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Abstract

Water limits crop productivity, so selecting for a minimal yield gap in drier environments is critical to mitigate against 
climate change and land-use pressure. We investigated the responses of relative water content (RWC), stomatal 
conductance, chlorophyll content, and metabolites in flag leaves of commercial wheat (Triticum aestivum L.) culti-
vars to three drought treatments in the glasshouse and in field environments. We observed strong genetic associ-
ations between glasshouse-based RWC, metabolites, and yield gap-based drought tolerance (YDT; the ratio of yield 
in water-limited versus well-watered conditions) across 18 field environments spanning sites and seasons. Critically, 
RWC response to glasshouse drought was strongly associated with both YDT (r2=0.85, P<8E-6) and RWC under field 
drought (r2=0.77, P<0.05). Moreover, multiple regression analyses revealed that 98% of genetic YDT variance was 
explained by drought responses of four metabolites: serine, asparagine, methionine, and lysine (R2=0.98; P<0.01). 
Fitted coefficients suggested that, for given levels of serine and asparagine, stronger methionine and lysine accumu-
lation was associated with higher YDT. Collectively, our results demonstrate that high-throughput, targeted metabolic 
phenotyping of glasshouse-grown plants may be an effective tool for selection of wheat cultivars with high field-
derived YDT.
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Introduction

Wheat (Triticum aestivum L.) has been a staple food for at least 
8000 years (Colledge et al., 2004). It remains one of the most 
important food crops in terms of harvested area and trade 
value, and is a major source of energy and nutrition for ~4.5 
billion people (Curtis, 2002; United Nations, 2013). With 
the world population predicted to increase to 9.6 billion by 
2050, the demand for wheat is only going to increase (United 

Nations, 2013). Water availability is critical for wheat produc-
tion, and drought is the major cause of yield losses. For ex-
ample, during the ‘Millennium Drought’ (2002–2009), wheat 
yields in Australia were up to 25% lower than average (van Dijk 
et al., 2013). With rapidly growing demands on available land 
and water resources, and the possibility that climate change 
will increase the frequency and severity of drought events in 
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wheat-growing areas (Trenberth et  al., 2014), the generation 
of wheat cultivars with greater water-use efficiency is of the 
utmost urgency.

Breeding crops for improved yield gap-based drought tol-
erance (YDT; the ratio of yield in rainfed versus irrigated 
field conditions) requires the selection of genotypes with 
improved yield performance under field drought conditions 
(Rebetzke et al., 2013). However, field-based drought experi-
ments spanning entire crop cycles are resource intensive, sub-
ject to seasonal variability, and thus largely reserved for testing 
of late-generation breeding lines. Effective high-throughput 
methods are therefore required to screen large numbers of 
early-generation lines for their potential drought tolerance. 
For this purpose, a variety of screening methods have been 
employed, such as predicting YDT on the basis of growth and 
physiology of seedlings under osmotic stress in laboratory 
culture (Munns et  al., 2010). Critically, many findings from 
controlled-environment experiments show little relevance 
when translated to the field (Passioura, 2006; Rebetzke et al., 
2014). To be of real-world significance, it is critical that any 
drought tolerance marker developed in glasshouse conditions 
be predictive of YDT in field environments.

Thermographic and hyperspectral leaf reflectance imaging 
techniques have been employed in high-throughput screening 
of drought-tolerant crops by estimating traits such as canopy 
temperature depression (thermographic imaging) and photo-
synthetic capacity (chlorophyll fluorescence), aerial biomass, 
and leaf water contents (hyperspectral reflectance) (Blum et al., 
1982; Babar et  al., 2006). Canopy temperature depression is 
positively correlated with yield under water stress (Rashid 
et al., 1999; Rebetzke et al., 2012). However, canopy tempera-
ture alone typically explains less than half of variation in YDT 
(or similar metrics, such as drought susceptibility index) (Blum 
et al., 1989), leaving the opportunity for improvement. Indeed, 
early assessments of hyperspectral reflectance indices suggested 
that some of them are better predictors of grain yield under 
drought (R2≤0.8) than thermographic imaging (r2<0.5) (Babar 
et al., 2006). However, hyperspectral systems are usually very 
expensive, and the data analysis and modelling are not trivial.

An emerging approach for selection of crops with im-
proved performance under water-limiting conditions is to use 
metabolite-based markers (Degenkolbe et al., 2013). Metabolites 
are renowned for their information contents (Fiehn, 2002), 
and some properties associated with metabolite-based markers 
for drought tolerance make them complementary to or even 
more powerful than other marker types. High-throughput and 
cost-effective metabolome-assisted selection methods could 
enhance the efficiency of breeding not only by providing 
an indication of drought tolerance but also by pointing to 
mechanisms of differential tolerance and giving information 
about nutritional and milling qualities (Shewry et  al., 2002). 
Several studies have investigated associations between metab-
olite markers and drought tolerance-related traits. For example, 
Degenkolbe et al. (2013) identified associations between meta-
bolic and physiological traits, both measured in the glasshouse, 
highlighting a negative association between asparagine levels 
and water-use efficiency (r2=0.41) and yield (r2=0.50) under 
drought stress. A recent study in a maize (Zea mays L.) hybrid 

identified a number of associations between metabolites and 
yield when both traits were measured in the field (r2≤0.29 for 
individual metabolites and ≤99% with seven metabolite mul-
tiple regression) (Obata et al., 2015). To our knowledge, there 
has been one attempt (in maize) to identify associations be-
tween metabolic traits measured in the glasshouse and drought 
tolerance determined in the field (Witt et al., 2012), but this 
did not uncover any significant associations.

In wheat, several metabolomics studies have been per-
formed, such as a targeted metabolite profiling of four wheat 
cultivars under controlled osmotic stress to show a positive 
relationship between soluble carbohydrate accumulation and 
drought tolerance (Kerepesi and Galiba, 2000), glasshouse-
based drought experiments comparing the temporal drought 
responses of three wheat cultivars (Bowne et  al., 2012), and 
quantitative trait locus (QTL) analysis using a set of 179 cv 
Excalibur/Kukri doubled-haploid wheat lines grown in the 
field, which revealed significant associations between metab-
olite levels and grain yield under water-limited conditions 
(Hill et al., 2013). However, to our knowledge, there have been 
no broad-spectrum metabolite profiling studies directly ana-
lysing associations between the responses of wheat cultivars to 
drought treatments in the glasshouse- and field-derived YDT.

To provide new insights into potential links between field-
based measures and glasshouse experiments, we determined 
the mean proportional yield deficits (i.e. YDT) of eight com-
mercial wheat cultivars in multi-location/season field ex-
periments. In parallel, we measured relative water content 
(RWC), stomatal conductance (gs), and untargeted GC/MS 
metabolomics under glasshouse- and field-based drought stress 
treatments. From these data, we identified highly significant 
associations for metabolite profiles and significant associations 
for the drought-responsive physiological traits in glasshouse-
grown wheat and field-based YDT.

Materials and methods

Plant materials, experimental design, and drought treatment under 
a controlled environment
Seeds from eight wheat cultivars (Kukri, Excalibur, Gladius, Wyalkatchem, 
Yitpi, RAC875, Drysdale, and Weebill; Supplementary Table S1 at JXB 
online) were obtained from CSIRO, Black Mountain, Australian Capital 
Territory, Australia, and grown in the CSIRO controlled-temperature 
greenhouse, set at 24/16 °C day/night temperature and relative humidity 
of 60% between June and November 2012. Four seeds from each cul-
tivar of 45–50 mg were sown in large round plastic pots of a dimen-
sion 25 cm (bottom diameter)×30 cm (height). A total of 54 pots were 
filled with fertile, compost-based potting mix, and plants were thinned 
to two seedlings per pot. There were six pots (12 plants) of each cultivar 
including a drought-susceptible control line ‘Yenda’. Pots were arranged 
on five benches in a randomized complete block design in the glasshouse. 
Day-length extension to 16 h was provided to hasten development in all 
cultivars so that the anthesis date was approximately the same. Plants were 
sprayed with pesticides as necessary to avoid damage from fungal or insect 
pests. All pots were watered daily to pot capacity until 50 d after sowing. 
From this stage, water was withheld in drought-treated plants until day 15 
of the first drought regime when Kukri and Yenda (a drought-susceptible 
cultivars) started showing severe wilting signs based on visual assessment 
and then plants were rewatered to 100% soil water capacity (~1.4 litres) to 
match the sporadic rainfall pattern (Bowne et al., 2012). Drought-treated 
plants were then subjected to a second drought by withholding water for 
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a further 13 d, making the total drought period 28 d. The control plants 
were maintained at 100% soil water capacity. An illustration of the glass-
house cyclic drought is presented in Supplementary Fig. S3A. Separate 
pots within glasshouse experiments were considered independent repli-
cates. Effects were considered significant at P<0.05.

