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Abstract

There is growing interest in conducting cluster randomized trials (CRTs). For simplicity in sample 

size calculation, the cluster sizes are assumed to be identical across all clusters. However, equal 

cluster sizes are not guaranteed in practice. Therefore, the relative efficiency (RE) of unequal 

versus equal cluster sizes has been investigated when testing the treatment effect. One of the most 

important approaches to analyze a set of correlated data is the generalized estimating equation 

(GEE) proposed by Liang and Zeger, in which the “working correlation structure” is introduced 

and the association pattern depends on a vector of association parameters denoted by ρ. In this 

paper, we utilize GEE models to test the treatment effect in a two-group comparison for 

continuous, binary, or count data in CRTs. The variances of the estimator of the treatment effect 

are derived for the different types of outcome. RE is defined as the ratio of variance of the 

estimator of the treatment effect for equal to unequal cluster sizes. We discuss a commonly used 

structure in CRTs- exchangeable, and derive the simpler formula of RE with continuous, binary, 

and count outcomes. Finally, REs are investigated for several scenarios of cluster size distributions 

through simulation studies. We propose an adjusted sample size due to efficiency loss. 

Additionally, we also propose an optimal sample size estimation based on the GEE models under a 

fixed budget for known and unknown association parameter (ρ) in the working correlation 

structure within the cluster.
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1 Introduction

In recent years, there has been growing interest in conducting cluster randomized trials 

(CRTs) (Campbell et al., 2000; Gulliford et al., 2014; Gravenstein et al., 2016; Kalfon et al., 
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2016; Mehring et al., 2016; Nagayama et al., 2016; Yamagata et al., 2016). CRTs are 

performed when randomization at the individual-level is practically infeasible or may lead to 

severe estimation bias of treatment effect. It is reasonable to expect correlation among 

individuals in the same cluster, since they may share similar characteristics or be exposed to 

common factors. The degree of such similarity is commonly quantified by the intracluster 

correlation coefficient (ICC). Even if the ICCs are pretty small for most CRTs (Murray et 

al., 2004; Turner et al., 2004), they must be considered in study design and data analysis to 

avoid underestimation of variance of the treatment effect and inflated type I error rates 

(Murray, Varnell, et al., 2004).

Methods of analyzing correlated data have been extensively developed. One of the most 

important approaches is the generalized estimating equation (GEE) proposed by Liang and 

Zeger (Liang et al., 1986), which fits a marginal model in the context of longitudinal studies. 

In order to describe the pattern of measures within the individual, the idea of “working 

correlation structure” is introduced and the pattern depends on a vector of association 

parameters denoted by ρ. The advantage of this approach is the consistent estimates 

provided that the marginal model is correctly specified, even if the working correlation 

matrix is incorrectly assumed. Therefore, GEEs have been commonly applied (Sanda et al., 

2008; Lin et al., 2015; Park et al., 2015; Toriola et al., 2015; Jeffe et al., 2016).

Sample size calculation or power estimation is an important topic in study design for 

investigators. The equations of sample size for CRTs have been published as a function of 

ICC or the coefficient of variation (CV) of cluster sizes (Donner et al., 1981; Liu et al., 

1997; Shih, 1997; Rosner et al., 2003; Eldridge et al., 2006; Austin, 2007; Candel et al., 

2008; Van Breukelen et al., 2008; Teerenstra et al., 2010; Rosner et al., 2011; Van Breukelen 

et al., 2012; Amatya et al., 2013). Shih (Shih, 1997) provides a sample size formula based 

on the GEE methods for CRTs designed to test the treatment effect. The general formula for 

a two-group comparison is given. Specifically, the formulas for continuous and binary 

outcomes are demonstrated with the assumptions of equal cluster sizes n and the 

exchangeable working correlation R(ρ), i.e., 1 for diagonal entries and ρ otherwise. For 

count data, Bhaumik and Gibbons (Amatya, Bhaumik, et al., 2013) consider population-

average estimators using GEE models for cluster-level randomized design. They assume half 

of the clusters are randomized to the treatment and the other half are randomized to the 

control. The asymptotic variance of the treatment effect estimator is derived and the required 

number of clusters is calculated with the same assumptions: equal cluster sizes n and the 

exchangeable working correlation R(ρ).

In the design of CRTs, the required sample sizes include the number of clusters m and 

cluster sizes ni, i = 1, ⋯, m. For simplicity, the cluster sizes are assumed to be identical 

across clusters, i.e., ni = n for all i, resulting in total sample size of N = nm. In general, the 

cluster size n is a pre-determined number, therefore the sample size calculation is for the 

number of clusters only. However, equal cluster sizes are not guaranteed in practice. The 

relative efficiency (RE) of unequal versus equal cluster sizes has been investigated when 

testing the treatment effect. For continuous outcomes in cluster randomized studies, 

Manatunga et al (Manatunga et al., 2001) derive sample size estimation while accounting for 

the variability due to cluster size and a lower bound for RE is given. For both CRTs and 
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person randomization within centers, Breukelen et al (Van Breukelen et al., 2007) address 

the RE of unequal versus equal cluster sizes with continuous outcomes. They investigate RE 

based on maximum likelihood parameter estimation for a range of cluster size distributions. 

