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Abstract
Scientifically sound, risk-informed evaluation of chemicals is essential to protecting public health. Systematically leveraging
information from exposure, toxicology, and epidemiology studies can provide a holistic understanding of how real-world
exposure to chemicals may impact the health of populations, including sensitive and vulnerable individuals and life-stages.
Increasingly, public health policy makers are employing toxicokinetic (TK) modeling tools to integrate these data streams and
predict potential human health impact. Development of a suite of tools for predicting internal exposure, including
physiologically-based toxicokinetic (PBTK) models, is being driven by needs to address large numbers of data-poor chemicals
efficiently, translate bioactivity, and mechanistic information from new in vitro test systems, and integrate multiple lines of
evidence to enable scientifically sound, risk-informed decisions. New modeling approaches are being designed “fit for purpose”
to inform specific decision contexts, with applications ranging from rapid screening of hundreds of chemicals, to improved
prediction of risks during sensitive stages of development. New data are being generated experimentally and computationally to
support these models. Progress to meet the demand for internal exposure and PBTK modeling tools will require transparent
publication of models and data to build credibility in results, as well as opportunities to partner with decision makers to evaluate
and build confidence in use of these for improved decisions that promote safe use of chemicals.
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Introduction

The increasing demand to replace traditional toxicity testing
with more efficient, non-animal approaches has fueled rapid
advances in toxicology and exposure science [1]. New toxi-
city screening approaches that measure molecular and cellular
responses following chemical exposure span a range of
complexities, from cell-free reporter-based assays to cellular

and organotypic systems designed to recapitulate molecular
and cellular perturbations that can in turn inform mode of
action or adverse outcome pathway assessments [2–4]. In
parallel with these efforts, appropriate internal exposure-dose
modeling tools are required to bridge these in vitro potency
data to an appropriate in vivo exposure metric [5]. Con-
sideration of decision context as well as physiology,
target tissue, and pharmacokinetics are required for suc-
cess in such internal exposure modeling. Physiologically-
based toxicokinetic (PBTK) modeling encompasses all of
these factors systematically, providing a critical approach
for these 21st century risk assessments [6–10].

PBTK modeling employs a compartmental structure that
incorporates anatomic and physiologic characteristics of the
body and its tissues to map chemical movement [11]. These
models have typically been used to translate and extrapolate
results from traditional animal toxicology studies to inform
understanding of potential impacts in humans for a variety
of chemical safety evaluations. However, the organizational
framework of PBTK models is equally well-suited to
incorporating pharmacokinetic data from in vitro or in silico
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data streams for use in in vitro-in vivo extrapolation
(IVIVE) [8, 10]. Similarly, the flexibility to modify this
framework with either increasing or decreasing complexity
makes PBTK modeling amenable to explore many scenar-
ios of relevance to toxicologists, exposure scientists, and
epidemiologists alike (Fig. 1). As these fields adopt alter-
native and higher throughput experimental and computa-
tional methods to collect data on chemical impacts in
biological systems, advances in PBTK modeling, as well as
biomonitoring to inform exposure reconstruction, are
required. These advances will enable exposure-response
characterization across new test systems, evidence integra-
tion across studies, and information to address the most
pressing public health decisions. Here we offer some
examples of how advances in internal exposure modeling
and biomonitoring approaches are meeting the demand for
model development, model evaluation, and data generation
to inform future chemical risk evaluation.

Applying PBTK modeling tools to support
risk-informed public health decisions

Physiologically-based pharmacokinetic (PBPK) and/or
PBTK models are based on the premise that xenobiotic

concentrations in the plasma or target tissue can be quan-
titatively predicted given consideration of an external dose
or exposure measure, anatomy and physiology of the sys-
tem under study, and the underlying pharmacokinetics or
toxicokinetics of the xenobiotic [12]. PBPK models have
been used by the pharmaceutical industry to predict delivery
of therapeutics to target tissues as well as to determine the
potential for drug–drug interactions [13–15]. A clear
separation between the system-level information, xenobiotic
information and the dosing or exposure scenario has
extended the application of PBPK and PBTK models to
incorporate estimates of human variability, providing a
more comprehensive evaluation of these agents [16–19].
Moreover, documentation of the model design, input para-
meters, and the underlying differential equations used to
calculate the tissue concentrations provide a needed trans-
parency for model evaluation.

