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Abstract

Objective: Zone model predictive control (MPC) has been proven to be an efficient approach to 

closed-loop insulin delivery in clinical studies. In this work, we aim to safely reduce mean glucose 

levels by proposing control penalty adaptation in the cost function of zone MPC.

Methods: A zone MPC method with a dynamic cost function that updates its control penalty 

parameters in real time according to the predicted glucose and its rate of change is developed. The 

proposed method is evaluated on the entire 100-adult cohort of the FDA-accepted UVA/Padova 

T1DM simulator and compared with the zone MPC tested in an extended outpatient study.

Results: For unannounced meals, the proposed method leads to statistically significant 

improvements in terms of mean glucose (153.8 mg/dL vs. 159.0 mg/dL; p < 0.001) and percentage 

time in [70, 180] mg/dL (70.5% vs. 66.3%; p < 0.001) without increasing the risk of 

hypoglycemia. Performance for announced meals is similar to that obtained without adaptation. 

The proposed method also behaves properly and safely for scenarios of moderate meal-bolus and 

basal rate mismatches, as well as simulated unannounced exercise. Advisory-mode analysis based 

on clinical data indicates that the method can reduce glucose levels through suggesting additional 

safe amounts of insulin on top of those suggested by the zone MPC used in the study.

Conclusion: The proposed method leads to improved glucose control without increasing 

hypoglycemia risks.

Significance: The results validate the feasibility of improving glucose regulation through 

glucose- and velocity-dependent control penalty adaptation in MPC design.
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I. Introduction

The development of continuous glucose monitoring (CGM) sensors and continuous 

subcutaneous insulin infusion pumps enables the design of artificial pancreas (AP) systems 

for patients with type 1 diabetes mellitus (T1DM). The overall goal is to achieve safe and 

satisfactory blood glucose regulation in terms of hyperglycemia and hypoglycemia 

prevention through designing closed-loop insulin delivery algorithms [1]–[3].

The authors’ group has been working on a zone model predictive control (MPC) approach to 

closed-loop insulin delivery [4]–[7], which has been evaluated in numerous clinical studies 

on more than 120 patients and 70,000 hours [8]–[12]. As euglycemia is defined as a range of 

blood glucose concentrations rather than a single value, a zone MPC penalizes the distance 

of glucose predictions from a carefully designed safe zone based on clinical requirements, 

which helps avoid unnecessary control moves and reduces glycemic variability and the risk 

of hypoglycemia. The original zone MPC for the AP was developed in Grosman et al. [4] 

utilizing an auto-regressive model with exogenous inputs, which was progressively extended 

to integrate a control-relevant state-space model [13] and a diurnal periodic target zone [5]. 

Asymmetric costs on insulin delivery above and below basal rate were further utilized in 

Gondhalekar et al. [6], to facilitate decoupled design for hyperglycemia and hypoglycemia. 

In a recent version of zone MPC [7], velocity-weighting and velocity-penalty were 

incorporated in the MPC cost function to reduce the likelihood of controller-induced 

hypoglycemia and achieve enhanced hyperglycemia correction. Although improved 

hemoglobin A1c was achieved in the corresponding clinical trial [12], improvements with 

average glucose were not obvious, which give rise to the need of developing further 

controller enhancements without weakening safety guarantees against hypoglycemia. In this 

work, we explore one promising approach by designing dynamic updating strategies for 

control penalty parameters.

The problem considered falls in the topic of adaptive AP design, for which a few different 

methods have been investigated in the literature. In earlier studies, basal rate and meal bolus 

adaptation were considered through run-to-run approaches utilizing sparse blood glucose 

(BG) measurements [14], [15]. The advent of CGM further enabled the utilization of 

advanced control approaches in adaptive AP design. For instance, a nonlinear adaptive MPC 

was proposed by Hovorka et al. [16] to maintain normoglycemia during fasting conditions 

using Bayesian model parameter estimation. El-Khatib et al. [17] employed a generalized 

predictive control (GPC) approach with a recursively updated subject model on a bi-

hormone AP; a GPC approach was also explored in Turksoy et al. [18] to eliminate the need 

of meal or exercise announcements. A model predictive iterative learning control approach 

was proposed by Wang et al. [19] to adapt controller behavior on the basis of patient’s day-

to-day lifestyle. Cameron et al. [20] developed a multiple model probabilistic predictive 

controller to obtain enhanced meal detection and prediction. In Toffanin et al. [21], a 

dynamic insulin-on-board approach was proposed to counteract the effect of insulin 