Additionally, they present an approximate formula for computing the RE as a function of the 

mean and variance of cluster size and the intraclass correlation (ρ). They conclude that the 

loss of efficiency due to variation of cluster sizes rarely exceeds 10 percent and can be 

compensated by sampling 11 percent more clusters. Candel and Breukelen (Candel et al., 

2010) give the adjusted sample size formula for varying cluster sizes with a binary outcome 

in CRTs. They derive the asymptotic RE of unequal versus equal cluster sizes from first-

order marginal quasi-likelihood (MQL) estimation with mixed effect logistic regression 

model. A simpler formula of sample size calculation is presented to estimate the efficiency 

loss due to variation in cluster sizes. They find that 14% more clusters are needed to cover 

the efficiency loss in many cases.

In this paper, we will utilize GEE models to test the treatment effect in a two-group 

comparison for continuous, binary, or count data in CRTs. The variances of the estimator of 

the treatment effect will be derived for different types of outcome. Obviously, they are 

dependent on which working correlation structure is chosen. As shown (Shih, 1997; 

Amatya, Bhaumik, et al., 2013), researchers often consider the exchangeable structure since 

the independent working correlation structure is a special case of exchangeable and first 

order auto-regressive (AR(1)) fits time-structured data more appropriately. Here, we will 

also discuss this commonly used structure. RE is defined as the ratio of variance of the 

estimator of the treatment effect for equal to unequal cluster sizes. We will derive a simpler 

formula of RE with continuous, binary, and count outcomes. Finally, REs are investigated 

for several scenarios of cluster sizes distribution through simulation studies. We will propose 

the adjusted sample size due to the efficiency loss. Additionally, cost is an important factor 

in study design of CRTs since it is associated with recruiting an additional cluster instead of 

an additional subject in an individual-level randomized trial. Under a fixed budget we also 

have the same proposal about the optimal sample size, which maximizes the power, based on 

the GEE models for known and unknown association parameter (ρ) in the working 

correlation structure within the cluster.

The outline of this paper is as follows. In section 2, we briefly summarize the GEE methods 

proposed by Liang and Zeger (Liang and Zeger, 1986) and derive the variance of the 

estimator of the treatment for three kinds of outcomes (continuous, binary, and count) in a 

two-group comparison. Section 3 introduces the REs of unequal versus equal cluster sizes 

for the treatment effect. The formula for RE is derived for the exchangeable working 

correlation structure. Section 4 presents the possible patterns of cluster size distribution and 

the results through simulation studies that investigate the REs. In section 5, we show the 

sample size formulas under two different situations- no cost constrains and given a fixed 

budget. The practical uses are discussed when planning a CRT, followed by discussion of the 

limitations and directions for future research.
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2. Generalized estimating equation models

Let yi = (yi1,   yi2, ⋯,   yini
)′ be a vector of responses from the ith cluster, i = 1, ⋯, m. The 

responses are assumed to be independent across clusters but correlated within each cluster. 

The marginal model is

g μi j = Ci j′ ∅ ,     i = 1,   ⋯,   m;   j = 1, ⋯, ni, (1)

where μij = E(yij) and g(∙) is a linking function. Cij is a vector of covariates, and ∅ is an 

unknown l × 1 vector of regression coefficients. This model specifies a relationship between 

μij and covariates Cij. The conditional variance of yij given Cij is defined as var (yij|Cij) = 

γ(μij)θ, where γ is a known variance function of μij nd θ is a scale parameter. The mean of 

yi is denoted by μi = E(yi) and the variance-covariance matrix for yi is denoted by 

Vi = θAi
1/2Ri ρ Ai

1/2, where Ai = diag γ μi1 , ⋯,   γ μini
 and working correlation structure 

Ri(ρ) describes the pattern of measures within the ith cluster. Ri(ρ) is an ni × ni matrix and 

depends on a vector of association parameters denoted by ρ. Both γ and θ are dependent on 

the distribution of responses. For instance, if yij is continuous, γ(μij) = 1 and θ is the random 

error variance; if yij is binary, γ(μij) = μij(1 − μij) and θ=1; If yij is count, γ(μij) = μij and θ = 

1.

