

 

Q
G

l.i
gd

b-
5A

.1
E

3 
(G

W
, G

A
, T

G
W

)
5A

14
2.

8–
14

8.
5

3.
5

8.
1

–
0.

18
5A

-2
 

Q
G

l.i
gd

b-
6A

.1
E

4 
(G

W
, G

A
, G

C
)

6A
19

9.
2–

20
4.

5
4.

5
8.

9
–

0.
21

6A
-2

 
Q

G
l.i

gd
b-

7A
.1

E
4,

 E
5,

 E
3 

(G
C

)
7A

62
.5

–7
0.

4
4.

0–
9.

0
9.

0–
19

.6
+

0.
16

–0
.3

4
7A

-1
 

Q
G

l.i
gd

b-
7A

.2
E

2,
 E

4,
 E

3,
 E

5 
(G

LW
)

7A
20

9.
1–

21
3.

6
6.

9
15

.5
+

0.
19

7A
-2

 
G

ra
in

 w
id

th
 (G

W
)

Q
G

w
.ig

db
-1

A
.1

E
2 

(G
LW

, T
G

W
)

1A
21

4.
0–

21
8.

1
6.

4
12

.9
–

0.
08

1A
-3

3.
39

Q
G

w
.ig

db
-2

A
.1

E
2,

 E
5 

(T
G

W
)

2A
20

4.
4–

20
6.

3
6.

4
12

.7
–

0.
08

2A
-2

 
Q

G
w

.ig
db

-3
A

.1
E

3,
 E

4 
(G

L,
 G

LW
, G

A
, G

C
,  

TG
W

)
3A

27
8.

5–
28

1.
1

8.
8

24
.1

–
0.

13
3A

-2
 

Q
G

w
.ig

db
-5

A
.1

E
4,

 E
3 

(S
pe

ci
fic

)
5A

10
2.

5–
10

6.
0

6.
1

16
.2

–
0.

10
5A

-1
 

Q
G

w
.ig

db
-5

A
.2

E
2 

(G
L,

 G
A

, T
G

W
)

5A
14

8.
5–

15
0.

3
3.

9
7.

2
–

0.
07

5A
-2

 
Q

G
w

.ig
db

-5
A

.3
E

2 
(G

A
, T

G
W

)
5A

18
4.

8–
19

0.
9

4.
7

8.
9

–
0.

07
5A

-3
 

Q
G

w
.ig

db
-6

A
.1

E
4,

 E
2 

(G
L,

 G
A

, G
C

)
6A

20
4.

4–
21

1.
3

3.
4

9.
0

–
0.

07
6A

-2
 

Q
G

w
.ig

db
-7

A
.1

E
4 

(G
A

, T
G

W
)

7A
24

2.
2–

25
0.

2
3.

5
8.

8
+

0.
07

7A
-3

 
G

ra
in

 le
ng

th
/ 

w
id

th
 (G

LW
)

Q
G

lw
.ig

db
-1

A
.1

E
3,

 E
4 

(S
pe

ci
fic

)
1A

69
.8

–8
1.

8
4.

1–
4.

2
9.

4–
9.

8
–

0.
08

9–
0.

09
2

1A
-1

3.
36

Q
G

lw
.ig

db
-1

A
.2

E
2,

 E
4,

 E
3 

(G
W

, T
G

W
)

1A
20

0.
8–

22
4.

3
5.

0–
5.

3
9.

6–
12

.2
+

0.
09

–0
.1

0
1A

-3
 

Q
G

lw
.ig

db
-3

A
.1

E
5 

(G
L,

 G
W

, G
A

, G
C

, T
G

W
)

3A
27

4.
4–

28
1.

4
4.

1
8.

0
–

0.
10

3A
-2

 
Q

G
lw

.ig
db

-6
A

.1
E

2,
 E

5 
(S

pe
ci

fic
)

6A
16

9.
2–

17
3.

3
9.

6–
13

.5
19

.0
–3

4.
0

+
0.

13
–0

.2
1

6A
-1

 
Q

G
lw

.ig
db

-7
A

.1
E

2,
 E

3,
 E

5 
(G

L)
7A

20
7.

5–
21

5.
4

5.
6–

7.
3

10
.9

–1
5.