sensitivity circadian rhythm. Colmegna et al. [22] developed a switched linear parameter-

varying approach to separately adjust controller behavior in hypoglycemia, hyperglycemia 

and euglycemia situations. Toffanin et al. [23] recently revisited the run-to-run approach to 

adapt the basal insulin delivery rate and carbohydrate-to-insulin ratio by taking into account 
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the intraand inter-day insulin sensitivity variability. In Laguna Sanz et al. [24], a confidence 

index was incorporated in a zone MPC to allow controller parameter adaptation based on the 

accuracy of the prediction model in recent history. An MPC with event-triggered controller 

update strategies was proposed by Chakrabarty et al. [25] to reduce energy consumption of 

an embedded AP while maintaining satisfactory glucose regulation performance. A recent 

review of adaptive approaches to AP design can be found in Turksoy and Cinar [26].

The main difference of our work from existing adaptive MPC/GPC approaches in the 

literature is that a dynamic MPC cost function and a constant system model are utilized, 

instead of a constant cost function and a dynamically updated prediction model. Specifically, 

we propose an adaptive MPC cost function based on the values and change rates of glucose 

predictions, by exploiting the physiological properties of the insulin-glucose metabolic 

process. This approach is motivated by the multi-zone MPC design proposed in Grosman et 
al. [27]. However, the adapted controller parameters in Grosman et al. [27] were all kept 

piecewise constant according to the region in which the glucose level stayed, and more 

importantly, the effect of glucose trend on insulin dose calculation was not taken into 

account. To overcome these limitations, a continuous dependence of the control penalty 

parameters on both predicted values and trends of blood glucose is investigated in our work. 

A preliminary version of the design was reported in [28].

The performance of the proposed adaptive MPC is evaluated via extensive in silico tests on 

the 100-adult cohort of the US Food and Drug Administration (FDA) accepted Universities 

of Virginia (UVA)/Padova T1DM simulator [29] and comparative advisory-mode analysis 

based on the historical clinical data obtained in [12]. Compared with the zone MPC 

developed in [7], improved results are obtained by the proposed adaptive method in terms of 

mean glucose level and percentage time in the safe range without increasing the risk of 

hypoglycemia for both announced and unannounced meals. The robustness of the controller 

is evaluated utilizing a scenario-based approach [30] through considering different extreme 

situations; the proposed adaptive controller can behave properly in the scenarios of moderate 

meal-bolus mismatches, basal-rate mismatches and simulated unannounced exercise. In 

addition, through feeding the clinical data [12] obtained using the zone MPC in [7], we 

observe that the proposed method can help reduce glucose levels through suggesting 

additional but safe amounts of insulin.

II. Problem Description

The base controller for this work is the periodic zone MPC with velocity-weighting and 

velocity-penalty developed in [7]. Driven by the arrival of glucose measurements, the 

controller runs in discrete time and calculates a numeric control law every 5 minutes. 

Specifically, at discrete time instant i, the relative dose correction uk of insulin infusion 

uabs,k from the basal rate ubasal (namely, uk ≔ uabs,k − ubasal) is obtained by solving a 

constrained optimization problem of the form:

u0: Nu − 1* ≔ arg min
u0: Nu − 1

J xi, u0: Nu − 1 (1)
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with cost function

J( ⋅ , ⋅ ) ≔ ∑k = 1
Np zk

2 + Q vk zk
2 + Dvk

2 + ∑k = 0
Nu − 1

Ruk
2 + Ruk

2 , (2)

subject to system dynamics and safety constraints. In (2), uk ≔ max uk, 0  and uk ≔ min uk, 0 , 

which represent delivery rates above and below the basal rate ubasal, respectively; the 

separate weighting parameters R and R on uk and uk allow independent penalization of the 

costs of insulin delivery above and below basal rate. The detailed explanation of the other 

terms in (2) and the MPC algorithm can be found in the supplementary document of this 

paper and in [7].

In [6], [7], the control input penalties R and R) were fixed to constant values. A natural 

question to ask is whether improved glucose regulation performance can be obtained by 

further adapting these parameters, which have a clear and direct relationship with the 

controller behavior - smaller values of R and R correspond to more aggressive controller 

activity and vice versa. In particular, we adjust the values of R and R according to the 

glucose state prediction yk (obtained via the prediction model of MPC) and glucose velocity

μk ≔ yk − yk − 1 . (3)

We implement this idea by designing R- and R-surfaces along continuum values of glucose 

prediction yk and velocity μk. Consequently, the MPC cost function is modified from its 

original form in (2) to

J( ⋅ , ⋅ ) ≔ ∑k = 1
Np zk

2 + Q vk zk
2 + Dvk

2 + ∑k = 0
Nu − 1

R μk, yk uk
2 + R μk, yk uk

2 . (4)

The objective of the design is to achieve enhanced control performance in terms of average 

blood glucose level and percent time in safe range [70, 180] mg/dL, without increasing risk 

of hypoglycemia. Note that R μk, yk  and R μk, yk  are calculated from the predicted glucose 

yk and velocity μk using the prediction model in the zone MPC.