Field-based drought treatment in a managed environment 
facility
The assessment of variety performance and determination of YDT under 
terminal drought conditions was undertaken across three seasons at three 
national managed environment facilities (MEFs) located across Australia. 
Details of the facilities are summarized in Rebetzke et al. (2013). Briefly, a 
set of five known drought-susceptible and drought-tolerant wheat culti-
vars (Gladius, Wyalkatchem, Yitpi, RAC875, and Weebill) were assembled 
and sown in 2010–2012 at the MEFs in Merredin (Western Australia), 
Narrabri, and Yanco (New South Wales, Australia) (Rebetzke et al., 2013). 
At each MEF, the response of the individual cultivars was ascertained 
in both a well-managed rainfed and an irrigated experiment. The irri-
gated field trial was designed to supply 25% more water than an average 
season. The drought in the rainfed plots was terminal in all field envir-
onments tested. Precisely, plants experienced severe early-stage drought 
in all rainfed environments and seasons, and moderate to severe drought 
during reproductive and grain-filling stages in four of the nine seasons 
(Fig. 1; Supplementary Table S2). Soil types were a red-brown earth of 
slightly acid to neutral soil pH, except at Narrabri where the soil is a 
black vertisol. Crops were commonly sown after a canola (Brassica napus 
L.) or pea (Pisum sativa L.) break crop to minimize the incidence of root 
disease, and managed with adequate nutrition and pesticides to control 
weeds and leaf diseases. Experiments were partially replicated (‘p-rep’) 
designs averaging 1.4 replicates where each line is replicated an average 
1.4 times across the irrigated and rainfed treatments in each MEF (Smith 
et al., 2006). In all experiments, all the plots were treated with 30 ml of 
pre-sowing irrigation and entries were sown at an optimal 3–5 cm sowing 
depth into 6 m long, 0.17 m spaced, eight row plots at seeding rates con-
sistent with local practice (i.e. 120 seeds m–2 at Merredin and Narrabri, 
and 180 seeds m–2 at Yanco). Nutrients were supplied at sowing as Starter 
15® (14% N:12.7% P:11% S) applied at 103 kg ha–1. Additional nitrogen 
was applied as needed to meet crop demand and ensure grain protein was 
achieved at industry standards of ≥11.5% (data not shown). Crops were 
largely reliant on stored and in-crop rainfall, with only enough irrigation 

supplied to produce ~20% yield benefit in the irrigated compared with 
the rainfed treatments (Rebetzke et al., 2013). Plots were end-trimmed at 
maturity to ~5.4 m length and the outside border rows were removed be-
fore machine harvesting to obtain estimates of plot yield for each cultivar. 
Samples were harvested for metabolite profiling and RWC measurement 
from five cultivars (Gladius, Wyalkatchem, Yitpi, RAC875, and Weebill) 
grown in the MEFs under the aforementioned growth conditions.

Genotyping by sequencing (GBS)
Genomic DNA was extracted from leaf tissue of five biological repli-
cates from each cultivar using methods described in CIMMYT-ICAR 
laboratory protocols with small modifications. After incubation with 
CTAB extraction buffer [100 mM Tris, 700 mM NaCl, 50 mM EDTA, 
1% CTAB (mixed alkyltrimethyl-ammonium bromide), 140  mM 
β-mercaptoethanol], DNA was extracted using an equal volume of 
chloroform. The supernatant was treated with 10 µg µl–1 RNase. DNA 
was precipitated with an equal volume of isopropanol, followed by two 
washes of the pellet with ice-cold 80% ethanol, resuspended in Tris-
EDTA (10 mM Tris–HCl pH 8.0, and 0.1 mM EDTA). DNA quality 
was assessed on a 1% agarose gel and quantified using NanoDrop 
ND-2000 (Thermo Scientific NanoDrop Products). Each DNA sample 
was normalized to 50  ng µl–1 and GBS was carried out by Diversity 
Array Technology Pty Ltd (DArT PL), Canberra, Australia. In brief, DArT 
PL uses the combinations of complexity reduction methods followed by 
sequencing on a HiSeq Illumina platform (Illumina Inc., San Diego, CA, 
USA). Single nucleotide polymorphism (SNP) calling was done as de-
scribed previously (Li et al., 2015)

DartSeq identified 19 101 SNPs across 40 samples (eight wheat culti-
vars and five biological replicates). The genotype matrix has 12% missing 
data and 16% ‘het’ calls which may include homoeologues and paralogues, 
and are unexpected in inbred lines; ‘het’ calls were further treated as 
missing data. We excluded 5386 SNPs which had call rates of <30 of 40 
samples. We further excluded 1442 singleton and 1688 doubleton vari-
ants, leaving 10 585 valid SNPs (Supplementary Table S3). The genotypes 
for each replicate were averaged, and pairwise genetic correlation among 
cultivars was calculated and used for further analysis. A Euclidian distance 
matrix among 40 samples was generated and plotted using hierarchical 
clustering (Supplementary Fig. S1) using R-script and RStudio software 
(www.rstudio.com).

Measurement of soil water content and relative water content
Soil water content (SWC) was measured gravimetrically on five culti-
vars by weighing three replicates/cultivar/treatment on every alternate 
day throughout the stress period in the glasshouse under irrigated and 
water-stressed conditions. Flag leaf RWC was measured with three bio-
logical replicates per cultivar per treatment under both environmental 
(glasshouse and field) and treatment (irrigated and water stressed) groups. 
In brief, the youngest, fully expanded leaf was excised at the base of the 
lamina and its fresh weight was determined. TWs were obtained after 
soaking the leaf segment in deionized water for 24 h at room temperature 
under low-light conditions. After soaking, leaves were quickly and care-
fully blotted dry with tissue paper, and turgid was measured. Dry weights 
were determined after oven drying the leaf samples at 70 °C for 72 h to 
a constant weight. The RWC was calculated using following equations:

RWC (%) = [(FW−DW)÷ (TW−DW)]× 100

where FW is the fresh weight of the leaf sample, TW is the turgid weight 
after rehydrating the leaf sample for 24 h, and DW is the leaf weight after 
oven drying for 72 h at 70 °C.

Chlorophyll measurement
Chlorophyll content was measured with an auto-calibrating chlorophyll 
meter (SPAD 502, Spectrum Technologies, Plainfield, IL, USA) from the 
middle portions of fully expanded flag leaves with six biological repli-
cates/cultivar/treatment in the glasshouse condition. The measurement 
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Fig. 1.  Rainfall patterns of the three field sites and three years from 
which yield gap-based drought tolerance (YDT) of the wheat cultivars 
was calculated. The monthly rainfall for each site and year was expressed 
as a percentage of the 100 year monthly average and then plotted as a 
heat map on the colour scale of red (0% rainfall) to blue (200% rainfall). 
The approximate developmental stages corresponding to the months are 
indicated as sowing, emergence of leaf, tillering, formation of lateral shoot, 
heading, anthesis, and grain filling.

http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erz224#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erz224#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erz224#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erz224#supplementary-data
http://www.rstudio.com


4934  |  Yadav et al.

of each plant was calculated from the average of five readings from dif-
ferent parts of the flag leaf.

Stomatal conductance measurement
Stomatal conductance was measured in situ on the abaxial surface of fully 
expanded young leaves at midday using a dynamic diffusion porometer 
(AP4, Delta-T Devices, Cambridge, UK). Measurements were taken from 
six biological replicates/cultivar/treatment. The porometer was calibrated 
to the glasshouse conditions at the beginning of each measurement 
session.