6
+

0.
10

–0
.1

3
7A

-2
 

G
ra

in
 a

re
a 

(G
A

)
Q

G
a.

ig
db

-1
A

.1
E

4 
(T

G
W

)
1A

13
9.

9–
14

5.
1

6.
9

17
.5

+
0.

92
1A

-2
3.

36
Q

G
a.

ig
db

-2
A

.1
E

2,
 E

3 
(G

L,
 G

C
, T

G
W

)
2A

18
6.

5–
19

1.
3

3.
4–

7.
8

7.
7–

17
.2

–
0.

60
–0

.7
3

2A
-1

 
Q

G
a.

ig
db

-3
A

.1
E

4 
(T

G
W

)
3A

11
.0

–1
8.

3
4.

8
11

.2
–

0.
73

3A
-1

 
Q

G
a.

ig
db

-3
A

.2
E

2,
 E

3,
 E

4,
 E

5 
(G

L,
 G

W
,  

G
LW

, G
C

, T
G

W
)

3A
27

5.
5–

28
0.

1
3.

4–
10

.4
6.

9–
27

.6
–

0.
46

–1
.1

6
3A

-2
 

Q
G

a.
ig

db
-5

A
.1

E
2,

 E
3 

(G
L,

 G
W

, T
G

W
)

5A
16

2.
1–

16
4.

3
9.

6
22

.3
–

0.
81

5A
-2

 
Q

G
a.

ig
db

-5
A

.2
E

4,
 E

5 
(G

W
, T

G
W

)
5A

18
1.

0–
18

6.
7

4.
1

9.
3

–
0.

65
5A

-3
 

Q
G

a.
ig

db
-6

A
.1

E
2 

(G
L,

 G
W

, G
C

)
6A

20
5.

3–
21

4.
7

4.
1

8.
8

–
0.

50
6A

-2
 

Q
G

a.
ig

db
-7

A
.1

E
4 

(G
W

, T
G

W
)

7A
24

3.
5–

24
9.

1
3.

4
6.

4
+

0.
55

7A
-3

 
G

ra
in

  
ci

rc
um

fe
re

nc
e 

(G
C

)
Q

G
c.

ig
db

-2
A

.1
E

2,
 E

4 
(G

L,
 G

A
, T

G
W

)
2A

16
2.

2–
17

3.
2

6.
7

16
.4

–
0.

48
2A

-1
3.

30
Q

G
c.

ig
db

-3
A

.1
E

2,
 E

3,
 E

4,
 E

5 
(G

L,
 G

W
,  

G
LW

, G
A

, T
G

W
)

3A
27

5.
3–

28
2.

9
5.

6–
13

.8
12

.5
–3

4.
4

–
0.

40
–0

.9
8

3A
-2

 

Q
G

c.
ig

db
-5

A
.1

E
2,

 E
3 

(S
pe

ci
fic

)
5A

26
8.

8–
27

5.
1

6.
9

20
.8

–
0.

51
5A

-5
 

Q
G

c.
ig

db
-6

A
.1

E
4 

(G
L,

 G
W

, G
A

)
6A

19
9.

4–
20

4.
5

4.
8

9.
6

–
0.

48
6A

-2
 

Q
G

c.
ig

db
-7

A
.1

E
2,

 E
3,

 E
4,

 E
5 

(G
L)

7A
62

.3
–6

9.
9

4.
0–

8.
9

8.
9–

19
.6

+
0.

37
–0

.7
5

7A
-1

 

Th
ou

sa
nd

-g
ra

in
 

w
ei

gh
t (

TG
W

)
Q

Tg
w

.ig
db

-1
A

.1
E

4,
 E

2 
(G

A
)

1A
14

0.
9–

14
5.

1
7.

0
18

.3
+

2.
18

1A
-2

3.
32

Q
Tg

w
.ig

db
-1

A
.2

E
1,

 E
4 

(G
W

, G
LW

)
1A

20
1.

8–
20

7.
6

4.
7

9.
0

–
1.

20
1A

-3
 

Q
Tg

w
.ig

db
-2

A
.1

E
2,

 E
3,

 E
5 

(G
L,

 G
A

, G
C

)
2A

16
9.

1–
19

0.
1

5.
7–

7.
3

11
.5

–1
6.