The estimate of ∅ is obtained by solving the following estimating equation

U ∅ = ∑
i = 1

m
Di′Vi

−1 yi − μi = 0, (2)

Where Di = ∂μi/∂∅′. Let ∅ be the solution of Eq. (2). Liang and Zeger (Liang and Zeger, 

1986) show that m( ∅ − ∅) is asymptotically multivariate normal with covariance matrix

VR = lim
m ∞

m Σ1
−1Σ0Σ1

−1 , (3)

Where Σ1 = ∑i = 1
m Di′Vi

−1Di and Σ0 = ∑i = 1
m Di′Vi

−1cov(yi |Ci)Vi
−1Di. As noted, GEE gives 

asymptotically consistent estimate ∅ even when the working correlation matrix is incorrectly 

assumed (Liang and Zeger, 1986).

For the purpose of sample size calculation at the design stage, we need to assume values for 

the variance and covariance of yi. Therefore, Σ0 = Σ1 and VR = limm ∞mΣ1
−1 when cov(yi|

Ci) is assumed to be same as Vi. Suppose we are interested in testing the treatment effect for 

a two-group comparison: the treated vs. control group. For simplicity, let us consider a 

special case with l = 2, where ∅ = (β0, β1)′ and the design matrices Ci. Specifically, the 
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coefficient β0 is the intercept, β1 is the treatment effect, Cit = 1ni
,   1ni

 for ith cluster 

assigned to the treated group, Cit = 1ni
,   0ni

 for ith cluster assigned to the control group, 

and 1n and 0n an n × 1 vector of 1’s and 0’s, respectively. Let Vβ denote the (2, 2)th element 

of VR. Thus, m β1 − β1  has an asymptotically normal distribution N(0, Vβ), equivalently, 

Var β1 = V β/m. The cluster allocations of the treated and control groups are, mt = mπ and 

mc = m(1 – π), respectively. The hypotheses of interest are H0:β1 = 0 versus H1:β1 = β.

2.1. Continuous outcome

This section shows details of using an identity link function on the continuous outcome, that 

is, μi = Ci′ ∅, and Vi = σ2Ri(ρ). With this setting, Di = ∂μi/∂∅′ = Ci. Thus,

Σ1 = 1
σ2 ∑i = 1

m Ci′Ri
−1Ci = 1

σ2 ∑i ∈ trtCit′ Ri
−1Cit + 1

σ2 ∑i ∈ contCit′ Ri
−1Cit

= 1
σ2 ∑i ∈ trt1ni

′ Ri
−11ni

1 1
1 1 + 1

σ2 ∑i ∈ cont1ni
′ Ri

−11ni

1 0
0 0 = 1

σ2
t + c t

t t
,

Where i ∈ trt denotes all the clusters assigned to treated group, and i ∈ cont denotes all the 

clusters assigned to control group, respectively; t = ∑i ∈ trt1ni
′ Ri

−11ni
 and 

c = ∑i ∈ cont1ni
′ Ri

−11ni
. Then

VR = limm ∞mΣ1
−1 = σ2 lim

m ∞
m

1
c − 1

c

− 1
c

1
t + 1

c

, and

Vβ = σ2 lim
m ∞

m 1
t + 1

c

= σ2 lim
m ∞

m ∑i ∈ trt 1ni
′ Ri

−11ni

−1
+ ∑i ∈ cont 1ni

′ Ri
−11ni

−1

= σ2 lim
m ∞

m
π∑i = 1

m 1ni
′ Ri

−11ni

+ m
1 − π ∑i = 1

m 1ni
′ Ri

−11ni

= σ2m

π 1 − π ∑i = 1
m 1ni

′ Ri
−11ni

.

(4)

If we assume equal cluster size ni = n for all i, then
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V β = σ2

π 1 − π 1n′Ri
−11n

. (5)

For the exchangeable working correlation structure, 1ni
′ Ri

−11ni
=

ni
1 + ni − 1 ρ

. Thus,

V β = σ2m

π 1 − π ∑i = 1
m ni

1 + ni − 1 ρ

and

V β = σ2 1 + n − 1 ρ
π 1 − π n , (6)

for unequal and equal cluster sizes, respectively. Please note that Eq. (6) is same as (6) in 

Shih’s paper (Shih, 1997).

2.2. Binary outcome

For a binary outcome, we consider the logit model: μi = pi = exp Ci′ ∅ / 1 + exp Ci′ ∅ . 

Here, pij = p0 = exp(β0)/(1 + exp(β0)), for all the subjects in the control group and j = 1, ⋯, 

ni; and pij = p1 = exp(β0 + β1)/(1 + exp(β0 + β1)), for all the subjects in the treated group and 

j = 1, ⋯, ni. We can show β1 = log(
p1 1 − p0
1 − p1 p0

), which is the logarithm of odds ratio for the 

response. Therefore, the null hypothesis H0:β1 = 0 is equivalent to p0 = p1 and the alternative 

hypothesis is p0 ≠ p1.