Although model architecture (i.e., chemical, physiologi-
cal, and mathematical description) is the same for both
PBPK and PBTK, PBPK modeling focuses on therapeutic
compounds while PBTK modeling is employed to assess
environmental chemicals [20]. The applications are some-
what different in that the chemical space for non-therapeutic
chemicals may be more diverse [21], requiring considera-
tion of absorption, distribution, and metabolic processes not

Fig. 1 Physiologically-Based Toxicokinetic Model (PBTK) coverage from exposure to target dose and across levels of biological organization.
Associated coverage of in vitro bioactivity, in vivo toxicology, and epidemiology studies
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necessarily common to therapeutic drugs. Also, the range of
internal exposure levels may vary widely, requiring con-
sideration of different chemical behavior (e.g., linear, non-
linear) in the models. PBTK models are often used in
conjunction with environmental chemical toxicity studies
typically conducted using an experimental animal model to
facilitate extrapolations from these studies to predict the
external dose or exposure for the species of interest (i.e.,
humans or wildlife) from chemical concentrations measured
in the model system [22]. Additional extrapolations (i.e.,
high-to-low dose [7], route-to-route [23]) may also be
necessary to estimate human risk depending on the data
available. Alternately, reverse dosimetry application of
PBTK models can infer exposures that either (1) would be
consistent with biomarkers measured in biological media
[24] or (2) would cause concentrations at an internal site of
action found to be adverse in in vivo-based or in vitro
-based experiments [25]. These estimated external envir-
onmental exposures can then be the focus of risk-informed
decisions and actions [1].

In 21st century risk evaluations, the decision context will
drive the required internal exposure modeling tools by
framing the questions and bounding the certainty required
from model predictions [6]. Development of PBTK models
has typically relied upon animal-testing, but there are
thousands of chemicals in commerce for which animal
testing has never been conducted [26]. For some decisions
requiring rapid assessments across a large chemical space,
data-derived extrapolations may suffice to guide next steps
[5]. Other decisions may require a complex PBTK model to
understand variability in physiologic response, explain
unusual chemical-specific physiological processes, predict
potential impacts, and/or take public-health protective
action. Initial PBTK modeling and subsequent model
refinement will be guided by both this context and available
data [27].

Examples of recent advances in PBTK
modeling tools

Current model development focuses on broadening the
utility of PBTK for risk-informed chemical evaluation.
These advances include: higher-throughput evaluation of
hundreds of data poor chemicals; strategies for predicting
impacts to susceptible lifestages; and approaches for
addressing exposures to real-world mixtures. In addition,
methods for using PBTK models to estimate external
exposures from biomonitoring data have progressed.

To facilitate interpretation of high-throughput screening
and in vitro bioactivity data, as are being generated in the
US EPA ToxCast and US Tox21 programs, the nominal
testing concentrations at which in vitro bioactivity is

observed must be related to an external exposure required to
achieve similar internal exposures. In addition, nominal
exposure itself must be related to free concentration in vitro
[28, 29]. Traditional PBTK modeling approaches where in-
depth studies are conducted on one chemical at a time to
ascertain relevant behaviors (including chemical bio-
transformation pathways, dose-response, target tissue dis-
tribution, exposure pathways, and modes of action) are
challenged to meet the needs for applying these high-
throughput data streams to support risk-based evaluations
for large sets of chemicals.