9
–

1.
47

–2
.0

0
2A

-1
 

Q
Tg

w
.ig

db
-2

A
.2

E
1 

(G
W

)
2A

20
2.

1–
20

4.
4

7.
7

15
.9

–
1.

59
2A

-2
 



4680 | Yu et al.

was observed in KT1-1, and a SNP changed an amino acid 
from S (KT3-5) to G (KT1-1), but other SNPs in the other 
five exons were synonymous mutations (Supplementary Fig. 
S9). Moreover, the increased positive alleles of the detected 
nine QTLs for GW showed more significant divergence be-
tween different groups than the alleles for GL (Supplementary 
Fig. S8; Supplementary Table S10).

GLW, GA, and GC QTLs
The composite traits GLW, GA, and GC were calculated from 
GL and GW, as they directly reflect grain size (GC and GA) 
and shape (GLW). The most significant QTL for GLW, QGlw.
igdb-6A.1, could explain 19.0–34.0% of the phenotypic vari-
ation (Table 2). This QTL was specially mapped to 6A-1, 
which contains the genes SSIIb, PGL2, and BU1, which par-
ticipates in starch biosynthesis and brassinosteroid signaling, as-
sociated with starch accumulation and grain weight and length. 
The GLW-specific QTL region was mapped to 1A-1 and is 
generally syntenic with a large proportion of the centromeric 
region, and little information regarding homologous genes was 
available. For GA, QGa.igdb-1A.1 was located on 1A-2 (139.9–
145.1 cM) and explained 17.54% of the phenotypic variation, 
with a positive effect with the KT1-1 allele, which contained 
no QTLs for GL and GW (Table 2). However, this QTL over-
lapped with QTgw.igdb-1A.1 and a homologous gene of GID1, 
which interacts with DELLA protein in plants to control plant 
height (Jiang and Fu, 2007). Moreover, QGa.igdb-3A.1 over-
lapped with QTgw.igdb-3A.1 on 3A-1, which was linked with 
GIF1 (Fig. 2). Four GC QTLs overlapped with GL QTLs, a 
finding that is consistent with the strong correlation between 
GC and GL (r=0.99). Overall, genetic overlaps were observed 
between the three composite traits and GL/GW, which were 
revealed by the genetic co-locations of GL/GW with GLW 
(three of five), GA (six of eight), and GC (four of five).

TGW QTLs
Ten QTLs for TGW were identified, on Tm1A, Tm2A, Tm3A, 
Tm5A, and Tm7A (Table 2). QTgw.igdb-1A.1 and QTgw.
igdb-7A.1 showed positive effects with the KT1-1 allele, 
increasing TGW by 2.18 g and 1.29 g, respectively (Table 2). 
The remaining QTLs decreased TGW by 1.04–3.03 g and ex-
plained 6.71–38.05% of the phenotypic variation. Several pre-
viously mapped loci affected TGW or its related traits, such 
as Vrn1 (5A-2) and Vrn3 (7A-1); Vrn1 from KT1-1 delays 
heading but Vrn3 promotes heading (Yu et al., 2017). QTgw.
igdb-5A.3 was mapped between 251.4 cM and 256.4 cM; 
little information about this region is known except that Vrn2 
(248.03 cM) is closely linked with it (Table 2). Interestingly, 
genes in the starch biosynthesis pathway, AGPL, AGPL-plas, 
SSIIIb, PHO1, and SBEI, which mapped to 1A-3, 5A-3, 2A-1, 
5A-2, and 7A-3, respectively (Fig. 2), could decrease grain size 
by the KT1-1 allele, except 7A-3. With respect to five grain 
traits, nine of the TGW QTLs overlapped; of these, seven of 
the eight GA QTLs and six of the eight GW QTLs were 
co-located, while only three of the six GL QTLs and two 
GW-associated GLW QTLs were co-located (Supplementary 
Fig. S7). The data also demonstrated that grain size traits (es-
pecially GA and GW) were associated more positively with Tr
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TGW, while grain shape (GLW) had a negative effect on TGW 
for at least three QTLs, QGlw.igdb-1A.2, QGlw.igdb-6A.1, and 
QGlw.igdb-7A.1.