Under this scenario, Di = ∂ μi/ ∂ ∅′ = p0 1 − p0 1ni
,   0ni

 for the subjects in the control 

group, denoted by Dic, and Di = p1 1 − p1 1ni
,   1ni

 for the subjects in the treated group, 

denoted by Dit, and Vi = pi(1 − pi)Ri(ρ). Thus,

Σ1 = ∑i = 1
m 1

pi 1 − pi
Di′Ri

−1Di =∑i ∈ trt
1

p1 1 − p1
Dit′ Ri

−1Dit + ∑i ∈ cont
1

p0 1 − p0
Dic′ Ri

−1Dic

= p1 1 − p1 ∑i ∈ trt1ni
′ Ri

−11ni

1 1
1 1 + p0 1 − p0 ∑i ∈ cont1ni

′ Ri
−11ni

1 0
0 0

= t + c t
t t

,

where c = p0(1 − p0)(∑i ∈ cont1ni
′ Ri

−11ni
) and t = p1 1 − p1 ∑i ∈ trt1ni

′ Ri
−11ni

. Then
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VR = lim
m ∞

m

1
c − 1

c

− 1
c

1
t + 1

c

(7)

And

V β = lim
m ∞

m

p1 1 − p1 ∑i ∈ trt 1ni
′ Ri

−11ni

+ m

p0 1 − p0 ∑i ∈ cont 1ni
′ Ri

−11ni

= lim
m ∞

m

p1 1 − p1 π ∑i = 1
m 1ni

′ Ri
−11ni

+ m

p0 1 − p0 1 − π ∑i = 1
m 1ni

′ Ri
−11ni

=   m
∑i = 1

m 1ni
′ Ri

−11ni

1
πp1 1 − p1

+ 1
1 − π p0 1 − p0

.

(8)

Assuming equal cluster size ni = n for all i, we have

V β = 1
1n′Ri

−11n

1
πp1 1 − p1

+ 1
1 − π p0 1 − p0

. (9)

When the working correlation structure is exchangeable, Eq. (8) is equivalent to the one 

substituting Eq. (7) into (5) in Pan’s paper (Pan, 2001) and Eq. (8) derived by Shih (Shih, 

1997). Additionally, Eq. (9) becomes 1 + n − 1 ρ
n

1
πp1 1 − p1

+ 1
1 − π p0 1 − p0

.

2.3. Count data

The log model is used to analyze count data, μi = exp Ci′ ∅ . Di = ∂ μi/ ∂ ∅′ = Ciexp Ci′ ∅

and Vi = Ai
1/2Ri ρ Ai

1/2, where Ai = diag exp Ci1′ ∅ , ⋯,   exp Cini
′ ∅ . Specifically, 

Dic = Cicexp Cic′ ∅ = e
β0 1ni

,   0ni
 for the subjects in the control group, and 

Dit = e
β0 + β1 1ni

,   1ni
 for the subjects in the treated group. Thus,
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Σ1 = ∑i ∈ trt Dit′ Vit
−1Dit + ∑i ∈ cont Dit′ Vit

−1Dit

= e
β0 + β1 ∑

i ∈ trt
1ni
′ Ri

−11ni

1 1
1 1 + e

β0 ∑
i ∈ cont

1ni
′ Ri

−11ni

1 0
0 0

= t + c t
t t

,

where c = e
β0 ∑i ∈ cont1ni

′ Ri
−11ni

 and t = e
β0 + β1 ∑i ∈ trt1ni

′ Ri
−11ni

. Following (7),

V β = lim
m ∞

m

e
β0 + β1 ∑i ∈ trt 1ni

′ Ri
−11ni

+ m

e
β0 ∑i ∈ cont 1ni

′ Ri
−11ni

= lim
m ∞

m

e
β0 + β1π ∑i = 1

m 1ni
′ Ri

−11ni

+ m

e
β0 1 − π ∑i = 1

m 1ni
′ Ri

−11ni

=   m

e
β0 ∑i = 1

m 1ni
′ Ri

−11ni

1
πe

β1
+ 1

1 − π .

(10)

If we assume equal cluster size ni = n for all i, then

V β = 1
e

β01n′Ri
−11n

1
πe

β1
+ 1

1 − π . (11)

With the assumptions of exchangeable working correlation structure, equal cluster size n and 

equal allocation π = 0.5, we have V β = 2 1 + n − 1 ρ

ne
β0

1

e
β1

+ 1 . It is Eq. (19) developed by 

Bhaumik and Gibbons (Amatya, Bhaumik, et al., 2013).