To address this problem, a simplified in vitro–in vivo
extrapolation (IVIVE) approach developed for pharmaceu-
ticals [16] was adapted to chemicals in the environment [25,
30]. This approach integrates in vitro TK data along with
computational modeling to predict internal exposures that
include quantitative estimates of population variability [25].
In keeping with the high-throughput nature of the ToxCast
dataset, Rotroff et al., identified key determinants of che-
mical TK and measured these experimentally to provide a
prediction of what an internal blood concentration would
be, given a repeated daily exposure (mimicking a chronic
daily exposure to chemicals). A simple compartmental
model was used, and the predicted plasma concentrations
were assumed to be representative of the target tissue con-
centrations. Any considerations beyond hepatic metabolic
clearance, blood binding, and non-metabolic renal clearance
were either neglected (e.g., extrahepatic metabolism) or set
to conservative assumptions (e.g., 100% oral absorption).
This simple approach provided a foundation that is actively
undergoing refinement to incorporate additional information
and outputs. These include prediction of additional para-
meters and outputs (e.g., Cmax) [31], additional routes of
metabolism, as well as further exploration of population
variability and identification of sensitive populations.

Recently, a follow-up effort based on the Rotroff et al.
[25] approach was utilized to assess the range of TK
variability that may be anticipated across different popula-
tions. Differences in physiology, genetics, and development
(i.e., ontogeny) can lead to vastly different internal chemical
concentrations following external exposure to an identical
amount of chemical. Through application of Monte Carlo
modeling approaches, in vitro data, physiologic, ontoge-
netic, and genetic differences across different populations
can be integrated to quantitatively predict the internal con-
centrations across different lifestages and populations [32].
Initial efforts in this area have revealed anticipated ranges of
TK variability that may result, and can potentially identify
key factors that drive the variability as well as a potential
tiered strategy to decide which chemicals may require
follow-up characterization to better understand the extent
and implications of this variability. In addition, these efforts
demonstrate the possibilities available to incorporate a
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range of tools and approaches (in vitro, in silico, etc.) to
inform the task at hand.

As noted above, approaches for IVIVE that utilize high-
throughput screening data are usually based on predictions
for an oral equivalent dose that will produce steady-state
blood levels comparable to the high-throughput in vitro
assay concentration where half-maximal effects are
observed (i.e., AC50) [33]. Such an assumption is appro-
priate when blood levels are reasonable surrogates for target
tissue levels, and steady-state blood levels are attained
quickly for chemicals with short half-lives. However,
external dose (external exposure) equivalents estimated
using reverse dosimetry based solely on steady-state blood
levels is inadequate in situations where target-tissue levels
are different from blood, perhaps due to accumulation of a
chemical because of specific protein binding, deposition in
the lipid phase, or active membrane transport kinetics. In
these cases, the interactions between ADME, target tissues,
and toxic response are qualitatively described using adverse
outcome pathways (AOP). AOPs provide a biologically-
based framework for linking molecular initiating events
(MIEs) triggered by chemical exposures to cellular key
events (KEs) leading to adverse outcomes (AOs) [34]. This
AOP framework facilitates links between the external
exposure that is the focus of risk managers and the internal
exposure or target tissue dose associated with adversity
[35]. Application of data generated from high-throughput
in vitro assays and AOPs to estimate health risks from
exposure to environmental chemicals during sensitive
windows of development is additionally complicated by
changing life-stage TK determinants.

Computational strategies that consider the impact of
lifestage, physiology, and biochemical changes on toxicity
potential have demonstrated the applicability of this
approach to provide mechanistic insight into linkages
between maternal exposures and predicted responses in the
embryo and infants. In one, a human lifestage PBTK model
was developed to quantitatively describe chemical disposi-
tion during pregnancy, fetal development, neonate, and
child growth stages. Maternal exposures were estimateded
that would yield fetal blood levels equivalent to the che-
mical concentration that altered in vitro activity of ToxCast
assays for critical vascular signaling targets described in a
developmental toxicity AOP [36]. The resulting in vivo oral
dose estimates were then compared to lifetime exposure
levels using literature data or exposure models to derive an
AOP-based margin of exposure (MOE), providing a critical
risk-related context to the data [18]. In another example, an
exposure modeling framework integrated with a lifetime
PBTK model was employed to estimate corresponding
external and internal systemic doses of bisphenol A and
metabolites with a focus on gestational and neonatal
developmental stages. Toxicity biological pathway altering