III. Glucose and Velocity Dependent MPC Parameter Adaption

In this section, the proposed control penalty parameter adaptation approach is presented. We 

first present the detailed design and parameterization of R μk, yk  and R μk, yk , and then 

provide discussions on the solution of the corresponding MPC optimization problem.

Shi et al. Page 4

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2020 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A. Design of R μk, yk

Before continuing, we introduce a basic function ϒ(y, θ) that is utilized to build R μk, yk . 

Specifically, ϒ(y, θ) is designed by connecting two exponential functions with saturation:

ϒ(y, θ) ≔
min δ, exp a2(η − y + 𝓁) + b1 − exp a2𝓁 , if y ≤ η,

min δ, exp a1(y − η)α + b1 , otherwise,
(5)

where θ ≔ [δ, a1, a2, b1, α, η,ℓ] is a septuple that parameterizes this “bowl-shaped” function. 

In particular, δ and b1 determine the maximum (saturation) and minimum values of the 

curve, respectively, a1 and α control the “steepness” of the “right-hand wing” (namely, y > 
η) exponential function, a2 decides the “steepness” of the “left-hand wing” (y ≤ η) 

exponential function, and η determines the connection point of the two exponential 

functions. An illustration of this function is provided in Fig. 1.

From (4), R μk, yk  penalizes insulin infusion above the basal rate and is usually in effect 

when yk ≥ 80; because insulin delivery above basal rate is also the direct cause of low 

glucose values, R μk, yk  determines both glucose regulation performance and hypoglycemia 

risk and therefore is the major focus of parameter adaptation. To separately consider the 

scenarios of ascending and descending glucose sequences, we parameterize R μk, yk

according to the sign of predicted glucose velocity μk:

R μk, yk ≔
R+ μk, yk, Θ+ if μk ≥ 0,

R− μk, yk, Θ− if μk < 0,
(6)

where Θ+ and Θ− are two vector-valued parameters that determine the relationship of R+ and 

R− with μk and yk, respectively. In this work, R+ μk, yk, Θ+  and R− μk, yk, Θ−  are both 

designed based on the basic function ϒ(·, ·), but are parameterized with different parameters 

Θ+ and Θ·− due to their different roles in glucose regulation.

1) Designing R+ μk, yk, Θ+ : Specifically, we consider the following principles for the 

design of R+ μk, yk, Θ+ , which is related to increasing glucose predictions:

A1) given the same (non-negative) glucose velocity prediction μk, the aggressiveness 

of the controller (in terms of increasing insulin infusion above basal rate) should 

gradually decrease with the increase of yk when yk is above the normal range to avoid 

overdosing insulin (because a suitable amount of insulin may have been delivered 

during the period when the glucose is rising), and decrease with the decrease of yk 

when it is below its normal value;
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A2) given the same glucose state prediction yk, the controller’s activeness in terms of 

increasing insulin infusion should decrease with the decrease of |μk|, namely, the 

absolute value of glucose velocity.

These principles reflect the clinical safety requirements in blood glucose regulation, while 

still providing an opportunity to enhance control performance by exploiting glucose state 

and velocity dependent controller adaptation. To implement principle A1, we propose upper 

and lower bounds ℜ+ yk, θ+  and ℜ+ yk, θ+  for R+ μk, yk, Θ+  as

ℜ+ yk, θH
+ ≔ ϒ yk, θH

+ (7)

ℜ+ yk, θL
+ ≔ ϒ yk, θL

+ (8)

by considering the two limiting cases μk = 0 and μk → ∞, respectively, where 

θH
+ ≔ δH

+ , a1H
+ , a2H

+ , b1H
+ , αH

+ , ηH
+ , 𝓁H

+  and θL
+ ≔ δL

+, a1L
+ , a2L

+ , b1L
+ , αL

+, ηL
+, 𝓁L

+  are the parameter 

vectors. To address principle A2, we introduce an exponential decay function to allow the 

value of R+ μk, yk, Θ+  to flow monotonically between the upper and lower bounds for μk ∈ 

[0,∞):