3. Relative efficiency of unequal versus equal cluster sizes

We will use relative variance of the treatment effect to define RE when comparing unequal 

to equal cluster sizes. Let Ωequal denote a design with equal cluster sizes n, and let Ωunequal 

denote a design with unequal cluster sizes ni, i = 1, ⋯, m. Obviously mn = ∑i = 1
m ni. The RE 

of unequal versus equal cluster sizes for the treatment effect, RE β1 , is defined as
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RE β1 =
Var(β1 |Ωequal)

Var(β1 |Ωunequal)
. (12)

From equations (4) and (5) for a continuous outcome, (8) and (9) for a binary outcome, and 

(10) and (11) for count data, we have the same

RE β1 =
∑i = 1

m 1ni
′ Ri

−11ni

m1n′Ri
−11n

  . (13)

REs are surprisingly kept the same for all three types of outcomes. In other words, REs are 

independent of the outcome type provided that GEE models are used.

With the assumption of exchangeable working correlation structure,

1ni
′ Ri

−11ni
=

ni
1 + ni − 1 ρ

,

then Eq. (13) equals

RE β1 = 1 + n − 1 ρ
n

1
m ∑

i = 1

m ni
1 + ni − 1 ρ . (14)

Let τ = (1 – ρ)/ρ, Eq. (14) becomes

RE β1 = n + τ
n

1
m ∑

i = 1

m ni
ni + τ . (15)

It is identical to Eq. (9) developed by Breukelen et al.(Van Breukelen, Candel, et al., 2007). 

For binary outcomes, the same finding is shown in equation (A8) (Candel and Van 

Breukelen, 2010) and section 7 (Van Breukelen et al., 2015). They show that

1. There is a trade-off between mean cluster size n and τ. Multiplying all ni’s and τ 
by a factor >0 does not change the RE β1 .

2. As ρ → 0 or as ρ → 1, the RE β1 1, for any cluster size distribution. For 

0<ρ<1, the RE β1  is smaller than 1 and so the equal cluster size design is 

optimal.
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4. Simulation studies

In order to compute RE β1  in Eq. (14), Breukelen et al (Van Breukelen, Candel, et al., 2007) 

proposed a uniform, positively skewed, negatively skewed, bimodal and unimodal 

distribution of cluster size, respectively. Let Xi be random variable of cluster size ni. Here, 

ni, i = 1, …, m are dependent since they must sum to N = mn. We assume that cluster sizes 

(X1, ⋯, Xm) follow a multinomial distribution with N and probabilities (p1, ⋯, pm), where 

∑i = 1
m pi = 1. Under this distribution, the mean of Xi is Npi, the variance is Npi(1 − pi) and 

covariance of (Xi, Xj) is −Npipj for i ≠ j. Given the number of clusters m and equal cluster 

size n, the total sample size is N = mn = ∑i = 1
m ni under the designs of Ωequal and Ωunequal. 

For convenience of the following discussion, we sort the i-th cluster with the distribution 

probability pi’s, i = 1, ⋯, m, by a non-decreasing order such that p1 ≤ p2 ≤ ⋯ ≤ pm. 

Obviously, the cluster sizes ni’s, i = 1, ⋯, m may be different even if pi’s are equal. 

Therefore, six patterns of (p1, ⋯, pm) are discussed under the design Ωunequal.

1. Constant: p1 = p2 ⋯= pm

2. Monotonically increasing: p1 < p2 < ⋯ < pm;

3. Constant followed by monotonically increasing: p1 = p2⋯ = pk < ⋯ <pm;

4. Monotonically increasing followed by constant:p1 < p2 ⋯ < pk = ⋯ = pm;

5. Constant, monotonically increasing followed by constant: 

p1 = p2⋯ = pk1
< pk1 + 1 < ⋯ < pk2

= ⋯ = pm;

6. Monotonically increasing, constant followed by monotonically increasing: 

p1 < p2⋯ < pk1
= pk1 + 1 = ⋯ = pk2

< ⋯ < pm;

These six patterns are shown in Figure 1, which demonstrates the probabilities pi, i = 1, ⋯, 

100. We sort these 100 probabilities by a non-decreasing order, such that the 1st cluster has 

the minimum of probabilities and the 100th cluster has the maximum of the probabilities. For 

example, pattern 2, the probabilities of 1st cluster and 100th cluster are 0.006 and 0.013, 

respectively; they are 0.004 and 0.0275 for pattern 3. There could be more complicated 

patterns but they should be combinations of the above six patterns. Therefore, RE β1  in Eq. 

(14) will be computed through simulation studies only for these six patterns.

4.1. Designs

As shown in Eq. (14), RE β1  is independent of cluster allocations π and the parameters β0 

and β1. To investigate the RE based on GEE models, the following factors are considered: 

(1) number of clusters m and equal cluster sizes n (or N); (2) the values of p1, ⋯, pm, 

equivalently, the pattern of p1, ⋯, pm; (3) association parameter (ρ) in the exchangeable 

working correlation structure.