doses for bisphenol A [33] were used to provide an alternate
internal reference dose, feeding into another useful appli-
cation of high-throughput screening data to inform an
MOE-based approach [37].

Simple vertebrate systems offer additional opportunities
to interrogate for AOs during critical windows of suscept-
ibility. Zebrafish embryos provide an economical and
higher throughput experimental model to screen chemicals
for developmental toxicity potential [38] compared to tra-
ditional mammalian systems. Several examples in the lit-
erature illustrate the use of zebrafish embryos to study the
effect of chemicals on gene and protein patterns and the
potential implications of differential expression for toxicity
[39]. Examination of chemically induced AOPs leading to
disruptions of embryonic development can then enable
estimation of quantitative internal exposure-response rela-
tionships [40] through incorporation of this experimental
data and information on systems-specific modulators into a
PBTK modeling framework [41].

PBTK models of critical windows can also be applied to
inform interpretation of epidemiological data. Verner and
coworkers [42] used a PBTK model of pregnancy to better
understand potential impacts of prenatal exposure to per-
fluoroalkyl substances (PFAS) and potential confounding.
The authors postulated that some of the association of PFAS
exposure with lower birth weight seen in epidemiologic
studies could be attributable to glomerular filtration rate
(GFR). Simulated population estimates were compared with
those from a meta-analysis of epidemiologic data. The
resulting simulations suggested that a substantial proportion
of the association between prenatal PFAS and birth weight
may be attributable to confounding by GFR. This modeling
approach was also applied to identify the period during
pregnancy when this confounding is likely to be most
pronounced. Strategies such as this one for incorporating
PBTK tools to evaluate epidemiological information, have
the potential to provide key mechanistic insights, improve
study design, and further application of study results to
improve public health decisions.

At the same time, that advances are being made in PBTK
modeling for higher throughput applications, the avail-
ability of physiological and biochemical data from a variety
of species has enabled the development of increasingly
more complex and accurate PBTK models to computa-
tionally represent biological systems and provide more
refined estimates of internal exposure. These advances are
clearly illustrated by the use of PBTK modeling to quanti-
tatively assess toxicological interactions between chemicals
in complex mixtures. People are often exposed to complex
mixtures of environmental chemicals such as gasoline,
smoke, water contaminants, or food additives. However,
investigators have often considered complex mixtures as
one lumped entity in experimental setups. Valuable
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information can be obtained from these experiments, though
this simplification provides little insight into the impact of a
mixture's chemical composition on toxicologically-relevant
metabolic interactions that may occur among its con-
stituents. To that extent, PBTK models provide a quantita-
tive format to address the impact of physiological and
biochemical interactions on disposition of chemicals in
biological tissues and its linkage to toxicological response.
In one early example, Haddad et al. [43] applied PBTK
model for the quaternary mixture BETX (benzene, ethyl-
benzene, toluene, and xylene. Their BTEX model was the
basis of several other approaches including application of
Marko Chain Monte Carlo methods, and integration with
toxicological endpoints for the health risk assessment for
mixtures [44]. More recently, Jasper et al. [45] developed an
approach that applies chemical engineering lumping meth-
ods to complex mixtures, in this case gasoline, based on
biologically relevant parameters used in PBTK models.
Using a rat inhalation exposure model, experimental time-
course kinetic profiles of ten target chemicals in blood (of
109 identified in the exposure chamber) were compared to
simulated blood levels with various numbers of lumps in a
general PBTK model. Simulation error was significantly
reduced by incorporating enzymatic chemical interactions
and by lumping the 99 non-target chemicals. This
biologically-based lumping method provides a systematic
data and modeling-driven strategy to simplify the gasoline
mixture while preserving the interaction effects of the entire
complex mixture [45]. These studies demonstrate key ways
PBTK modeling can identify critical data needs and provide
solutions for understanding impacts from real-world, com-
plex exposures, which ultimately can serve to promote
holistic public health decisions.