Environmental effects on QTLs

Environment-wide analysis showed that traits varied on pheno-
typic performance across the different environments, but they 
expressed similar patterns, except GLW (Supplementary Fig. 
S1). From all 42 QTLs, 26 (61.90%) were detected from at least 
two environments, out of which 80% of GC and GLW QTLs, 
67% of GL QTLs, 60% of TGW QTLs, and 50% of GA and 
GW QTLs were detected. Meanwhile, 16 (38.10%) QTLs were 
detected in one environment but overlapped with QTLs for 
other traits (Table 2). Among the traits examined, GL showed 
the highest H2 (0.86) and correlation between environments 
(average r=0.65), while GW showed the lowest (H2=0.82 and 
r=0.53) (Supplementary Table S1). Moreover, ANOVA revealed 
that environment and genotype–environment interaction con-
tributed to phenotypic variation, with variations explained by 
environment ranging from 3.39% (GLW) to 13.72% (TGW) 
(Supplementary Table S9). Therefore, our data reflect that the 
environmental factors had effects on phenotypic performance, 
thus further affecting QTL mapping.

Candidate genes underlying QTLs

To detect dynamic profiles of genes involved in grain devel-
opment, RNA-seq was performed with spikes of two parents 
at four spike developmental stages, 0, 7, 14, and 21 DAF. After 
filtering out low-quality or adapter-contaminated reads, a total 
of 130.2 Gb clean data was harvested from 24 libraries of eight 
samples (two accessions×four developmental stages), each with 
three biological replicates. After mapping against gene sets of 
the A  genome of hexaploid wheat, 40.38% reads covering 
87.77% (28 561/32 539) of total genes were shown to have 
unique positions, and these were subjected to further analysis.

DEGs between KT1-1 and KT3-5 were compared 
across the four developmental stages. A  total of 4959 DEGs, 
including 2061 up-regulated and 2898 down-regulated genes, 
were identified with a threshold of probability >0.8 and 
|log2(FoldChange)| >1.0 (Supplementary Fig. S10A). GO 
and KEGG pathway enrichment analysis revealed that these 
genes were involved in carbon fixation and metabolism, amino 
acid metabolism, and regulation of nucleotide metabolism-
related enzymes (Supplementary Fig. S10 B, C; Supplementary 
Tables S11 and S12). The DEGs on the QTL regions were 
characterized through comparative transcriptional profiling 
along spike developmental processes. Of these mapped hom-
ologous genes, SRS5 (Segami et al., 2012) had FPKM values 
of 547 and 650 at 0 and 7 DAF in KT3-5, compared with 
227 and 257 in KT1-1, and an overall up-regulation of 1.67- 
to 2.53-fold in KT3-5 was observed at all investigated stages 
(Fig. 4; Supplementary Table S13). Furthermore, SRS5 was 
mapped on to 5A-2 (142.8–164.3 cM), which contributes to 
GL, GW, GA, and TGW (Fig. 2). Thus, SRS5 may be a can-
didate gene for this QTL, affecting ~6.22% GA and ~8.78% 
TGW (Supplementary Table S6).

The gene encoding the ADP-glucose pyrophosphorylase 
(AGPase) large subunit, which is a rate-limiting enzyme that 
catalyzes the formation of ADP-glucose (ADPG), the substrate 
for starch biosynthesis (Georgelis et  al., 2007), was mapped to 
1A-3 (200.8–224.3 cM) based on homology analysis. This gene 
(AGPLcyto, ID17), which is crucial for grain filling (Yang et  al., 
2004), was highly expressed, with FPKM values of 398 and 246 at 
the middle and late stages, respectively (Supplementary Table S13). 
Furthermore, AGPScyto (ID18), encoding the AGPase small sub-
unit, had a similar pattern with high expression levels (FPKM value 
reaching 1194 at 14 DAF). These two genes were differentially ex-
pressed between the two parental lines, at 7 DAF for AGPLcyto and 
14 DAF for AGPScyto (probability >0.7) (Supplementary Table 
S13). The AGPL in einkorn wheat was sequenced, and several 
variations were detected along both the promoter and genic re-
gions, including InDels and SNPs (Supplementary Fig. S9). A poly-
morphic marker based on an InDel on intron I was co-localized 
with 1A-3, further confirming the reliability of its homology-based 
mapping. Our data indicated that variation in the expression levels 
of its two subunits affected the formation of ADPG, and might fur-
ther affect starch accumulation and even grain weight.