Number of clusters m and equal cluster sizes n results in total sample size of N = nm. We 

will consider three scenarios: small, medium, and large CRTs; eg. N = 200, 600, 2000, 
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respectively. Within each scenario we investigate three situations: small, medium, and large 

number of clusters. For example, m = 20 and n = 100; m =50 and n = 40; m =100 and n = 20 

in a large CRT with a total sample size of N = 2000. All six patterns in Figure 1 are used for 

each study design.

Table 1 shows the values of (p1, ⋯, pm) for the simulation design with m = 100 and n = 20. 

During the interval of monotonically increasing within each pattern, we make pi′s as an 

arithmetic sequence for code efficiency. All the values of pi, i = 1, ⋯, m are shown in the 3rd 

column for each pattern. For example, pattern 2, pi = p1 + (i − 1)d, i = 2, ⋯, m. Once p1 is 

given, d will be calculated from p1 and m and the formula is shown in the last column. 

Consequentially, pi, i = 2, ⋯, m will be computed from the formula in the 3rd column. 

Pattern 3 has the probabilities of pi with constant followed by monotonically increasing:p1 = 

⋯ = pk < pk+1 < ⋯ < pm. In this pattern, k and Pk are pre-determined. Here k = 50 and Pk = 

0.2 are used, respectively. Then pi, i = 1, ⋯, k and d will be computed from the formulas in 

the 3rd column and the last column, respectively. Finally, pi, i = k + 1, ⋯, m will be 

calculated from the formula in the 3rd column. The logic for pattern 4 is the same as the one 

for pattern 2. For pattern 5, the pre-determined values are k1, k2, and Pk1
. Then pi, i = 1, ⋯, 

k1 and d will be computed from the formula in the 3rd column and the last column, 

respectively. Finally, pi, i = k1 + 1, ⋯, k2 will be calculated from the formula in the 3rd 

column. Please note pk2
= ⋯ = pm, thus, all the values of pi, i = 1, ⋯, m are obtained. Pattern 

6 is the most complicated case. Four parameters including k1, k2, Pk1
, and Pk2

 must be pre-

determined. Then pi, i = k1, ⋯, k2 and di, i = 1, 2 will be computed from the formula in the 

3rd column and the last column, respectively. Finally, pi, i = 1, ⋯, k1 – 1, k2 + 1, ⋯, m will 

be calculated from the formula in the 3rd column. The required parameters are marked with 

# in table 1. Provided the values of (p1, ⋯, pm) are available for each pattern, we will 

simulate the cluster sizes ni, i = 1, ⋯, m from a multinomial distribution with N and 

probabilities (p1, ⋯, pm).

For all the scenarios, the required parameters for (p1, ⋯, pm) calculation are shown in Table 

2. Even if the ICCs are pretty small for most CRTs (Murray, Varnell, et al., 2004; Turner, 

Prevost, et al., 2004), the association parameter (ρ) ranged from 0 to 0.95 with steps of 0.01 

considered for the illustration purposes. 1000 simulation samples are generated for each 

design. REs are calculated using Eq. (14) for all the samples, and mean, standard deviation, 

minimum and maximum of REs are obtained at each ρ correspondingly. Source code to 

reproduce the results is available as Supporting Information on the journal’s web page 

(http://onlinelibrary.wiley.com/doi/xxx/suppinfo).

4.2. Results

Figure 2 shows the plots of the mean, minimum and maximum of RE as a function of 

association parameter (ρ) based on the simulation data with m = 100 and n = 20 for patterns 

1–6, respectively. The parameters used in this simulation study are shown in Table 1. As can 

be seen, the mean RE starts from 1, reaches the minimum, and then increases to 1 at ρ=1. 

The minimum of mean REs for these six patterns are 0.9871 at ρ=0.05, 0.9734 at ρ=0.05, 

0.8589 at ρ=0.05, 0.9343 at ρ=0.08, 0.8962 at ρ=0.07, and 0.9570 at ρ=0.06, respectively. 
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The standard deviations are so small (<0.008) for all the ρ’s and all six patterns, thus we do 

not include 95% CIs in the plots. When comparing these six patterns, we find that the first 

pattern shows the highest RE. This is expected since the setting of p1 = p2= ⋯ = pm has the 

highest chance of equal cluster sizes. The second pattern has the next highest RE while the 

third pattern shows the lowest one. Pattern 6 has a better RE than patterns 4 and 5. 