Metabolite extraction and derivatization
Metabolites of high and intermediate polarity were extracted from leaf 
tissue of eight cultivars of glasshouse- and five cultivars of field-grown 
plants, using a hot methanol protocol. In brief, the youngest fully ex-
panded leaf was harvested and immediately frozen in liquid N2. A 100 mg 
aliquot of frozen tissue was ground in a TissueLyzer (Qiagen) for 2 min 
at 20 Hz. A  500  µl aliquot of metabolite extraction buffer (100% 
methanol, 86 µg ml–1 norleucine, and 8.6 µg ml–1 ribitol) was added and 
vortexed. Sample tubes were incubated with shaking on an Eppendorf 
ThermoMixer set at 65 °C/14 000 g for 15 min. Samples were centri-
fuged for 2×10 min at 20 000 g and the supernatant was transferred into 
a new tube after each centrifugation. A ‘pooled reference’ control extract 
was then prepared by combining equal volume aliquots of each extract 
so that it could be run with each GC/MS batch to provide a universal 
control for interbatch variations in instrument response for each metab-
olite, enabling us to make meaningful comparisons between metabolite 
signals recorded in different analytical batches. Dried metabolite extracts 
were chemically derivatized by methoximation and trimethylsilylation 
on a Gerstel MPS2XL Multipurpose Sampler (Gerstel) operating in the 
PrepAhead mode for automated online derivatization and sample injec-
tion. The derivatization procedure consisted of the following steps: (i) 
addition of 10 µl of 20 mg ml−1 methoxyamine hydrochloride (Supelco, 
Cat. # 33045-U) in anhydrous derivatization grade pyridine (Sigma-
Aldrich, Cat. # 270970) and incubation at 37 °C for 90 min with agitation 
at 750 rpm; (ii) addition of 15 µl of derivatization grade N-methyl-N-
(trimethylsilyl) trifluoroacetamide (MSTFA; Sigma-Aldrich; Cat. No. 
394866) and incubation at 37 °C for 30 min with agitation at 750 rpm; 
and (iii) addition of 5 µl of alkane mix [0.2% (w/v) each of n-dodecane, 
n-pentadecane, n-nonadecane, n-docosane, n-octacosane, n-dotriacontane, 
and n-hexatriacontane dissolved in anhydrous pyridine] and incubation 
for 1 min at 37 °C with agitation at 750 rpm. Samples were injected into 
the GC/MS instrument immediately after derivatization.

GS/MS metabolomic analysis
Derivatized metabolite samples were analysed on an Agilent 5975C GC/
MSD system comprised of an Agilent GC 7890N gas chromatograph and 
5975C Inert MSD quadrupole MS detector (Agilent Technologies, Palo 
Alto, CA, USA). The GC was fitted with a 0.25 mm ID, 0.25 μm film 
thickness, 30 m Varian FactorFour VF-5ms capillary column with a 10 m 
integrated guard column (Varian Inc., Palo Alto, CA, USA; Product No. 
CP9013). Samples were injected into the split/splitless injector operating 
in splitless mode with an injection volume of 1  μl, an initial septum 
purge flow of 3 ml min−1 increasing to 20 ml min−1 after 1 min, and a 
constant inlet temperature of 230 °C. Helium carrier gas flow rate was 
held constant at 1 ml min−1. The GC column oven was held at the ini-
tial temperature of 70 °C for 1 min before being increased to 325 °C 
at 15  °C min−1 and then being held at 325  °C for 3  min. Total run 
time was 21 min, with transfer line temperature and MS source tem-
perature at 250 °C and quadrupole temperature at 150 °C. Electron im-
pact ionization energy was 70 eV and the MS detector was operated in 
full-scan mode in the range 40–600 m/z with a scan rate of 3.6 spectra 
s−1. The MSD was pre-tuned against perfluorotributylamine (PFTBA) 
mass calibrant using the ‘atune.u’ autotune method provided with Agilent 
GC/MSD Productivity ChemStation Software (Revision E.02.01.1177; 
Agilent Technologies; Product No. G1701EA).

Quantitative and statistical analyses of MS data
All GC/MS data were processed using the online MetabolomeExpress 
data processing pipeline (www.metabolome-express.org) (Carroll et  al., 
2010). Raw GC/MS files were exported to NetCDF format using 
Agilent MSD ChemStation software (Revision E.02.01.1177; Agilent 
Technologies; Product No. G1701EA) and NetCDF files were uploaded 
to the ANU_Pogson MetabolomeExpress data repository. Peak detection 
settings were: Slope threshold=200; Min. Peak Area=1000; Min. Peak 
Height=500; Min. Peak Purity Factor=2; Min. Peak Width (Scans)=5; 
Extract Peaks=on. Peaks were identified by mass spectral and reten-
tion index (MSRI) library matching which used retention index and 
mass spectral similarity as identification criteria. MSRI library matching 
parameters were as follows: RI Window= ±2 RI Units; MST Centroid 
Distance= ±1 RI Unit; Min. Peak Area (for peak import): 5000; MS 
Qualifier Ion Ratio Error Tolerance=30%; Min. Number of Correct 
Ratio Qualifier Ions=2; Max. Average MS Ratio Error=70%; Remove 
qualifier ion not time-correlated with quantifier ion=OFF; Primary 
MSRI Library=‘Yadav_2016_WheatDroughtToleranceExperiment. 
MSRI’; Add Unidentified Peaks to Custom MSRI Library=ON; Use RI 
calibration file specified in metadata file=ON; Carry out per-sample fine 
RI calibration using internal RI standards=OFF. Library matching results 
were then used to construct a metabolite×sample data matrix, with peak 
areas being normalized to an internal standard (i.e. ribitol).

To remove non-biological batch to batch variation in signals and 
allow data from different analytical batches to be compared, each 
normalized metabolite signal was normalized again to the mean signal 
intensity in five technical replicate runs of a pooled reference extract 
(made by mixing together equal volume aliquots of all the extracts in the 
study) analysed in the same analytical batch. As a quality control filter, 
samples were checked for the presence of a strong ribitol peak with a 
peak area of at least 1×105 and a deviation from the median internal 
standard peak area (for that GC/MS batch sequence) of <70% of the 
median value. Statistical normalization to tissue mass was not required 
because chemical normalization to tissue mass had already been carried 
out by adjusting the extraction solvent volume proportionally to tissue 
mass. For determination of metabolic phenotypes, the treatment/con-
trol signal intensity ratio of each metabolite was calculated by dividing 
the mean (normalized) signal intensity of each metabolite in each set of 
treatment plants by its mean (normalized) signal intensity in its associ-
ated set of control plants.

Statistical significances were calculated by two-tailed Welch’s t-tests 
(n=5) in the MetabolomeExpress Comparative Statistics tool. The 
full data-set has been uploaded to the MetabolomeExpress MetaPhen 
Database (MetabolomeExpress Dataset IDs 112 and 127)  and will be 
made publicly accessible upon publication of this article.

Calculation of adjusted conserved response (ACR) score
This ACR score was calculated as follows:

ACR score = (nincreases − ndecreases)

×
(
nsignif icant_increases − nsignif icant_decreases

)

where nincreases, ndecreases, nsignificant_increases, and nsignificant_decreases are the num-
bers of cultivars in which: fold change (FC) >1, FC<1, FC>1 and P<0.05, 
and FC<1 and P<0.05, respectively. To test whether the consistency of 
the direction of response of each metabolite across the genotypes was 
statistically significant, a sign test was performed by input of nincreases and 
ntotal (where ntotal was the total number of cultivars, i.e. eight) as param-
eters into the binom.test function of R. The resulting P-value is referred 
to as pbinom.

The response value (RV) of a metabolite was calculated from its treat-
ment/control FC as follows:

RV = FC− 1 when FC > 1

RV = (−1/FC) + 1 when FC < 1

http://www.metabolome-express.org
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RV = 0 when FC = 1

This transformation places metabolite responses on a linear scale, with 
increases and decreases represented as positive and negative values, 
respectively.

Regression analyses of metabolites, YDT, and RWC
Metabolite–YDT and metabolite–RWC associations were analysed 
using MetabolomeExpress MetaAnalyser, a web-based software tool 
for aligning, comparing, and identifying metabolites with patterns of 
interest across the results of multiple experiments (Carroll et al., 2010). 
It was used to generate the metabolite response heat map (Fig. 4), and 
to perform single metabolite–YDT and metabolite–physiological par-
ameter correlation and multiple linear regression analysis. This was done 
by selecting the relevant responses in the control panel and performing 
an analysis with the following settings: Include metabolites that are 
missing data in some class comparisons=ON, Filter metabolites of un-
known structure=ON, Transformation of signal intensity ratio=‘Natural 
Logarithm’, Min. Pearson’s r=0.3, Max. Exact P-value of r=0.05, Max 
q=0.4, Display charts=ON.