R+ μk, yk, Θ+ ≔ ℜ+ yk, θL
+ + exp −τ+μk × ℜ+ yk, θH

+ − ℜ+ yk, θL
+ , (9)

where τ+ is a parameter that determines the decay rate and

Θ+ ≔ θL
+, θH

+ , τ+ . (10)

2) Designing R− μk, yk, Θ− : Following similar ideas, we consider the principles below to 

design R− μk, yk, Θ− :

B1) given a negative glucose velocity prediction μk < 0, the controller should 

decrease insulin infusion to avoid hypoglycemia, and should be even more cautious 

when the corresponding glucose prediction yk is either low or extremely high;

B2) given the same glucose prediction yk, the aggressiveness of the controller should 

decrease with the increase of the absolute value of the glucose velocity |μk|.

To implement principle B1, we introduce upper and lower bounds ℜ− yk, Θ−  and ℜ− yk, Θ−

for R− μk, yk, Θ− , which are defined as
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ℜ− yk, θH
− ≔ ϒ yk, θH

− (11)

ℜ− yk, θL
− ≔ ϒ yk, θL

− (12)

by considering the two limiting cases μk → −∞ and μk = 0, respectively, where 

θH
− ≔ δH

− , a1H
− , a2H

− , b1H
− , αH

− , ηH
− , 𝓁H

−  and θL
− ≔ δL

−, a1L
− , a2L

− , b1L
− , αL

−, ηL
−, 𝓁L

−  are parameter 

vectors. To address principle B2, we similarly introduce an exponential decay function to 

allow the value of R− μk, yk, Θ+  to flow monotonically between the upper and lower bounds 

for μk ∈ (−∞, 0):

R− μk, yk, Θ− ≔ ℜ− yk, θH
− − exp τ−μk × ℜ− yk, θH

− − ℜ− yk, θL
− , (13)

where τ− determines the decay rate and

Θ− ≔ θL
−, θH

− , τ− . (14)

3) Parameter design: A two-step procedure is performed to determine the parameters 

in Θ+ and Θ− for improved glucose regulation performance. In the first step, the parameters 

are iteratively tuned based on their roles using the 10-patient cohort of the UVA/Padova 

simulator [29] with the goal of achieving minimum average glucose values without 

increasing the risk of hypoglycemia, following a 24-hour in silico protocol with 3 

unannounced meals of [50, 75, 75] g carbohydrate (CHO) at 08:00, 12:00 and 19:00, 

respectively. This step yields an optimal parameter pair Θ*
+, Θ*

− , the approximate optimality 

of which is also verified through Genetic Algorithm and Pattern Search Algorithm by 

solving a corresponding constrained optimization problem. As the zone MPC [7] achieved 

satisfactory performance for announced meals, the parameters design was done using 

unannounced meals and evaluated on both announced and unannounced cases to ensure safe 

and effective design.

In the second step, the robustness of the controller is evaluated by considering scenarios of 

different measurement noises, basal rate mismatches, simulated exercise using undetected 

insulin delivery, and over/underestimated meal boluses. The effect of different meal sizes is 

also considered by testing a scenario of fasting (no meals), a snack scenario with [10, 30, 20] 

g CHO and a large meal scenario with [50, 100, 80] g CHO with/without meal 

announcements. The parameters (Θ+, Θ−) are then fine tuned on the basis of Θ*
+, Θ*

−  to 

ensure increased risk of hypoglycemia is caused by the obtained (Θ+, Θ−) compared with the 

original zone MPC and minimal performance degradation in terms of average glucose level 
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is incurred compared with that of the pair Θ*
+, Θ*

−  The value of the obtained parameters are 

provided in TABLE I, and an illustration of the relationship of R+ μk, yk, Θ+  and 

R− μk, yk, Θ−  with glucose state yk and glucose velocity μk is provided in Fig. 2. 

Considering the computation burden in this off-line parameter optimization procedure, the 

10-patient cohort is used here as a “training dataset”. To ensure the performance of the 

designed parameters, the 100-patient cohort of the simulator is used as a “test dataset” to 

evaluate the performance of the design in Section IV.