Simultaneously, after the minimum is reached, the first pattern is the least steep, while the 

third one is very steep, and pattern 5 is a little steeper than pattern 6. The closer to ρ that the 

minimum of mean REs is reached, the larger range RE has. The same findings are observed 

across all six patterns. The plots of the mean and range of RE based on the simulation data 

with m = 20, n = 100 and m = 50, n = 40 for six patterns are shown in Appendix Figure 1 

and 2, respectively. Among three situations including small, medium, and large number of 

clusters, we notice that the range looks narrower when the cluster size increases at any value 

of ρ for any pattern. For a small cluster size (n = 20), the range of mean RE stays large when 

ρ increases after the minimum of mean REs is reached for patterns 2–6. There are not many 

differences otherwise.

Table 3 presents mean (min, max) of CV, the minimum and median of mean RE and 

corresponding ρ’s among 1000 repeated samples for all three total sample sizes (200, 600, 

and 2000), the three situations of cluster sizes and number of clusters, and all six patterns. 

The first pattern indeed shows the highest RE for any scenario. Below discussions focus on 

the remaining five patterns.

1. Total sample size is small (N=200); the minimums of mean REs are less than 

90% for one-third of cases. When the number of clusters is small (m = 5), the 

minimums of mean RE for pattern 4 and pattern 5 are 0.9868 and 0.7974, 

respectively, the largest and smallest estimates among the five patterns. 

Additionally, the minimums are reached at ρ ∈ [0.02, 0.06]. The remaining two 

situations (m = 20, 40). obtain the largest estimate of minimum of mean RE for 

pattern 3 and the smallest estimate for pattern 5. We also find that the minimum 

is reached at the larger ρ when cluster size decreases. For example, ρ is around 

0.05 for n = 40, around 0.15 for n = 20, and around 0.25 for n = 5, respectively. 

The median of mean REs are at least 93% for m = 5 and n = 40, 93% for m = 20 

and n =10, 88% for m = 40 and n = 5. The corresponding values of ρ are between 

0.48 and 0.49, between 0.49 and 0.53, and between 0.53 and 0.60, respectively.

2. Total sample size is medium (N=600); All the minimums of mean REs are at 

least 84% and more than half are above 90%. When the number of clusters is 

small (m = 6), the minimums of mean RE for pattern 5 and pattern 6 are 0.8450 

and 0.9315, respectively. They are the largest and smallest estimates among 

patterns 2–6. The remaining two situations (m = 30, 60) obtain the smallest 

estimate of minimum of mean RE for pattern 3. We have the same findings about 

the trend of ρ, where the minimum is reached, for different cluster sizes: the 

smaller the cluster size, the larger the ρ. Additionally, all the medians of mean 

REs are at least 95% for m = 6 and n = 100, 96% for m = 30 and n = 20, and 

92% for m = 60 and n = 10, respectively. The corresponding values of ρ are 
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between 0.48 and 0.49, between 0.48 and 0.50, and between 0.49 and 0.52, 

respectively.

3. Total sample size is large (N=2000); Such large studies will definitely yield 

sufficient power. They have the best estimate of minimal REs with at least 85% 

for all the different settings (m, n, and pattern) and approximately 75% cases are 

above 90%. The situations (m = 20, 50) obtain the largest estimate of minimum 

of RE for pattern 6. Pattern 3 demonstrates the smallest estimate of minimum 

mean RE for all three situations (87.38%, 86.67%, 85.89%). ρ, where the 

minimum is reached, ranged from 0.01 to 0.08. All the medians of mean REs are 

larger than 99% for m = 20 and n = 100, above 98% for m = 50 and n = 40, and 

at least 96% m = 100 and n = 20.

We find that minimum of mean RE decreases when CV increases for all simulation studies. 

Pattern 1 indicates the lowest CV as expected while pattern 5 has the largest CV in most 

cases. In summary, the worst scenarios for small CRTs give 21%, 11%, and 14% efficiency 

loss when the number of cluster is small, medium and large, respectively. They are 16%, 

14%, and 16% for medium CRTs. For large CRTs all three are about the same, 14%.

Additionally, Table 3 shows that ρ at which the RE is minimum decreases with increasing 

average cluster size n given a pattern. Breukelen et al (Van Breukelen, Candel, et al., 2007) 

shows the RE minimum is reached at ρ = 1/(n + 1) based on their Taylor approximation (Eq. 

(10)). We have the similar results for large CRTs with mn = 2000, especially for n = 40 and 

60. Furthermore, Breukelen et al (Van Breukelen, Candel, et al., 2007) shows that the 

number of clusters does not affect RE, Eq. (15), given the cluster distribution. We make m 
twice and keep n same in the simulation designs. The parameters for (p1, ⋯, pm) and 

simulation results are shown in Appendix Tables 1 and 2. When we compare Table 3 and 

Appendix Table 2, e.g. m = 5, n = 40 and m = 10, n = 40, the different findings within a 

same pattern are noticed. For example, pattern 2, the minimums of mean REs are 0.9617 and 

0.8802, respectively. On the other hand, they have different CVs, 0.42 (0.17, 0.69) and 0.65 

(0.52, 0.78). That is, the same patterns in our simulation setting which strongly depends on 

(p1, ⋯, pm) may have the different cluster distributions when the number of cluster doubles.