This led to the calculation of the following. (i) ACR scores indicating 
the tendency of each metabolite to respond consistently and significantly in 
the same direction across the selected experiments (see above for definition 
of ACR). (ii) The two-tailed P-value of a binomial sign test (pbinom) treating 
increases and decreases of any P-value as successes or failures, respectively, 
to test the null hypothesis that increases and decreases occurred with equal 
probability. (iii) A table of statistical information for significant linear as-
sociations between natural log-transformed treatment/control metabolite 
signal ratios and the meta-variables (stomatal conductance, RWC, chloro-
phyll, YDT) including Pearson’s correlation coefficient (r), the exact P-value 
of r, the slope of the line of best fit, and the q-value returned by Benjamini–
Hochberg false discovery rate (FDR) correction with the p.adjust func-
tion in R (number of tests=number of metabolites). (iv) Combinatorial 
multiple regression results fitting multi-metabolite linear regression models 
against the meta-variables. The combinatorial multiple regression testing 
process performed by the MetaAnalyser tool executed the following steps.

Every combination of two, three, or four metabolites drawn from 
the set of metabolites that were individually associated with YDT (with 
r>0.5 and P<0.12) in MetaAnalyser analysis were automatically com-
puted in PHP, and a code-generation approach was used to write an R 
script testing each metabolite combination in a multiple regression model 
against the meta-variables (YDT and RWC) using the ‘lm ()’ function of 
R. The values for metabolite levels were given as natural log-transformed 
treatment/control GC/MS signal intensity ratios. Ordinary bootstrap-
ping with 250-fold replicated using the ‘boot()’ and ‘boot.ci()’ functions 
of the ‘boot’ package (version 1.3-18) was performed on the R2 value 
returned for each multiple regression model fitting to estimate 95% con-
fidence intervals. Metabolome data are deposited at MetabolomeExpress 
MetaPhenDB (MetabolomeExpress Dataset IDs 112 and 127).

Orthogonal partial least squares (OPLS) analysis
OPLS analysis was performed in R using the package, ‘ropls’ (Thevenot 
et al., 2015). The input data matrix was a [metabolite×sample] matrix of 
values representing the relative signal intensities of metabolites in each 
sample, normalized to their mean signal intensity in the pooled reference 
samples analysed in the same analytical GC/MS batch. Default settings 
were used unless stated otherwise below. Cross-validation was performed 
with the default of seven cross-validation segments, while significance 
testing of the models was performed by permutation testing with 1000 
permutations. See the online documentation of the ‘ropls’ package for 
further algorithmic details.

Routine statistical analyses
Detailed statistical methods for association and phenotypic similarity 
analyses are provided above. Binomial sign tests were performed in R 

version 3.2.3 using the binom.test() function. Figures were prepared in 
Adobe Illustrator Creative Cloud (v. 18.1.0) and OriginPro 2017 soft-
ware. General statistical analyses such as ANOVA were performed using 
GenStat 17th Edition.

Statistical comparisons of metabolic traits between field and 
glasshouse experiments
Metabolic responses to field drought treatments were statistically compared 
with responses to glasshouse drought treatments using the PhenoMeter 
web application (Carroll et al., 2015) associated with MetabolomeExpress 
(Carroll et  al., 2010). The field drought response of each cultivar was 
searched separately against the responses of all 14 cultivars to both 7 d and 
28 d glasshouse drought treatments. Settings were as follows: Minimum 
Absolute Metabolite Fold Change=1.5, Minimum r2=0, Maximum 
Fisher’s Exact P-value=0.1, Maximum pnon-bio=1, Include metabolites 
of unknown structure=OFF. Note that, by default, hits require a pnon-

bio<0.05 to be considered statistically significant. ‘Directional Overlap 
p-value’ is the P-value of a binomial sign test in which co-directional 
metabolite responses (a metabolite responding in the same direction in 
field and drought response) were considered successes and incongruent 
responses were considered failures.

The correlation (r) between field and glasshouse response represents the 
Pearson correlation of the two sets of response values. The PhenoMeter 
(PM) score was calculated as –sgn(R)×r2×log10DOP where DOP is the 
directional overlap P-value described above. pnon-bio is an estimate of the 
likelihood of obtaining a PM score greater than or equal to the observed 
score when the metabolite labels of the query response are randomly 
shuffled, as determined by a permutation test.

Results

Determining field-based YDT and analysing genetic 
relatedness of wheat cultivars

Yields from nine rainfed and nine irrigated field environments 
were assessed in eight commercial wheat cultivars (Kukri, 
Excalibur, Gladius, Wyalkatchem, Yitpi, RAC875, Drysdale, and 
Weebill; Supplementary Table S1) at multiple locations across 
Australia (3 field sites×3 seasons). YDT, a measure of a cultivar’s 
capacity to moderate the yield gap between actual and poten-
tial yield, was calculated as the ratio of mean grain yield be-
tween rainfed and irrigated environments. (Table 1). Cultivars 
with the highest YDT scores (i.e. lowest yield gaps between 
two environments) were Weebill (0.94), Drysdale (0.93), and 
RAC875 (0.88), whereas the lowest YDT score of Kukri (0.71) 
reflects its reduced ability to mitigate yield gap (Table 1).

Rainfall patterns compared with 100 year averages during 
the growing season provide an indicative measure of potential 
drought, but in and of themselves are not a measure of SWC. 
The rainfall patterns indicate that the crops were potentially 
exposed to droughts ranging from moderate to severe during 
early growth stages (leaf emergence and tillering) and to severe 
drought in four out of nine environments during anthesis until 
grain-filling stages, a critical period during which grain yield is 
determined (Fig. 1; Supplementary Table S2).

GBS using DArTseq was employed to evaluate these eight 
wheat cultivars for evidence of population structure and gen-
etic purity. We identified ~19 101 SNPs across 40 samples (eight 
cultivars and five biological replicates; Supplementary Table 
S3). SNP calling and filtering of false calls were performed as 
described in the methods. A Euclidian distance matrix among 

http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erz224#supplementary-data
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40 samples was generated and plotted using hierarchical clus-
tering (Supplementary Fig. S1). No strong genetic relatedness 
structure was present within the population, ruling out major 
selection bias from the current study. Selection of wheat cul-
tivars and assessment of various metabolic and physiological 
traits have been summarized in a flow chart (Supplementary 
Fig. S2).

Effect of glasshouse drought stress on SWC and leaf 
wilting

Cyclic drought treatment in the glasshouse began 50 d after 
sowing (at the booting stage) and was achieved by withholding 
watering for 15 d followed by rewatering once to saturation 
and then withholding water for a further 13 d, bringing the 
total period of drought up to 28 d (Supplementary Fig. S3). 
Measurements of leaf RWC and metabolite levels (eight cul-
tivars: Kukri, Excalibur, Gladius, Wyalkatchem, Yitpi, RAC875, 
Drysdale, and Weebill) of the flag leaves were made at 7 d 
and 28 d after initiation of the drought treatment for both 
control (irrigated, IRG) and drought- (DRT) treated plants. 
Measurements of SWC, gs, and chlorophyll were undertaken 
on a subset of cultivars; Kukri, Yitpi, RAC875, Drysdale, and 
Yenda (refer to Supplementary Table S4, for raw data). Yenda 
was included in glasshouse trials as a ‘control’ to validate the 
drought regime as it is reported to be a drought-susceptible 
cultivar. Indeed, it was among the most susceptible lines under 
the imposed drought treatments (Figs 2A, 3).

Periodic measurements of SWC were performed to assess 
the severity and homogeneity of soil water loss on a subset 
representing drought-tolerant (Drysdale, RAC875, and Yitpi) 
and drought-susceptible cultivars (Kukri and Yenda). At day 7 
of drought, SWC ranged from 50% to 70% in all cultivars, and 
at day 15 it dropped down further, ranging from 20% to 30% 
among cultivars. Rewatering brought SWC up to an average 
level of 80% in all cultivars and, upon imposition of recurring 
drought, it further decreased to a level between 25% and 35% 
at day 28 (Supplementary Fig. S3B). Most cultivars showed no 

significant differences in SWC across the drought regimes, ex-
cept that Drysdale and Yenda maintained slightly lower SWC 
than the others. However, at the end time point of cyclic 
drought, all cultivars reached a similar SWC level. Irrigated 
plants across the cultivars and time points remained turgid.

The visual impact of drought varied across cultivars and, 
as expected, drought- tolerant cultivars maintained lower leaf 
wilting than drought-susceptible cultivars throughout the 
cyclic drought regime (Supplementary Fig. S4). At the conclu-
sion of the drought, all plants were rewatered and then received 
the same watering regime as the irrigated pots. All drought-
treated plants recovered and set viable seed (data not shown).