A total of 48 genes in the starch biosynthesis pathway were 
retrieved from the Chinese Spring database based on previous 
information (Krasileva et al., 2017), and the expression patterns of 
their homologs in both parental lines were compared (Fig. 5A). In 
total, 31 genes (65%) were significantly differentially expressed in 
at least one stage with a probability >0.7 (Fig. 5B). The restricted 
enzyme gene, ADPGT (ADPG Transporter) or BT1 (Brittle1), 
which transports ADPG from the cytoplasm to amyloplasts in 
cells (Sullivan et al., 1991), was highly expressed in KT3-5 (FPKM 
>800) with fold changes of 1.67 and 4.86 (probability >0.7) for 7 
DAF and 14 DAF, respectively. Another gene, Starch Phosphorylases 
1 (PHO1), which is responsible for the conversion of ADPG 
to the precursor for starch biosynthesis by starch synthase (SS, 
EC 2.4.1.1), was expressed in KT3-5 at a level more than 4-fold 
greater than in KT1-1 at 14 DAF. Moreover, Sucrose synthase (Sus, 
ID6) had much higher expression levels, with FPKM varying from 
85 to 1505, especially at the late developmental stages; this could 
compensate for the expression of another five low-abundance 
Sus copies (ID1–5) (Fig. 5B; Supplementary Table S13). UDP-
glucose pyrophosphorylase (UGPase, ID15), Starch branching enzyme 
IIa (SBEIIa, ID42), and SBEIIb (ID43) also showed similar pat-
terns. Although several DEGs were expressed highly in KT1-1 
at 0 or 7 DAF, for example, Sus (ID2–3), Frk (ID11), UGPase 
(ID16), PHO2 (ID27–28), GBSSI (ID30), SBEI (ID39), ISAIII 
(ID47), and PUL (ID48), most of them were less strongly down-
regulated or even up-regulated in KT3-5 at late developmental 
stages, which is a critical period for starch accumulation (Yang 
et al., 2004). Thus, in the developing spikes, rate-liming functional 
enzymes are very important for starch biosynthesis, and differen-
tial expression of relevant genes would affect starch accumulation 
and grain development.

Discussion

Grain size as a complex trait is poorly understood in hexa-
ploid wheat. In this study, an einkorn wheat RIL population 
was utilized to reveal the genetic architecture of grain size 
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in a diploid progenitor. RAD-seq, combining NGS and re-
striction enzyme digestion to reduce genome complexity, was 
used to provide genetic polymorphisms at a genome scale to 
develop a high-density genetic map. This high-density map 
contains 10 876 evenly distributed genetic markers, had 1551 
bins, and covered >97% of the wheat and barley genomes, 
demonstrating its good quality for einkorn wheat genetic and 
genomic research. In particular, comparative genomics could 
not only aid in examining the syntenic blocks with genomes 
of wheat relatives but also provide genomic sequences to dis-
sect interesting regions and reveal structural variation between 
different genomes.

Novel QTLs were detected in einkorn wheat by 
comparison with tetraploid and hexaploid wheat 
populations

Grain size QTLs have been widely studied in wheat, and have 
been detected on all chromosomes of tetraploid and hexa-
ploid wheat (Gegas et al., 2010; Tsilo et al., 2010; Peleg et al., 
2011; Prashant et al., 2012; Maphosa et al., 2014; Rasheed et al., 
2014; Russo et  al., 2014; Williams and Sorrells, 2014; Golan 
et al., 2015; Wu et al., 2015; Kumar et al., 2016; Brinton et al., 
2017; Cheng et al., 2017). However, very limited information is 
available for QTL analysis of grain size and weight in einkorn 
wheat. In this study, genome-wide QTL analysis was conducted 
and identified 17 genomic regions that contribute to grain size 
and weight. Based on syntenic regions between einkorn wheat 
and hexaploid wheat (Fig. 3) and marker information on the 
wheat genome (IWGSC RefSeq v1.0; https://urgi.versailles.
inra.fr/jbrowseiwgsc/gmod_jbrowse/; last accessed June 9, 