Long valued for the potential to link chemical exposure
to a biologically active dose [46], applicability of human
biomonitoring data in risk assessment is often limited in
non-occupational scenarios where external exposure infor-
mation and scenarios are typically lacking. Recent efforts in
exposure reconstruction, where PBTK modeling and sta-
tistical approaches are incorporated with biomonitoring data
to estimate external exposure (also known as reverse dosi-
metry), have made great strides. Several sophisticated
approaches have incorporated statistical methods to evalu-
ate the uncertainty and variability that may be introduced
given available input data and the use of simplifying model
assumptions. For 21st century risk assessments where a
balance between speed and precision in model development
is an important consideration, one recent effort compared
the impact of iterative and non-iterative approaches on
precision and identified parameters necessary for a more
accurate exposure reconstruction for short half-life chemi-
cals, where interpretation of biomonitoring data is particu-
larly problematic [47]. In another, use of a nested Monte

Carlo simulation in reconstruction of acrylonitrile exposure
estimated the range of uncertainty in the exposure con-
centrations and identified several metrics including expo-
sure duration and certain physiologic parameters that could
have a dominant influence on model outcomes [48]. Finally,
McNally and co-workers employed an extensive, compu-
tational framework that integrated PBTK modeling, global
sensitivity analyses, Bayesian inference, and Markov Chain
Monte Carlo simulation in an approach to that could be
used to reduce the dimensionality of certain reconstruction
efforts with a minimal loss of precision [49]. Integrated
strategies such as these will be critical in understanding the
dependencies of reconstruction model performance on the
type and extent of biological detail incorporated.

Path forward

Recent advances in PBTK and other internal exposure
modeling approaches and tools are beginning to bridge
high-throughput in -vitro bioactivity data, mechanistic
insights from complex experimental models, and traditional
toxicity data with information on exposure and epidemiol-
ogy to build understanding from these multiple lines of
evidence. Continued progress in PBTK modeling tools to
address pressing public health questions on chemical safety
require investments to: develop modular, higher-throughput
PBTK models; rapidly collect critical exposure and kinetic
data; and transparently open access to both available models
and associated data.

Generalizable building blocks for screening-level PBTK
modeling of internal exposure will enable binning of data-
poor chemicals for further mechanistic study and modeling.
In vitro methods for experimentally determining some
aspects of TK allow for more rapid development of TK
models. These models can be simple [5] when based on
in vitro data and steady-state assumptions, or full PBTK
models [50] when combined with methods for predicting
chemical concentration into tissues (i.e., partitioning [51].
While it is expected that a rapidly parameterized TK model
may not perform as well as a tailored model developed with
in vivo data, these do offer three significant advantages.
First, the rapid model serves as a prototype for future
models. If a confidence in the model can be predicted [50],
then it may be either that the model is good enough as is or,
depending on the application, it may be expanded to address
specific needs. Second, the development of many rapid
models in a systematic fashion allows methodical investi-
gation of TK impacts, as a function of chemistry. In this
way, trends may be elucidated to inform general TK model
development. This approach can then be combined with
appropriate portal-of-entry models based on potential routes
of exposure and the physical-chemical properties of the
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environmental contaminants. Third, a generic model
implementation that has been thoroughly tested is less likely
to suffer from implementation and documentation errors
that occur when reporting novel PBTK models [6, 7, 52,
53].