B. Design of R μk, yk

R μk, yk  affects insulin infusion below the basal rate, which critically determines controller 

actions when the glucose concentration drifts toward or falls into the hypoglycemia region 

(yk < 70 mg/dL). The proposed approach to designing R μk, yk  in Section III-A equally 

applies to R μk, yk . To maintain minimal complexity of the controller, however, we resort to 

a simple and effective design here considering the different role of R μk, yk . As mentioned in 

Section II, R in (2) is usually set to a small value (R = 100) to ensure that proper pump 

suspensions are performed to avoid hypoglycemia events. To enhance this safety concern, it 

suffices to ignore the dependency of R μk, yk  on μk and consider the following simple yk-

dependent multi-zone parameter adaptation formula:

R yk ≔

100, if yk > 140,
10, if yk ∈ [120, 140],
1, if yk < 120,

(15)

where a short-hand notation R yk  is used instead of R μk, yk . The implication of this design 

is that when the glucose prediction yk is conspicuously low, an active pump suspension 

strategy will be enforced, regardless of the glucose velocity μk.

IV. In Silico Performance Analysis

The proposed controller adaptation method is evaluated on the 100-adult cohort of the FDA 

accepted UVA/Padova T1DM simulator [29]. Three protocols (namely, Protocols A-C 

below) are designed to evaluate the performance of glucose regulation under various 

scenarios (see Fig. 3):

1. Protocol A is a 57-hour 6-meal protocol starting from 7:00 on Day 1. On Day 1 

and Day 2, breakfast (50 g CHO), lunch (75 g CHO) and dinner (75 g CHO) are 

consumed at 8:00, 13:00 and 19:00, respectively. All the meals are announced 

but the meal boluses are calculated according to 130% and 70% of the actual 

meal sizes on Day 1 and Day 2, respectively, to evaluate the robustness of the 

controller with respect to over- and under-bolused meals. No meal is given on 
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Day 3, but a 2-unit unannounced insulin bolus is applied at 8:00 AM to simulate 

the effect of exercise.

2. Protocol B is composed of 72 hours and 9-meals starting from 7:00 on Day 1. On 

Days 1–3, breakfast (50 g CHO), lunch (75 g CHO) and dinner (75 g CHO) are 

consumed at 08:00, 13:00 and 19:00, respectively. On Days 1–2, the meals are 

announced and 100% bolused, while meals are unannounced on Day 3. On Days 

2–3, the basal rates of all subjects are increased by 30% of their normal values to 

evaluate controller’s behavior under overestimated basal rates for announced and 

unannounced meals.

3. Protocol C is also composed of 72 hours and 9-meals starting from 7:00 on Day 

1. On Days 1–3, breakfast (50 g CHO), lunch (75 g CHO) and dinner (75 g 

CHO) are still consumed at 8:00, 13:00 and 19:00, respectively. Meals are 

unannounced on Day 1 and Day 3, but are 100% bolused on Day 2. On Days 2–

3, the basal rates of all subjects are decreased by 30% of their normal values to 

evaluate controller’s behavior under underestimated basal rates given announced 

and unannounced meals.

Day 1 of Protocols B and C is used to evaluate the nominal scenarios of fully announced and 

unannounced meals, and Days 2–3 in these two protocols simulate the scenarios of over- and 

under-estimated meal boluses; Days 1–2 in Protocol A evaluate the effect of meal bolus 

mismatches, while Day 3 studies the effect of exercise. The proposed adaptive zone MPC 

with parameter setting in TABLE I is evaluated using these protocols, and the zone MPC 

with velocity-weighting and velocity-penalty [7] is used for the “control-group” 

comparisons, the results of which will be denoted as “control” in the tables and plots. The 

three protocols are simulated 10 times using all 100 virtual subjects and additive CGM 

noises with random seeds 1 through 10, which result in 1000 simulations for each protocol 

and each controller. The obtained results are summarized in Figs. 4–6, where the mean 

curves together with the 5%, 25%, 75% and 95% quartile curves are presented; a 

comparison of the statistics is provided in Tables II–IV, where the data for day & night and 

night time (24:00–06:00) are reported separately. The performance metrics are selected 

according to [31], [32], where details of the definitions can be found.

A. Announced meals

The scenario of fully announced meals is considered on Day 1 of Protocol B for the original 

zone MPC and the proposed adaptive zone MPC (see Fig. 5 and TABLE III). Satisfactory 

performance for hypoglycemia prevention measured by percent time < 70 mg/dL and 

percent time < 54 mg/dL (severe hypoglycemia [32]) are observed for both controllers; in 

particular, a comparison of the values of these two performance metrics indicates that the 

proposed parameter adaptation approach does not introduce increased risk for hypoglycemia 

(percent time < 70 mg/dL, 0.0% vs. 0.0%, p < 0.001). As was indicated in [7], the glucose 

response is dominated by meal boluses for fully bolused meals and the effect of closed-loop 

control in terms of improvements in glucose regulation is concealed, given the fact that the 

original zone MPC is able to achieve good control performance for announced meals [6]. 