2019), QTLs that overlapped with markers from other studies 
were considered common regions; otherwise, QTLs were con-
sidered novel. In our study, five of 17 QTL regions were newly 
detected, including 1A-3, 5A-4, 5A-5, 6A-2, and 7A-3. The 
other 12 regions overlapped with QTLs or markers from other 
studies (Wang et al., 2009; Gegas et al., 2010; Peleg et al., 2011; 
Russo et al., 2014; Golan et al., 2015; Wu et al., 2015; Kumar 
et al., 2016; Brinton et al., 2017; Cheng et al., 2017). For ex-
ample, a TGW QTL detected in the tetraploid wheat popula-
tion linked with wPt-7053 (Peleg et al., 2011), which is located 
on 676.40 Mb of 7A; similarly, QTL-27 (Kumar et al., 2016) 
and QGl.cau-7A.3 (Wu et  al., 2015) from hexaploid wheat 
were located at 674.27–705.13 Mb and 671.42–679.96 Mb, 
respectively, corresponding to 7A-2 (670.94–693.33  Mb) in 
this study. However, 7A-2 was detected to be associated with 
GL and GLW, while this locus only affected GL/GW/GA/
TGW and GL in hexaploid wheat (Wu et  al., 2015; Kumar 
et al., 2016). Another region, 1A-2, containing GA and TGW 
QTLs, was co-localized with the meta-QTL MQTL2, which 
linked with Glu-1A on Ta1A (Gegas et al., 2010). Three QTL 
regions, 3A-2, 5A-2, and 7A-1, involved 12 QTLs for grain 
size and weight. By comparing with our previous data, we 
were able to identify that these regions co-located with QTLs 
for heading date under the control of three genes, TmLUX1, 
Vrn1, and Vrn3, which are segregated in this RIL population 
(Yu et al., 2017). In addition, significant negative correlations 
between grain size traits (except GLW) and heading date were 
found, verifying the pleiotropism of these loci (Supplementary 
Table S2). Thus, this study suggests that the genes that control 
the initiation and duration of reproductive development would 
further affect the final performance of grain size and weight. 

Fig. 4. Transcriptional profiles of genes mapped to QTL regions in two parental lines. Only genes differentially expressed in at least one developmental 
stage (probability >0.7) were retained; genes with names in red text had probability >0.8 from NOISeq. The log10(FPKM+1) transformed data were 
plotted.
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Our data indicate that regulation of grain size and weight in 
einkorn wheat has a similar genetic basis to tetraploid and 
hexaploid wheat, but divergent functions of some loci that 
regulate grain size.

The environment had various effects on QTLs of 
different traits

Effects of environmental factors on QTL detection have been 
reported, with these factors causing QTLs not to be identi-
fied from every field trial or crop season (Kuchel et al., 2007; 
Maphosa et al., 2014; Tyagi et al., 2015; Wu et al., 2015). In our 
study, different traits showed different phenotypic plasticity, as 
revealed by the environmental contributions to phenotypic 
variation from ANOVA and QTL calling ratios from different 
environments. Using ANOVA, the environment was found to 
contribute 5.78% of the phenotypic variation of GW, which 

was the largest among the traits except for TGW, indicating 
that GW is more liable to change as the environment changes 
in this population. Genotype–environment interactions were 
also explored (Supplementary Table S9), revealing that 3A-2 
interacted with the environment for all six traits, 7A-1 for 
GL/GC, and 7A-3 for TGW/GW. These regions contained 
genes (TmLUX1 and Vrn3) affecting heading date, which 
shows the environmental adaptation of einkorn wheat. The 
3A-2 allele from KT3-5 could promote flowering and in-
crease grain size and TGW, while the 7A-3 allele from KT1-1 
showed a similar effect (Yu et al., 2017). In addition, the en-
vironment interacted with the regions 2A-1 and 6A-2 for 
GA and GLW, respectively. Thus, environmental factors had a 
certain effect on the investigated traits of this RIL population, 
especially the development-related traits with large pheno-
typic plasticity. This might suggest that the influence of envir-
onmental factors on grain size traits should be considered and 

Fig. 5. Fold changes and expression patterns of starch biosynthesis genes across four spike developmental stages between two parental lines of 
einkorn wheat (KT1-1 and KT3-5). Only genes differentially expressed in at least one developmental stage (probability >0.7) were retained; genes with 
names in red text had probability >0.8 from NOISeq. (A) Wheat starch biosynthesis pathway. Heatmap of the log2 fold changes of KT1-1 versus KT3-5 
in FPKM at four developmental stages (0, 7, 14, and 21 DAF). (B) Heatmap of the expression profiles of starch biosynthesis pathway genes in grains of 
KT1-1 (left) and KT3-5 (right). The log10(FPKM+1) transformed data are plotted.
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evaluated for breeding improvement and the introduction of 
new varieties.