In order to address the large numbers of data-poor che-
micals efficiently, recent research efforts have developed
generic (as opposed to chemical-specific) screening level
PBTK modeling approaches that use in vitro ADME data.
When in vivo measured TK data (that is, chemical con-
centration vs. time) are available, these data allow evalua-
tion of a chemical specific PBTK model. The predictions of
the chemical specific model may be assessed for both bias
and uncertainty [7], as illustrated in Fig. 2a. When no
in vivo TK data are available, a generic PBTK model can
instead be parmeterized [54–57]. To evaluate that model,
overall predictions can be compared to in vivo TK data for
those chemicals with data, as illustrated in Fig. 2b.
Although predictions generated for any one chemical using
a generic model can be expected to have larger uncertainty
than those from a chemical-specific model, there can be
greater confidence that the model structure has been
appropriately implemented since it has been evaluated
against a larger amount of data [6, 17].

Generic TK approaches amenable to high-throughput
testing have been applied to assess risk indicated by tox-
ological screening data [25, 58, 59]. The approaches were
then refined to address the most significant uncertainties and
evaluated to define chemical domain for which this type of
approach was sufficiently resolved [60, 50, 61]. Just as
chemical-specific models allow extrapolation to different
exposure scenarios, a generic TK or PBTK model allows
extrapolation to data-poor chemicals. It is therefore possible
to correlate errors in the predictions of a generic PBTK
model with chemical-specific properties [62, 50]. The initial
generic PBTK models focused on volatile, non-ionizable
chemicals [56], but models are now available to address
non-volatile and ionized compounds [57].

In addition to a suite of generic PBTK model structures,
direct access to physicochemical and ADME data is needed
to make chemical-specific predictions. Historically, ADME
data have been collected through experimental means,
generally using targeted analytical chemistry methods. The
prerequisites for targeted ADME studies include: (1)
knowledge of the parent compound and related metabolites;
(2) standards of all compounds to be analyzed; and (3)
proven quantitative methods with acceptable levels of
accuracy and precision. In light of these requirements, the
number of compounds with quantitative TK data is limited.
As such, advances in methods to measure and estimate
model parameters will support efficient application of
complex PBTK models, in addition to the new modular
PBTK tools.

First tier estimates for PBTK parameters will leverage
cheminformatics tools. Zang et al. [63] have generated an
open-source quantitative structure–property relationship
(QSPR) workflow to predict a variety of physicochemical
properties that would have cross-platform compatibility to
integrate into existing cheminformatics workflows, includ-
ing those for estimating ADME parameters. Importantly,
analytical techniques are also evolving in a manner that will
enable the efficient collection of data to support TK model
development, evaluation, and refinement. Two emerging
approaches, known as suspect screening analysis (SSA) and
non-targeted analysis (NTA), are largely based on high-
resolution mass spectrometry (HRMS), and offer means to
identify, and in some cases quantify, sample constituents
with limited or no a priori information [64, 65]. Briefly,
SSA are methods in which observed but unknown features

Fig. 2 To evaluate a chemical-specific PBTK model for “chemical x”
a, the predictions are compared to in vivo measured data for that
chemical. For situations where chemical-specific TK data are not
available b, generic TK models offer an alternative framework in
which the model is parameterized and evaluated for all chemicals with
in vivo data and then extended for use with data poor chemicals
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are compared against a database of chemical suspects to
identify plausible hits. NTA are those in which chemical
structures of unknown compounds are postulated without
the aid of suspect lists. These tools therefore hold great
promise for expanding coverage of TK models across
compounds with little or no existing data.