Physiological responses to glasshouse drought were 
associated with YDT

All water-stressed cultivars had a significant reduction in flag 
leaf RWC at days 7 and 28, expressed as a net decrease in RWC 
(RWCDRT–RWCIRG) (Fig. 2A). However, drought-tolerant 
cultivars (Drysdale, RWC875, and Yitpi) maintained a higher 
RWC compared with drought-susceptible cultivars (Kukri and 
Yenda) (Fig. 2A). Five cultivars characterized in the field envir-
onment had significantly reduced flag leaf RWC under rainfed 
conditions as compared with irrigated conditions (Fig. 2B).

Flag leaf RWC of the plants was positively associated with 
YDT under both the 7 d (r2=0.85, P=7.4E-6) and the 28 d 
(r2=0.53, P=7E-4) glasshouse drought treatments (Fig. 2C). 
The r2 between RWC and YDT under rainfed field condi-
tions was similar to that after 28 d of glasshouse drought, but 
the association was not statistically significant, possibly due to 
smaller sample size (r2=0.52, P=0.16). Notably, RWC values 
under the 7 d glasshouse and field drought treatments were 
significantly positively associated with one another (r2=0.77, 
P=0.011; Fig. 2D).

To probe the physiological impact of the drought treatments, 
we undertook leaf stomatal conductance measurements in five 
cultivars (Drysdale, RAC875, Yitpi, Kukri and Yenda) (Fig. 3A). 
There were no significant reductions in gs at 7 d of drought. In 
fact, RAC875, the cultivar with the highest leaf RWC under 
the 7 d drought condition, even displayed a marginally signifi-
cant increase in gs. In contrast, gs decreased significantly in all 
five cultivars at day 28 of the drought treatment. However, the 
extent of decline in gs of drought-tolerant cultivars (Drysdale, 
RWC875, and Yitpi) was lower than that of drought-susceptible 
cultivars (Kukri and Yenda). As expected (Pradhan et al., 2012), 
significant declines in chlorophyll content (measured as SPAD 
index) were observed in four of five cultivars at day 7 and in all 
five at day 28 of the drought treatment (Fig. 3B).

Associations of individual metabolites with YDT 
and RWC

Having confirmed that the drought treatments had elicited the 
expected physiological responses, we performed untargeted 
GC/MS metabolomics analyses with the aim of identifying 
metabolites that were correlated with YDT. The study de-
tected a variety of amino acids, organic acids, sugars, polyols, 
and polyamines including many unidentified components 

Table 1.  Grain yield and yield gap-based drought tolerance (YDT)

Cultivars Mean grain yield (t ha–1) YDT

Rainfed Irrigated

Kukri 2.76 3.89** 0.71
Excalibur 2.77 3.52** 0.79
Gladius 3.04 3.65** 0.83
Wyalkatchem 3.02 3.61** 0.84
Yitpi 3.03 3.54* 0.86
RAC875 3.24 3.70* 0.88
Drysdale 3.17 3.40 0.93
Weebill 3.24 3.46 0.94
LSD (0.05) 0.42 0.49 –

YDTs were calculated as the ratio of mean grain yields under rainfed 
and irrigated (rainfed+supplementary irrigation) conditions from 18 field 
environments across Australia (3 sites×3 seasons×2 irrigation treatments). 
LSD, least significant difference of the means. 
**, *Significant difference between rainfed and irrigated for each cultivars at 
0.01 and 0.05, respectively.

http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erz224#supplementary-data
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 A     RWC under glasshouse drought                          B     RWC under field drought  

C     Glasshouse RWC correlation with YDT               D     Glasshouse RWC correlation with field RWC

r2 = 0.85

r2 = 0.53

r2 = 0.77

Fig. 2.  Flag leaf relative water content (RWC), its correlation with YDT and between glasshouse and field drought conditions. (A) RWC in all the wheat 
cultivars under early (day 7) and late (day 28) glasshouse drought relative to the irrigated conditions [RWC (DRT– IRG)]. (B) RWC under rainfed (field 
drought) relative to the irrigated field conditions. (C) Correlation of RWC under glasshouse drought with field-based YDT. (D) Correlation of RWC between 
7 d glasshouse drought and field drought conditions. Error bars represent ±SE (n=3). Asterisks represent statistically significant differences from the 
respective irrigated control at *P<0.05, **P<0.01, and ***P<0.001. YDT values are shown in parentheses next to the cultivar, except for Yenda which was 
used as a drought-susceptible control line. The line of the best fit (not taking errors into account) is displayed as a dashed line. DRT and IRG represent 
drought and irrigation treatment groups, respectively. YDT, yield gap-based drought tolerance.
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(Supplementary Table S5). Overlay of the net decrease in RWC 
in drought versus irrigated treatments onto a hierarchical clus-
tering of the responses of identified metabolites to glasshouse 
and field drought treatments showed that the metabolite re-
sponses of severely water-stressed plants generally clustered to-
gether (Fig. 4).

To test for evidence of metabolic pre-acclimation against 
drought stress, we first tested whether the levels of any in-
dividual metabolites in the leaves of irrigated, unstressed 
plants were significantly associated with YDT. In leaves har-
vested from irrigated plants at day 7 of the treatment period 
(Supplementary Table S6A), fructose-6-phosphate (r= –0.83, 
P=0.01) and isoleucine (r= –0.72, P=0.04) levels were nega-
tively associated with YDT. At day 28 (Supplementary Table 
S6B), the levels of shikimate and myo-inositol were margin-
ally significantly negatively associated with YDT (r= –0.61 and 
–0.69, respectively; P<0.073), while 2,4-dihydroxybutanoate 
was marginally positively associated (r=0.69, P<0.06) in ir-
rigated plants. Under irrigated field conditions, organic acids 
such as itaconate (r=0.89, P<0.05) were significantly positively 
associated with YDT whereas citramalate was marginally posi-
tively associated (r=0.82, P<0.1). On the other hand, glycerate, 
2-oxoglutarate (r= –0.94, P<0.05), and xylose (r= –0.91, 
P<0.05) were negatively associated with YDT (Supplementary 
Table S6C).

We next examined associations between YDT and indi-
vidual metabolite levels under drought stress. After the short-
term (7 d) glasshouse drought treatment, marginally significant 
negative associations between YDT and levels of ascorbate (r= 
–0.68) and 2,4-dihydroxybutanoate (r= –0.66) were observed 
(P<0.08; Supplementary Table S6D). After 28 d of drought, 
the levels of the organic acid, shikimate, and the polyamines, 
putrescine and spermidine (Supplementary Table S6E; Fig. 5A, 
B), were significantly negatively correlated with YDT (r= 
–0.82 to –0.76, P<0.05). Marginally significant negative as-
sociations were observed for 2-hydroxycinnamate, tyrosine, 
serine, and xylose (P<0.1; Supplementary Table S6E). Under 
field drought, 4-aminobutyrate was significantly negatively as-
sociated with YDT (r= –0.89, P<0.05), while marginally sig-
nificant associations were observed between YDT and glycine 
(r=0.87), glutamate (r= –0.85), and serine (r= –0.78) levels 
(P=0.055–0.12; Supplementary Table S6F). Methionine and 
asparagine responses to glasshouse drought showed significant 
negative associations with YDT (Supplementary Table S6G).