Candidate genes underlying QTLs were predicted 
based on comparative genomics and transcriptomics

The underlying candidate genes of genetic loci could help 
to understand morphogenesis and provide diverse alleles 
for breeding improvement in wheat. The past two dec-
ades have witnessed the characterization of several causative 
genes for grain size and weight in crops (Li and Yang, 2017). 
In this work, several genes have been shown to be the can-
didate genes for grain size in einkorn wheat by comparative 
analysis and transcriptomic profiling with RNA-seq. Those 
mapped homologous genes were differentially expressed at 
the early to middle stages of development for expanding grain 
volume before initiating grain filling in developing seeds. The 
homolog of rice SRS5 showed successively higher expression 
in KT3-5 across all developmental stages. Mutant SRS5 with 
an amino acid substitution reduced seed length by 1.38 mm by 
decreasing cell and lemma length, while the wild type could 
partially rescue the mutant phenotype in transgenic plants 
(Segami et al., 2012). Starch accumulation was determined to 
be critical to grain filling in wheat (Yang et  al., 2004), and 
the starch biosynthesis pathway has been well characterized 
(map00500 in KEGG). Five enzymes, Sus, AGPase, AGPGT, 
SS, and SBE, were characterized to be critical for this process, 
and the genes encoding these enzymes play important roles 
in the formation of UDP-glucose (the first step in the con-
version of sucrose to starch) and ADPG, transferring ADPG 
into amyloplasts from cytoplasm, and yielding the end starch 
(Sullivan et al., 1991; Yang et al., 2004). In this study, differen-
tial expression of these rate-limiting enzyme-encoding genes 
was observed at the middle to late stages of grain development. 
Haplotypes of AGPL have been reported to be associated with 
TGW, perhaps through transcript level variations affected by a 
SNP in common wheat (Hou et al., 2017). In this study, AGPL 
co-localized with 1A-2, which involved QTLs for TGW, GW, 
and GLW (Fig. 2), and the negative allele from KT1-1 could 
decrease TGW by 1.20 g, accounting for 7.8–15.4% of par-
ental phenotypic variation (Table 2; Supplementary Table S1). 
Down-regulation of AGPL in KT1-1 compared with KT3-
5, and a 9  bp deletion (ACTCCGCCG) in the promoter 
(–1049 to –1057), together with several variants, were identi-
fied (Supplementary Fig. S9), indicating that the reduction of 
transcripts in KT1-1 might be caused by these variants, which 
is also consistent with the negative effect on GW and TGW. 
Alleles for AGPL and Sus have been closely associated with 
grain weight in wheat, mainly contributed by variation in tran-
script levels, which has an effect of approximately 3–5 g TGW 
for AGPL and 2–4 g TGW for Sus (Jiang et  al., 2011; Hou 
et al., 2017). Overall, 31 of 48 genes in the starch biosynthesis 
pathway were expressed differentially at different spike devel-
opment stages, especially the aforementioned rate-limiting 
enzyme genes (Fig. 5). Our findings therefore indicate that 
different patterns of expression of these pathway genes might 
together contribute to final grain weight by affecting starch 
accumulation throughout grain filling.

Untapped alleles were identified in wild einkorn wheat

Seven QTLs within three regions (7A-1, 7A-2, and 7A-3) 
on Tm7A were identified for which the wild einkorn wheat 
(KT1-1) positively contributed to all grain size traits (Table 2; 
Supplementary Table S6). These data provide evidence that the 
remnant superior alleles controlling improvement of grain size 
might have been ignored by preliminary selection for domesti-
cation ~10 000 years ago, and some alleles that contribute to a 
wide adaptation to different environments (such as Vrn3) were 
left in wild einkorn wheat. Thus, we speculate that there may 
be dominant genes or alleles that enlarge grain size and, fur-
ther, increase grain weight, in natural wild einkorn wheat, and 
these could be characterized and assessed for their potential in 
improving yield.