Compound identification in SSA is made possible
through comparison of HRMS data against chemical
screening lists (for examples, see: https://comptox.epa.gov/
dashboard/chemical_lists). Screening lists can vary drama-
tically in size (tens to thousands of compounds) and include
known parent compounds, as well as previously observed or
model predicted metabolites [66]. Compound identification
in NTA, however, proceeds without the use of screening
libraries. Rather, HRMS features of interest are first selected
(e.g., via statistical comparisons of control vs. treatment
groups), with formulas and structures then proposed with
the aid of supporting experimental data. SSA has a sig-
nificant advantage over NTA in terms of throughput.
However, feature annotation in SSA is restricted to com-
pounds included on screening lists—i.e., those known or
postulated to exist. NTA is decidedly lower throughput, but
can be used to discover compounds never before studied.
The combination of both methods, then, is a powerful
approach for exploring chemical space in samples of
interest that are understudied or completely unknown.

SSA and NTA can aid TK studies on two fronts: namely,
hypothesis generation and model evaluation. At the most
basic level of hypothesis generation, SSA/NTA studies can
identify novel parent compounds for which toxicity, exposure,
and TK data do not exist [67, 68]. A wealth of environmental
and biological media have now been evaluated using SSA/
NTA methods, and hundreds to thousands of never-before-
studied compounds identified [69, 70]. After initial char-
acterization, these novel compounds, as well as noteworthy
mixtures, can be prioritized for exposure, bioactivity, and TK
screening using QSAR-based methods [71]. Here, lower-tier
TK models are the focus of initial investigations attempting to
bridge any new exposure and toxicity information.

With respect to analyses of compounds that are known
(i.e., those that have been previously studied and for which
some exposure, toxicology, or TK data exist), SSA/NTA
methods can be used to screen for derivative analytes that
may be formed by metabolic processes and readily mea-
sured in biological samples [72, 73]. Here, metabolites of
known parent compounds are identified via SSA/NTA, and
measurement data used to generate and/or test hypotheses
related to ADME processes. These data can inform the
extent to which higher-tier TK models must address clear-
ance through a specific pathway, or activation via a specific
metabolic intermediate.

Uses of SSA/NTA methods for model evaluation are
geared towards known but data-poor compounds for which

only provisional estimates exist of steady-state blood, urine,
or tissue concentrations. SSA methods, in particular, can be
rapidly deployed to simultaneously collect surveillance data
on thousands of compounds of interest. These methods can
further provide initial concentration estimates for screened
analytes using reference standardization techniques [74].
While these measures may lack the accuracy and precision
of those based on targeted MS methods, they provide an
initial means to evaluate high-throughput toxicokinetic
(HTTK) model estimates. When warranted, SSA methods
can be optimized, or targeted MS methods developed, to
provide increased confidence in laboratory measures [71].
The primary goal of this evaluation step is to determine for
which compounds higher-tier TK models are needed. A
secondary goal is to inform the types of targeted measure-
ment data that are required for model refinement.

Open-source access to evolving PBTK data and mod-
eling tools is critical to ensure transparency in all risk-
informed decision processes. Access to the information is
necessary to evaluate the quality of the data, reproduci-
bility of the modeling results, as well as to identify gaps in
the analysis requiring further data and model development.
With this in mind, scientists have devised a multi-pronged
approach to provide access to valuable resources for the
risk assessment community. Current efforts are focused on
the development of an open-source platform to perform
IVIVE and PBTK modeling for applications of varying
complexity [57]. In addition, this platform will include:
tools to assess population variability drawn from a range
of U.S. populations; links to all publically available
in vitro and in vivo TK data; tools trained on environ-
mental chemicals to predict plasma protein binding [61]
and in vitro hepatic clearance; and additional tools in
development to address specific life-stages and sensitive
populations [32].

Application of PBTK and internal exposure modeling
tools will better support public health protective decisions
as scientifically sound alternative approaches facilitate a
shift away from reliance on defaults, and toward advanced
technologies that allow holistic evaluation of chemicals. In
addition, as more information about chemical kinetics is
developed and incorporated in chemical evaluation work-
flows, uncertainties in alternative experimental systems will
decrease [75]. Finally, as these new approaches and tools
are evaluated and demonstrated through problem-driven
application, the value added in a decision context will be
tangible and quantifiable.
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