While simple metabolite measurements under a single set of 
environmental conditions may prove to be useful predictors of 
YDT, we were interested to explore whether the responses of 
metabolites to drought stress (expressed as natural logarithms 
of metabolite mean signal intensity ratios between drought-
treated and control samples) would be more predictive of YDT. 
Under 28 d drought, the responses of methionine (r= –0.75; 
Fig. 5C) and asparagine (r= –0.73; Fig. 5D) were significantly 
negatively associated with YDT, while marginally signifi-
cant negative associations were observed for lysine (Fig. 5E), 
serine (Fig. 5F), glutamine, 2-hydroxycinnamic acid, and glu-
curonate (r= –0.60 to –0.69 with SE of 0.03–0.07, P<0.12), 

 A     Stomatal conductance under glasshouse 

B     Chlorophyll content under glasshouse 

Fig. 3.  Stomatal conductance (Pornsiriwong et al., 2017) and chlorophyll 
content (Munns et al., 2006) in response to glasshouse drought 
treatments. (A) Flag leaf gs, under drought relative to the irrigated 
conditions [gs (DRT–IRG)] at 7 d and 28 d after the initiation of water 
stress. (B) Flag leaf chlorophyll content (SPAD units) in drought-stressed 
relative to the irrigated conditions at 7 d and 28 d [Chl (DRT–IRG)] after 
the initiation of water stress. YDT values are shown in parentheses next to 
the cultivar. Error bars represent ±SE (n=6). Asterisks represent statistically 
significant differences from the respective irrigated control at *P<0.05, 
**P<0.01, and ***P<0.001 by Welch’s t-test. DRT and IRG represent 
drought and irrigation treatment groups, respectively. YDT, yield gap-based 
drought tolerance.
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Fig. 4.  Heat map showing hierarchically clustered responses of metabolites to 7 d and 28 d glasshouse and a field drought condition. The response 
values, represented as natural log-transformed GC/MS signal intensity ratios, were clustered. Increases and decreases in the response values are 
displayed as blue and red coloured, respectively. RWC responses are overlaid on the heat map for visual comparisons. DRT and IRG represent drought 
and irrigation treatment groups, respectively.
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and a marginal positive association was observed for galactose 
(r=0.69±0.07; P<0.06; Supplementary Table S6G).

We next analysed associations between metabolite levels and 
flag leaf RWC. Metabolite–RWC associations were anticipated 
given that RWC–YDT (Fig. 2C) and metabolite–YDT asso-
ciations had already been observed (Supplementary Table S6; 
Fig. 5). Indeed, significant metabolite–RWC associations were 
observed under all environmental treatments except for irri-
gated field conditions (Supplementary Table S7). Interestingly, a 
particularly high number of metabolite–RWC associations were 
observed under the 7 d glasshouse drought (Supplementary 

Table S7)—the treatment associated with the most significant 
RWC–YDT correlation (Fig. 2C). RWC was strongly nega-
tively associated with the responses of the following metab-
olites under 28 d drought stress: serine (r= –0.84, P=3.1E-3), 
N-acetylserine (r= –0.89, P=3.1E-3), and asparagine (r= –0.81, 
P=1.5E-2) (Supplementary Fig. S5). Notably, asparagine levels 
at 28 d drought were also negatively associated with RWC 
under 7 d drought (r= –0.81, P=1.4E-2; Supplementary 
Fig.  S5D). In contrast, myoinositol was the only metabolite 
that was positively associated with RWC under 28 d drought 
treatment (r=0.73, P=4E-2; Supplementary Fig. S5E). This was 

Fig. 5.  Scatter plots for selected metabolite and YDT correlations under the 28 d glasshouse drought treatment. (A and B) Levels of shikimate and 
spermidine, represented as the natural log-transformed signal intensity ratios between drought-treated (DRT) samples and a universal pooled control 
extract are plotted against YDT. (C–F) Responses of methionine, asparagine, lysine, and serine represented as natural log-transformed signal intensity 
ratios of the drought-treated (DRT) to irrigated (IRG) samples are plotted against YDT (yield gap-based drought tolerance) scores. (This figure is available 
in colour at JXB online.)
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due to a pattern of stronger depletion of myoinositol levels in 
the drought-susceptible cultivars. Conversely, a negative asso-
ciation between phosphate response and RWC was linked to 
greater increases in the drought-susceptible cultivars (r= –0.72, 
P=4.5E-2; Supplementary Fig. S5F). Comprehensive tables of 
all metabolite–YDT and metabolite–RWC association results 
are provided in Supplementary Table S7.

Metabolome–YDT orthogonal partial least squares 
analyses

We next used the supervised multivariate technique, OPLS 
(Thevenot et  al., 2015), to identify multivariate models ex-
plaining as much YDT variation as possible. In four separate 
analyses, we applied OPLS to the metabolite levels of the eight 
wheat cultivars to investigate whether global, untargeted meta-
bolic profiles could reliably predict YDT under any of the 
four glasshouse environmental conditions (7 d irrigated, 7 d 
drought, 28 d irrigated, or 28 d drought). With 7-fold cross-
validation and 1000 permutation significance testing, signifi-
cant models were generated from metabolite levels under all 
four conditions (pR2Y<0.05 and pQ2<0.05). However, cross-
validated predictive ability of the model (Q2) only exceeded the 
generally accepted threshold of 0.5 under 7 d irrigated (Q2= 
0.78) and 28 d drought conditions (Q2=0.63) (Supplementary 
Table S8; Supplementary Fig. S6). Metabolite variable loadings 
and variable importance for the projection (VIP) values are 
presented in Supplementary Table S9. In summary, the YDT-
predictive performance of global GC/MS metabolite profiles 
was close to that of RWC.

Metabolite–YDT multiple regression analyses

Aiming to identify metabolite–YDT statistical models ex-
plaining more of the YDT variation, we explored a third ap-
proach: multiple regression of selected sets of metabolites. This 
approach has an advantage over the previous two in that it 
exploits the complementarity of predictive information pro-
vided by different metabolites while excluding variables unre-
lated to YDT, thereby reducing noise. We performed multiple 
regression analyses between YDT and every combination of 
two, three, and four metabolites that were individually associ-
ated with YDT (with r>0.5 and P<0.12), focusing on the 28 d 
time point of the glasshouse experiment. To filter out low con-
fidence associations, we used bootstrapping to estimate 95% 
confidence intervals on R2 and removed models with lower 
limits of <0.9.

The 28 d irrigated glasshouse data set (metabolite levels 
represented as the natural logarithms of the signal intensity 
ratios between cultivar samples and the pooled reference ex-
tract) did not identify any multi-metabolite models with sat-
isfactorily high R2 against YDT. A  substantive improvement 
was achieved by analysing the glasshouse data set as a natural 
log-transformed FC ratio between 28 d drought and irrigated 
samples (lnFC). This identified a variety of multiple metab-
olite regression models with R2 values having lower 95% 
confidence limits, ≥0.9 (Table 2). All of these were based on 
various three or four metabolite combinations drawn from the 

set: serine, asparagine, methionine, lysine, glutamine, and gal-
actose. The best (i.e. highest lower 95% confidence limit for 
R2) four metabolite model was that based on serine, asparagine, 
methionine, and galactose (YDT~lnFCSerine+lnFCAsparagine+ 
lnFCMethionine+lnFCGalactose; R

2=0.99±0.01, P=3.5E-3) followed 
closely by YDT~lnFCSerine+lnFCAsparagine+lnFCMethionine+ 
lnFCLysine (R2=0.98, P=9E-3), and YDT~lnFCSerine+ 
lnFCAsparagine+lnFCGlutamine+lnFCLysine (R2=0.98, P=9E-3). 
The best three metabolite model was that based on serine, 
asparagine, and methionine (YDT~lnFCSerine+lnFCAsparagine+ 
lnFCMethionine; R

2=0.94±0.001, P=6.2E-3). In general, replacing 
methionine with lysine gave models with only slightly lower 
performance (Table 2; Supplementary Table S7).

Comparisons between glasshouse and field drought 
metabolite responses, and cross-study comparisons

To test whether metabolite responses observed in our glass-
house experiments were predictive of those in the field, we 
used the PhenoMeter phenotype comparison tool (Carroll 
et  al., 2015) to statistically compare the field metabolic re-
sponses of five cultivars with their respective 7 d and 28 d glass-
house drought responses (Table 3). For Weebill and RAC875, 
there was no significant similarity between the field and either 
of the glasshouse time points, whereas the other three matched 
significantly for one or more time points. Yitpi matched sig-
nificantly to both 7 d and 28 d of glasshouse drought response, 
whereas Wyalkatchem and Gladius closely resembled their 28 
d glasshouse responses (Table 3).

To gain a further insight into links between the observed 
metabolic traits and the drought treatment, we performed a 
comparison with a previous study reporting metabolite re-
sponses to short-term increases in [O2]/[CO2] in sunflower 
(Helianthus annuus L.) leaves, a condition increasing photo-
respiration (Abadie et al., 2016). The working hypothesis was 
that metabolic changes in our data might be associated with 
increased photorespiration arising from decreased stomatal 
conductance in response to dehydration-induced signals such 
as abscisic acid (ABA) and 3'-phosphoadenosine 5'- phosphate 
(PAP) (Pornsiriwong et al., 2017). Indeed, we found significant 
response overlap between high photorespiration and drought 
stress by binomial sign test. For example, of the 18 metabolites 
that responded >1.5-fold in both H. annuus under high [O2]/
[CO2] and T. aestivum ‘Yenda’ under 7 d drought, 15 of them 
(2-oxoglutarate, fructose-6-phosphate, glucose-6-phosphate, 
fumarate, glycerate, glycine, homoserine, isoleucine, lysine, ma-
leic acid, phenylalanine, threonine, tryptophan, valine, and xy-
lose) responded in the same direction in both cases, while only 
three (alanine, β-alanine, and quinate) responded in opposite 
directions (P=7.5E-3).