Consequently, the proposed adaptive approach only leads to a small performance 

improvement in terms of mean glucose (135.9 mg/dL vs. 136.5 mg/dL; p < 0.001) with very 
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close percent time in the euglycemic range [70, 180] mg/dL (90.6% vs. 90.5%; p < 0.001). 

This discussion is consistent with the quartile curves in Fig. 5. Finally, we note that the 

controllers result in very close and satisfactory glycemic control performance for night time 

(24:00 – 06:00 h).

B. Unannouced meals

Performance comparison for the scenario of unannounced meals is considered on Day 1 of 

Protocol C (see Fig. 6 and TABLE IV). In this scenario, the proposed adaptation approach is 

observed to achieve improved glucose regulation performance compared with the original 

zone MPC in terms of percent time in the safe range (70.5% vs. 66.3%; p < 0.001), percent 

time > 250 mg/dL (1.9% vs. 3.6%; p < 0.001), mean glucose (153.8 mg/dL vs. 159.0 mg/dL; 

p < 0.001). The performance improvement is achieved without increasing the risk of 

hyperglycemia, measured by percent time < 70 mg/dL (0.0% vs. 0.0%, p = 0.397) and 

percent time < 54 mg/dL (0.0% vs. 0.0%, p = 0.064). The underlying reason, as observed 

from Fig. 5, is that the proposed adaptation approach encourages reasonably more active 

insulin infusion when the glucose concentration is rapidly increasing and is able to safely 

turn off insulin infusion when the glucose stops to increase or decreases, due to the dynamic 

glucoseand velocity-dependent choice of R and R. Both controllers achieve satisfactory 

glycemic control performance for night time (24:00 – 06:00 h), as is also observed in the 

mean BG at 07:00 h (121.0 mg/dL vs. 122.0 mg/dL; p < 0.001). Combined with the 

observations in the previous subsection, the proposed method is able to achieve improved 

glucose control for unannounced meals while maintaining safety and performance for 

announced meals.

C. Moderate meal-bolus mismatch

Days 1–2 in Protocol A are utilized to evaluate the case that subjects provide modest over or 

under-estimates of meal sizes, which is less extreme but more realistic for meal 

announcements. The data are reported in Fig. 4 and TABLE II (Days 1–2). When meal 

boluses with sizes larger than required are provided, we observe in Fig. 4 (Day 1) that both 

controllers are able to maintain their outputs around basal rates and perform pump 

suspension if low glucose predictions occur (e.g., around 17:00 and 23:00 on Day 1 in Fig. 

4). On the other hand, the proposed adaptation method compensates conservative meal 

boluses more actively (see Fig. 4 (Day 2)), and thus obtains slightly improved glucose 

regulation performance in terms of mean glucose (141.8 mg/dL vs. 143.6 mg/dL; p < 0.001) 

and percent time in the safe range (83.1% vs. 81.7%; p < 0.001). The improvements are 

small because of the small difference (70%) in the underestimated meal bolus from the exact 

bolus (100%). Clinically significant differences in hypoglycemia risk are not observed.

D. Simulated exercise response

Day 3 in Protocol A is utilized to evaluate the behavior of the controller under an 

unannounced insulin bolus (2 units), which emulates the effect of exercises that increase 

insulin sensitivity. As the subjects are fasting when the announced bolus is infused, 

hypoglycemia is inevitable in this scenario; but we observe that both controllers are vigilant 

in suspending insulin infusion when the risks of hypoglycemia are discerned from the 
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glucose predictions (see the steep decrease in insulin delivery before the glucose readings 

drop below 70 mg/dL around 8:00–9:00 on Day 3 in Fig. 4), which indicates that the 

proposed adaptation approach is able to maintain appropriate controller behavior under 

unannounced exercise events and severe hypoglycemia episodes. This point can also be 

observed in the glucose and insulin example of an in silico subject on Day 3 obtained using 

the proposed adaptation method (see Fig. 4), where the controller is able to turn off insulin 

when the glucose predictions become low to ensure safety. Note that the proposed method 

yields slightly increased percent time < 70 mg/dL (5.2%, vs. 4.1%, p < 0.001); however, the 

increase is relatively small and expected with increased responsiveness of the controller.

