Skip to main content
. 2019 Jun 13;70(18):4931–4948. doi: 10.1093/jxb/erz224

Table 2.

Multiple regression analysis showing that drought responses of four amino acids fully explain the genotypic variances in YDT

Models R 2 P(R2) Metabolites r P(r)
YDT~lnFCSerine+lnFCAsparagine+lnFCMethionine+lnFCGalactose 0.99 3.5E-03 l-Serine –0.27 1.2E-02
l-Asparagine –0.05 7.4E-03
l-Methionine 0.09 4.2E-02
d-Galactose 0.02 4.2E-02
YDT~lnFCSerine+lnFCAsparagine+lnFCMethionine 0.94 6.9E-03 l-Serine –0.34 1.5E-02
l-Asparagine –0.06 7.5E-03
l-Methionine 0.12 5.8E-02
YDT~lnFCSerine+lnFCAsparagine+lnFCGlutamine+lnFCLysine 0.98 9.0E-03 l-Serine –0.28 6.6E-03
l-Asparagine –0.09 1.1E-02
l-Glutamine 0.05 9.5E-02
l-Lysine 0.11 2.4E-02
YDT~lnFCSerine+lnFCAsparagine+lnFCLysine+lnFCMethionine 0.98 9.0E-03 l-Serine –0.34 1.1E-02
l-Asparagine –0.07 5.7E-03
l-Lysine 0.05 1.2E-01
l-Methionine 0.08 9.5E-02

Multiple regression analysis was performed using the lm function in R with the models indicated. The linear and multiple correlation coefficients are indicated as r and R2, whereas their significance values at are indicated as P(r) and P(R2), respectively. lnFC represents the natural log-transformed fold changes of the respective amino acids (as subscripts) in drought-treated over control plants. r=the fitted linear effect coefficient in multiple regression; P(r)=the P-value associated with the fitted coefficient; n=8 for all the analysis.