Discussion

Phenotypes in the glasshouse predict drought 
tolerance in the field

While offering the potential for finer environmental con-
trol than field-based experiments, pot-based glasshouse 

http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erz224#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erz224#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erz224#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erz224#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erz224#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erz224#supplementary-data
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4942  |  Yadav et al.

experiments are reported not to accurately replicate the field 
environment, with observations made in glasshouse experi-
ments often conflicting with measurements made in the field 
(Passioura, 2006; Rebetzke et  al., 2014). However, glasshouse 
screening methods offer some major practical advantages over 
field-based methods, including fine biotic and abiotic envir-
onmental control—enabling better replication and lower costs. 
Here, we provide clear evidence that flag leaf RWC and easily 
measured metabolites of drought-stressed, glasshouse-grown 
wheat plants strongly associate with field-calculated YDT 
values (Figs 2C, 5; Supplementary Table S6). YDT was calcu-
lated from the plot yield data from extensive and expensive 
field trials of three consecutive seasons from 2010 to 2012 
at three locations across Australia under rainfed and irrigated 
conditions. Herein, we have demonstrated that a set of three 
or four metabolites could be a powerful predictor of a de-
pendent variable (i.e. YDT), which is a measure of the yield 
gap between rainfed (fluctuating seasonal rainfall) and irrigated 
environments (Table 2).

Drought limits grain yield and its impact varies with in-
tensity and occurrence of drought during the various devel-
opmental stages of crop growth (Boonjung and Fukai, 1996). 
Therefore, it is critical to define the nature of drought specif-
ically with reference to the performance in rainfed relative to 
irrigated wheat plots and the extent to which an average YDT 
would be reflective of the expected performance. Based on 
the seasonal rainfall and its distribution in the sites and seasons 
analysed, drought ranged from moderate to severe during early 
growth stages in all locations, whereas in four of nine environ-
ments the crops were exposed to severe drought during critical 
development stages (anthesis and grain filling) which influ-
ences grain yield, providing a range of yield gaps to produce 
the average YDT presented herein (Fig. 1; Table 1). A second 
consideration is the suitability of the glasshouse drought; in this 
respect, we observed significant genetic associations between 

our glasshouse- and field-based flag leaf RWC under moderate 
drought (Fig. 2D), and metabolite response profiles were often 
statistically significantly similar between glasshouse and field 
(Table 3).

Critically, the r2 values of glasshouse–field trait associations 
were highly dependent upon environmental conditions. For 
example, glasshouse RWC–YDT associations were much 
stronger under moderate 7 d drought, when genetic vari-
ation in RWC was more apparent, than under severe 28 d 
drought, when RWC values across the cultivars had partly flat-
tened out due to ‘saturation’ of dehydration. Conversely, me-
tabolite–YDT associations were stronger under 28 d drought 
when metabolic stress (e.g. high photorespiration) due to sto-
matal closure had a chance to influence metabolite levels in a 
cultivar-dependent manner.

Metabolites predict yield drought tolerance better 
than RWC

That RWC-explained 85% of YDT variance (Fig. 2C) is per-
haps higher than one might expect given that the measure 
does not capture variation in the spatial and temporal im-
pacts of drought across the plant. To understand where the re-
sidual variation in YDT that is unexplained by RWC might 
originate from, and identify markers to capture this vari-
ation, it is helpful to consider the structure of the causality 
network linking drought to grain yield. The core of this net-
work may be simplified as: drought>dehydration>stomatal 
closure>decreased Ci>increased vo/vc>decreased A and in-
creased flux into photorespiratory pathway>altered metabolite 
levels>decreased yield (where: Ci is the intercellular CO2 con-
centration; vo and vc are the rates of oxygenation and carb-
oxylation by Rubisco, respectively; and A is the net rate of 
CO2 assimilation). Of course, it is important to recognize that 
signalling processes permeate across all levels of this network. 

Table 2.  Multiple regression analysis showing that drought responses of four amino acids fully explain the genotypic variances in YDT

Models R2 P(R2) Metabolites r P(r)

YDT~lnFCSerine+lnFCAsparagine+lnFCMethionine+lnFCGalactose 0.99 3.5E-03 l-Serine –0.27 1.2E-02
l-Asparagine –0.05 7.4E-03
l-Methionine 0.09 4.2E-02
d-Galactose 0.02 4.2E-02

YDT~lnFCSerine+lnFCAsparagine+lnFCMethionine 0.94 6.9E-03 l-Serine –0.34 1.5E-02
l-Asparagine –0.06 7.5E-03
l-Methionine 0.12 5.8E-02

YDT~lnFCSerine+lnFCAsparagine+lnFCGlutamine+lnFCLysine 0.98 9.0E-03 l-Serine –0.28 6.6E-03
l-Asparagine –0.09 1.1E-02
l-Glutamine 0.05 9.5E-02
l-Lysine 0.11 2.4E-02

YDT~lnFCSerine+lnFCAsparagine+lnFCLysine+lnFCMethionine 0.98 9.0E-03 l-Serine –0.34 1.1E-02
l-Asparagine –0.07 5.7E-03
l-Lysine 0.05 1.2E-01
l-Methionine 0.08 9.5E-02

Multiple regression analysis was performed using the lm function in R with the models indicated. The linear and multiple correlation coefficients are 
indicated as r and R2, whereas their significance values at are indicated as P(r) and P(R2), respectively. lnFC represents the natural log-transformed fold 
changes of the respective amino acids (as subscripts) in drought-treated over control plants. r=the fitted linear effect coefficient in multiple regression; 
P(r)=the P-value associated with the fitted coefficient; n=8 for all the analysis.

http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erz224#supplementary-data
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Table 3.  Statistical comparisons of metabolic traits between field and glasshouse drought treatments

Comparison with glasshouse DRT_7d Comparison with glasshouse DRT_28d

Cultivars Directional overlap P-value R PM score pnon-bio Directional overlap P-value R PM score pnon-bio

Weebill – – – – – – –  –
RAC875 – – – – – – –  –
Yitpi 7.4E-3 0.55 0.65 1.4E-239 0.1 0.5 0.25 1.6E-36
Wyalkatchem – – – 1.2E-2 0.68 0.89 7.1E-28
Gladius – – – – 1.3E-2 –0.2 –0.08 0.49

The cultivar names are hyperlinked to direct the reader to a PhenoMeter (see the Materials and Methods) search of that cultivar’s field drought response 
against the responses of all cultivars to DRT_7d and DRT_28d. Note that this search applies maximum binomial sign test and pnon-bio thresholds of 0.05, 
and therefore not all hits in this table will appear in the results. DRT=drought-treated; R=correlation coefficient, PM=phenometer phenotypic score (see 
the Materials and methods).

That leaf water can explain ~85% of YDT variation highlights 
the considerable genetic variation existing in the complex first 
step of the network. However, it is obvious from the network 
structure that much opportunity remains for genetic variation 
to affect steps downstream of the initial responses; that is, those 
that translate dehydration into yield loss.

In the above causality network, metabolites lay penulti-
mate to yield and are therefore affected by all upstream fac-
tors affecting the translation of drought into yield loss. For 
this reason, we expected the levels of certain metabolites (or 
changes thereof) to be more predictive of YDT than point-in-
time measures of leaf water. Indeed, through a systematic com-
binatorial multiple regression approach, we have confirmed 
here that the responses to glasshouse drought of just three 
amino acids, namely methionine, serine, and asparagine, could 
predict YDT with R2 of 0.94±0.001, while the addition of ly-
sine increased R2 to 0.98±0.01 (Table 2). These findings are in 
agreement with recent reports that multiple metabolites were 
able to segregate Brachypodium distachyon ecotypes according to 
drought tolerance under moderate water stress where growth 
and colour phenotypes failed to do so (Fisher et al., 2016).