E. Basal rate mismatch

Days 2–3 in Protocols B and C are utilized to analyze the sensitivity of the controller with 

respect to inaccurately estimated basal rates. Concretely, the basal rates are intentionally 

increased by 30% on Day 2–3 of Protocol B to simulate the effect of overestimated basal 

rates with announced and unannounced meals, which invariably increase the risk of 

hypoglycemia. From Table III and Fig. 5 (Days 2–3), we observe that the proposed method 

does not increase the risk of hypoglycemia compared with the original zone MPC. The 

snapshots of an in silico subject in Fig. 5 further confirm that the zone MPC behaves 

properly with the proposed parameter adaptation approach.

On Days 2–3 of Protocol C, the basal rates are reduced by 30% on Day 2–3 of Protocol B to 

simulate the effect of overestimated basal rates with announced and unannounced meals, 

which leads to lifted glucose profiles due to decreased “open-loop” insulin delivery. From 

Table IV and Fig. 6 (Days 2–3), we observe that the proposed approach compensates for the 

lack of basal insulin in a more active fashion, which leads to increased percentage time in 

the euglycemic range [70, 180] mg/dL (85.8% vs. 84.7%; p < 0.001) and mean glucose 

(146.1 mg/dL vs. 148.9 mg/dL; p < 0.001) for announced meals, and significant 

performance improvements in terms of percentage time in the euglycemic range (64.8% vs. 

56.1%; p < 0.001) and mean glucose (166.4 mg/dL vs. 180.6 mg/dL; p < 0.001) for 

unannounced meals. This indicates the proposed approach is less sensitive to underestimated 

basal rates compared with the original zone MPC.

F. Comparison with existing results

We further compare the results obtained by the proposed method with existing in silico and 

experimental results in the literature, obtained using previous zone MPC controller schemes 

[8], [12], [24]. The results are summarized in Table V. For fully announced meals (100% 

meal bolus), the result obtained is close to that of a zone MPC with trust index proposed in 

[24], although the results in [24] were obtained using the 10-subject cohort of the T1DM 

simulator with a different size of dinner (100 g vs. 75 g). From Table V, we observe that 

patients usually have higher average glucose values and lower percentage time in range [70, 

180] mg/dL with higher frequency of hypoglycemia in clinical studies, which justifies the 

need to reduce hyperglycemia while preventing the occurrence of hypoglycemia. By 

adjusting the control penalties adaptively according to the predicted glucose and rate of 

change, the proposed method provides one feasible and robust solution, as indicated by the 

in silico results in this section.

Shi et al. Page 11

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2020 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



G. Control penalty adaptation

Finally, we note that the performance improvement of the proposed method is achieved 

through the adaptation of control penalty parameters. To illustrate this point, the relationship 

between R μk
i , yk

i  and yk
i  for an in silico subject on Day 1 of Protocol C (which correspond to 

288 controller update instants) is provided in Fig. 7. The superscript i here is used to 

represent the dependence of the variables on time. Compared with the constant choice of R
in [7], we observe that the proposed parameter adaptation law turns off insulin infusion by 

choosing relatively larger values of R( ⋅ , ⋅ ) when the glucose predictions are relatively low, 

or extremely high, or decreasing, but allows active insulin infusion by choosing comparably 

small values only when the glucose predictions are steeply increasing above the nominal 

glucose range. This further explains the mechanism of the proposed adaptive approach to 

alleviate hyperglycemia without increasing hypoglycemia risks.

V. Advisory-mode comparisons using clinical data

In this section, the historical clinical data obtained using the zone-MPC developed in [7] (the 

corresponding clinical results were published in [12]) are re-run using the proposed method 

to obtain the corresponding insulin command trajectory, assuming the controller received 

exactly the same input data. This is the so-called advisory-mode comparison [33] and allows 

dose-to-dose evaluation of the safety and effectiveness of the proposed method by feeding 

the identical glucose data obtained in the clinical trial to the controller.

The results are provided in Fig. 8. Compared with the approach in [7], the proposed 

controller is more active when the glucose level is escaping the safe euglycemic range from 

above, but is able to resemble almost-identical safe insulin commands when the glucose 

level is low or decreasing. As an example, we observe that driven by the rapidly increasing 

CGM values, the proposed controller would suggest (approximately) additional 1.2 units of 

insulin between 20:00 and 21:00, which would decrease the glucose levels after the 95 g 

meal to a safe but lower range, and thus further help reduce the hyperglycemia that happened 

between 01:00 and 04:00. This explains how the proposed method can obtain improved 

glucose regulation with lower average glucose levels in real-life scenarios, which fulfills our 

motivation of alleviating the high-average glucose effect introduced by the zone MPC [7] 

used in [12] (see Section I). Note that both the glucose response and the insulin command 

trajectory would be different had the proposed control law actually been employed.