Conclusion

Understanding the genetic architecture of grain traits is a pre-
requisite to manipulating grain development and improving 
crop yield potential. We used high-density genetic mapping 
and genome-wide QTL mapping, homologous gene map-
ping, and transcriptome analysis to explore the genetic loci 
of grain traits in einkorn wheat in various environments. We 
found that a total of 44 genes that are homologous to QTL 
regions or in the starch biosynthesis pathway showed differ-
ential expression, and 20 of them were mapped on nine QTL 
regions. Our findings demonstrate that the expression patterns 
of several functional genes are consistent with the allelic effects 
of the related QTL. The candidate functional genes associated 
with grain (sink) size and starch biosynthesis were considered 
to be important components for grain size and starch accumu-
lation in the developing grains, and, in turn, for grain weight. 
Furthermore, the phenotypic values of the related traits signifi-
cantly increased as the numbers of positive QTL alleles accu-
mulated, which could be exploited to fine-tune grain size and 
weight. We have investigated the complex genetic architecture 
of grain size on a genome-wide scale, thus elucidating QTLs 
and their underlying genes through genetic mapping and tran-
scriptional profiling, and thereby allowing us to identify can-
didate genes for grain size and weight and assist marker-based 
selection in wheat breeding improvement.

Supplementary data

Supplementary data are available at JXB online.
Fig. S1. Frequency distribution of phenotypic data in five 

environments for six quantitative traits of parents and RILs.
Fig. S2. Principal component analysis revealing a morpho-

metric model for variation in grain morphology in einkorn 
wheat RIL population.

Fig. S3. Chromosomal 4AL/5AL translocation and 4A peri-
centric inversion in hexaploid wheat revealed by comparing 
barley and hexaploid wheat genomes through the mapped 
SNP markers from einkorn wheat.

Fig. S4. Genome-wide LOD profiles for six investigated 
traits across five environments. 
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Fig. S5. Physical lengths of homologous regions corres-
ponding to sixteen QTL regions.

Fig. S6. Polymorphism of Vrn3 in einkorn wheat. 
Fig. S7. Genetic overlaps between grain size related traits in 

the einkorn wheat RIL population. 
Fig. S8. Phenotypic variation affected by positive numbers of 

alleles for six quantitative traits using average phenotypic data.
Fig. S9. Polymorphism of AGPL in einkorn wheat. 
Fig. S10. GO and KEGG enrichment analysis of differ-

entially expressed genes identified from four developmental 
stages of KT1-1 versus KT3-5. 

Table S1. Phenotypic performances and distribution param-
eters and correlation coefficients for six quantitative traits of 
parents and RILs in five environments.

Table S2. Correlation coefficients between GL, GW, GLW, 
GA, GC, TGW, and HD in the RIL population in four 
environments.

Table S3. Probability loadings from principal component 
analysis of phenotypic data in four environments and mean 
and BLUP values.

Table S4. Barcode and sequencing information of RAD-seq.
Table S5. The high-density genetic linkage map of 

einkorn wheat.
Table S6. Individual QTL detected with the CIM method 

from five environments using the high-density SNP map of 
einkorn wheat.

Table S7. Candidate genes mapped to QTL regions based 
on homologous analysis with hexaploid wheat, barley, and rice.

Table S8. Polymorphic markers of functional genes.
Table S9. Phenotypic variation explained by detected QTL 

estimated using ANOVA results from a simple model and mul-
tiple regression analysis, and effects of QTL and environments 
based on ANOVA. 

Table S10. Multiple comparison test of phenotypic variation 
affected by positive numbers of alleles for six quantitative traits 
across all five environments.

Table S11. GO enrichment test of differentially expressed 
genes identified from four developmental stages.

Table S12. KEGG enrichment test of differentially expressed 
genes identified from four developmental stages.

Table S13. Expression profiles of genes involved in the starch 
biosynthesis pathway and candidate genes mapped to QTL re-
gions based on homologous analysis with hexaploid wheat, 
barley, and rice.
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