It is noteworthy that five (83%) of the six metabolites iden-
tified among the top multi-metabolite–YDT associations 
(serine, asparagine, lysine, methionine, glutamine, and gal-
actose) were amino acids, while amino acids comprised only 
33% of the total set of identified metabolites; this is a signifi-
cant over-representation (P<0.017; two-sided binomial sign 
test). Accumulation of amino acids has long been recognized as 
a hallmark response to abiotic stress (Stewart and Larher, 1980). 
Changes in amino acid profiles during drought stress have been 
attributed to various mechanisms, including decreased protein 
synthesis (Good and Zaplachinski, 1994), increased protein 
degradation (Huang and Jander, 2017), and enhanced biosyn-
thesis driven by changes in substrate availability and enzyme 
regulation (Kishor et  al., 2005). Amino acids play significant 
roles in stress tolerance (Rai, 2002), and accumulation of many 
amino acids has been observed in the leaves of different plant 
species under drought stress (Obata and Fernie, 2012; Hill et al., 
2013) and osmotic stress (Huang and Jander, 2017).

So why might the combination of methionine, serine, and 
asparagine be so predictive of YDT? Clearly, these metabolites 
provide complementary (orthogonal) information pertinent to 
genetic variation in YDT.

Strong accumulation of asparagine in plants (including wheat 
under drought stress) and its possible role as an osmolyte have 
been reported (Carillo et al., 2005; Lea et al., 2007). However, 
our results clearly show that asparagine levels are negatively 
associated with drought tolerance in wheat, consistent with re-
cent observations in rice (Degenkolbe et al., 2013). These find-
ings suggest that asparagine accumulation may be associated 
with a biochemical response to dehydration that has negative 
consequences for yield. It is likely that this process is senes-
cence. Asparagine is well known to accumulate in senescent 
leaves, and a comprehensive metabolomic dissection recently 
revealed that the asparagine/aspartate ratio increased steadily 
along a developmental senescence gradient (Watanabe et  al., 
2013). Asparagine accumulation during the onset of senes-
cence has been repeatedly linked to increased expression of as-
paragine synthetase (Avila-Ospina et al., 2015; Moschen et al., 
2016) while, in rice, both asparagine and asparagine synthetase 
transcript levels show negative associations with drought tol-
erance (Degenkolbe et al., 2013). Notably, artificially delaying 
drought-induced senescence by genetic manipulation of 
cytokinin metabolism in transgenic tobacco plants resulted 
in strongly increased drought tolerance (Rivero et  al., 2007). 
Taken together with these previous observations, our results 
suggest that asparagine increases under drought may provide 
an informative readout of genetic variation in the sensitivity of 
senescence induction to drought stress and, thereby, of genetic 
variation in YDT.

That serine would accumulate more strongly in the more 
drought-sensitive cultivars is readily explained by higher levels 
of photorespiration expected in those cultivars since serine, 
produced by the mitochondrial glycine decarboxylase com-
plex (GDC), is a major product of photorespiration that ac-
cumulates under high photorespiration (high [O2]/[CO2]) 
conditions in the absence of water stress (Abadie et al., 2016). 
Serine accumulation may therefore be considered as a readout 
of genetic variation in drought-induced photorespiratory 
load—a complex trait that is likely to be affected by many 
genetic loci but is nonetheless likely to be an important driver 
of YDT variation.

While methionine is not known as a core photorespiratory 
pathway metabolite, its biosynthetic pathway has obvious links 
to photorespiration through serine and 1-carbon metabolism 
(Fig. 6; see Supplementary Table S10 for abbreviations used 

http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erz224#supplementary-data
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in the pathway), and its biosynthesis is stimulated under high 
photorespiration conditions in the absence of water stress in 
H. annuus and Arabidopsis thaliana (Abadie et al., 2017).

Interestingly, close examination of the fitted coefficients of 
the YDT~methionine+serine+asparagine multiple regression 
model revealed that while serine and asparagine had negative 
coefficients, methionine’s coefficient was positive (Table 2). 
A similar coefficient was observed for lysine. In other words, 
our results suggest that if two cultivars exhibit the same in-
creases in serine and asparagine as one another, the cultivar 
with higher YDT would most probably be the one that ac-
cumulated methionine and/or lysine more strongly—pointing 
to possible links between stress-protective processes and me-
thionine/lysine accumulation. Indeed, by consuming ATP 
and NAD(P)H, the biosynthesis of methionine and other 
aspartate-derived amino acids would, in principle, contribute 
to maintenance of energy homeostasis, protecting against 
over-reduction of PSII and consequent damage from oxidative 
stress (i.e. photo-inhibition). That aspartate family amino acid 
biosynthesis might function as a beneficial energy sink under 
chloroplast energy imbalance is supported by the observation 
that allosteric feedback inhibition by threonine of homoserine 
dehydrogenase (HSDH; Fig. 6), the enzyme thought to con-
trol flux of aspartate away from asparagine and into aspartate 
family amino acid biosynthesis, is strongly reduced under ele-
vated chloroplastic NADPH/NADP+ ratios such as expected 
under drought stress (Bryan, 1990).

Another conceivable stress-protectant mechanism af-
forded by methionine biosynthesis is the dissipation of 
photorespiratory serine, since this would shift photorespiratory 
reaction equilibria to the right (away from 2-phosphoglycolate, 
glycolate, glyoxylate, glycine, and serine), thereby helping to 
keep the pool size of Calvin cycle-inhibiting photorespiratory 
intermediates (2-phosphoglycolate, glycolate, and glyoxylate) 
to a minimum (Fig. 6).

In summary, we have shown that complementary informa-
tion from the responses of serine, asparagine, and methionine 
(or lysine) to glasshouse drought treatment explains up to 98% 
of genetic variance in multi-season, multi-site field YDT in a 
diverse set of wheat cultivars. We suggest that these metabolites 
may provide useful readouts of three important complementary 
dimensions of genetic variation in wheat drought tolerance: (i) 
the capacity to avoid severe dehydration and therefore stomatal 
closure and high rates of photorespiration (serine); (ii) the ten-
dency to induce senescence upon the onset of severe stress (as-
paragine); and (iii) the capacity to divert aspartate away from 
asparagine and into biosynthesis of lysine and methionine. That 
three complementary metabolites can explain such a high pro-
portion of YDT variance is not at all surprising given that leaf 
water alone can already explain up to 85% of YDT variance and 
that metabolites are positioned at the bottom of the causality 
network translating drought to yield loss, whereas leaf water 
status is positioned near the top. That is, dehydration represents 
just the beginning of drought’s impact on yield whereas me-
tabolites are the ultimate building blocks of grain biomass, and 
altered metabolite profiles therefore represent the penultimate 
stage of impact of drought on yield. Metabolites truly are a ‘link 
between genotypes and phenotypes’ (Fiehn, 2002).

The network of processes leading to amino acid changes 
under drought are undoubtedly complex and multi-
dimensional, and different amino acids will be influenced to 
different degrees by different processes, as described above. 
Therefore, while amino acids, as a group, may be particularly 
rich in drought tolerance-predictive metabolites, they provide 
complementary information about the different orthogonal 
drought stress responses. This probably explains why three or 
four amino acids measured in glasshouse experiments can, in 
fact, be strongly predictive of traits in the field provided the 
right environmental conditions are correctly matched to the 
right predictive trait. Although our results are encouraging, 
determining which combinations of screening conditions and 
marker traits provide the most efficient predictions will ultim-
ately be a case of trial and error. To this end, further investi-
gation into the applicability of metabolite marker screening 
to different germplasm, developmental stages, traits, and stress 
regimes is warranted. It is important to keep in mind that, 
while our sample of eight cultivars enabled metabolite–YDT 
associations to be detected with far greater confidence than 
possible with commonly used smaller sample sizes of 2–5 
genotypes, far larger sample sizes will be necessary to over-
come the problem of multiple hypothesis testing and confirm 
these associations beyond reasonable doubt in future associ-
ation studies.

Conclusion

Our results demonstrate that a small set of metabolic traits 
measured in glasshouse drought experiments can, in fact, be 
strongly predictive of field-based measures of YDT and, to a 
lesser extent, RWC. To date, no markers measured in glass-
houses have been reported to predict field-based drought tol-
erance. In the field, the best measure of drought tolerance is 
yield gap, but this requires multi-site trials that are an order of 
magnitude more resource intensive and can be impacted by 
environmental variation. Thus, high-throughput and standard-
ized analysis of glasshouse-based markers in a less resource-
intensive setting could potentially be an effective tool for 
selection of wheat cultivars with high field-based YDT for 
continued genetic gain in the face of increasing climate-and 
land-use pressures.
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