VI. Conclusions

In this work, a control penalty adaptation approach is developed for zone MPC of AP based 

on the predicted glucose and its rate of change. The obtained adaptive controller is able to 

actively perform insulin infusion when blood glucose is rapidly increasing above the 

nominal value, but cautiously reduces or suspends insulin infusion when glucose rate of 

change is positively small or negative, and when low glucose values are predicted. The 

effectiveness and robustness of the proposed method is evaluated on the 100-adult cohort of 

the FDA-approved UVA/Padova simulator through comparisons with the original zone MPC 

developed in [7]. Although the approach is developed for the zone MPC, it is rich enough to 
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be generalized to other MPC formulations for AP (e.g., the enhanced set-point MPC with 

asymmetric exponential and quadratic costs [34]).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1: 
An illustration of the basic function defined in (5), composed of two exponential functions 

with saturation.
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Fig. 2: 

Relationship of R+ μk, yk, Θ+  and R− μk, yk, Θ−  with μk and yk.
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Fig. 3: 
List of protocols used for performance evaluation of the proposed controller. The blue and 

purple triangles denote meals of 50 g and 75 g CHO, respectively. The orange triangle 

denotes unannounced insulin bolus of 2 units. Basal rate is provided in terms of percentages 

of the default value. Meal boluses are described in terms of the percentages of the actual 

meal sizes.
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Fig. 4: 
Comparison of the proposed method (red curves and light red areas) with the zone-MPC 

developed in [7] (blue curves and light blue areas) for Protocol A; see Section IV and Fig. 3. 

Blue and purple triangles denote meals of 50 g and 75 g CHO, respectively, and the orange 

triangle denotes a 2-unit unannounced insulin bolus. Snapshots of the glucose and insulin 

profile of a particular in silico subject on Day 3 obtained using the proposed adaptation 

method are also provided, where in the glucose panel the red curve denotes the CGM 

readings and the green curves denote the glucose predictions at each sampling instant, in the 

insulin panel the blue curve denotes insulin delivered at each time instant and the green line 

denotes basal rate.
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Fig. 5: 
Comparison of the proposed method (red curves and light red areas) with the original zone-

MPC developed in [7] (blue curves and light blue areas) for Protocol B; see Section IV and 

Fig. 3. Blue and purple triangles denote meals of 50 g and 75 g CHO, respectively. 

Snapshots of the glucose and insulin profile of a particular in silico subject obtained using 

the proposed adaptation method are also provided; keys are the same as the snapshots in Fig. 

4.
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Fig. 6: 
Comparison of the proposed method (red curves and light red areas) with the zone-MPC 

developed in [7] (blue curves and light blue areas) for Protocol C; see Section IV and Fig. 3. 

Blue and purple triangles denote meals of 50 g and 75 g CHO, respectively.
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Fig. 7: 
Illustration of control penalty adaptation. In the upper panel, the red curve shows the trend 

of first element y1
i  in the glucose prediction sequence y1: N p

i  with respect to discrete time i, 

while the green curves denote the sequences of y1: N p
i . Note that the red and green curves 

denotes glucose predictions, which are different from actual CGM measurements. In the 

lower panel, the dark blue curve shows the trend of R μ1
i , y1

i  with respect to discrete time i, 

the light blue curves denote the sequences of R μ1: N p
i , y1: N p

i , and the black line indicates the 

constant R adopted in [7]. The superscript i used here indicates the dependence of a variable 

on time.
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Fig. 8: 
Advisory-mode comparison of insulin command sequences of the proposed method (black 

curve in the second panel) with the zone-MPC developed in [7] (red bars in the second 

panel) based on clinical data from [12] (Clinical trial reg. no. NCT02705053, 

clinicaltrials.gov). Meals are denoted by green triangles with sizes below them. The 

difference of insulin delivery between the proposed method and that introduced in [7] is 

plotted in the third panel.
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TABLE I:

Parameters for Θ+ and Θ−

Parameters for Θ+

δH
+

6,500

a1H
+

0.14

a2H
+

0.32

b1H
+

5,500

αH
+

0.75

ηH
+

130

τ+

0.20

δL
+

15,500

a1L
+

0.11

a2L
+

0.20

b1L
+

2,000

αL
+

0.75

ηL
+

0.20

Parameters for Θ−

δH
−

1,000,000

a1H
−

0.03

a2H
−

0.02

b1H
−

5,000

αH
−

1

ηH
−

180

τ−

0.20

δL
−

1,000,000

a1L
−

0.03

a2L
−

0.02

b1L
−

4,910

αL
−

1

ηL
−

180
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