5 Sample size calculations

In sections 5.1 and 5.2, we show the sample size formulas for the different types of outcome 

based on GEE models with the assumption of equal cluster sizes with no cost constraints and 

under a given cost, respectively. Section 5.3 demonstrates how the sample sizes are adjusted 

due to efficiency loss from unequal cluster sizes.

5.1. No cost constraints

For continuous and binary count outcomes, a two-sided test based on β with type I error of α 
and nominal power η requires the sample size

m = z1 − α/2 + zη
2V β

β2 , (16)
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Where β is the treatment effect. Substituting Equations (6) and (9) for a two-group study 

with the assumption of exchangeable correlation matrix, we have the sample size formulas

m = z1 − α/2 + zη
2σ2 1 + n − 1 ρ

π 1 − π nβ2 , (17)

and

m = z1 − α/2 + zη
2

1
πp1 1 − p1

+ 1
1 − π p0 1 − p0

1 + n − 1 ρ

n log
p1 1 − p0
p0 1 − p1

2 ,

respectively, where zα is the 100 × α percentile of a standard normal distribution. Please 

note Eq. (17) reduces to Eq. (3) (Van Breukelen and Candel, 2012) when the equal 

allocation occurs.

For count outcomes, we use formula (3) (Amatya, Bhaumik, et al., 2013) to obtain

m = z1 − α/2
1
π + 1

1 − π + zη
1

πeβ + 1
1 − π

21 + n − 1 ρ

ne
β0β2

through Eq. (11).

5.2. Optimal design

Van Breukelen et al (Van Breukelen and Candel, 2015) define the total budget B in CRTs. 

Assume the study cost per cluster in the enrollment stage is c currency units (e.g. USD), and 

each subject costs s currency units. Total budget B includes m clusters and n subjects within 

a cluster,

B = m c + sn . (18)

They define “optimal” as that the variance of the treatment effect estimator in the linear 

regression model is minimized under the cost constraints. In this paper the term “optimal” 

using GEE models refers to maximum power for a given sampling budget. Actually, they are 

equivalent given an unbiased point estimator of the treatment effect β. Here, the optimal 

design is to find the design which maximizes the power given the constraint in Eq. (18).

Define

Δ1 = σ2

π 1 − π β2
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for continuous outcome, and

Δ1 =  

1
πp1 1 − p1

+ 1
1 − π p0 1 − p0

log
p1 1 − p0
p0 1 − p1

2

for binary outcome, the sample sizes based on GEE models (Shih, 1997; Pan, 2001) can be 

re-written as

m = z1 − α/2 + zη
21 + n − 1 ρ

n   Δ1 . (19)

Alternatively,

zη = n
1 + n − 1 ρ

m
Δ1

− z1 − α/2 .

For count data,

zη = n
1 + n − 1 ρme

β0β2 − z1 − α/2
1
π + 1

1 − π
1

πeβ + 1
1 − π . (20)

Consequently, the power is calculated by ϕ−1 (zη), where ϕ is cumulative density function of 

standard normal distribution.

As noted that π, α, Δ1 in Eq. (19) and (β0, β) in Eq. (20) are pre-determined values under 

null and alternative hypothesis for three types of outcomes, maximizing the power means 

maximizing

K = nm
1 + n − 1 ρ .

For a known value ρ, the locally optimal design (LOD) is reached at

nLOD = ϑc
s ,     mLOD = B

ϑsc + c
, (21)

Where ϑ = 1 − ρ
ρ . It is identical to the optimal designs proposed by other researchers 

(Raudenbush, 1997; Moerbeek et al., 2000; Van Breukelen and Candel, 2015), even though 

they use the different definition of “optimal.”
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In the scenario of an unknown parameter value of ρ, Van Breukelen and Candel (Van 

Breukelen and Candel, 2015) proposed the Maximin designs (MMDs) using the linear 

regression model and the variance of the maximum likelihood estimator. However, there is 

no closed form for binary outcomes and the variance from binary outcomes needs to be 

transformed to that of continuous outcomes. When using GEE models, Liu et al (Liu et al., 

2017) proposed an algorithm, shown as below, to find the optimal design (mOD, nOD) based 

on parameter space (ρmin, ρmax) and design space (mmin, mmax).

Step 1, Define the parameter and design space, (ρmin, ρmax) and (mmin, mmax), 

respectively.

Step 2, Consider ρ = ρmax, calculate mLOD using equation (21).

A. If it is within the range (mmin, mmax), then set mOD = mLOD.

B. If it is outside of (mmin, mmax), then set mOD = mmax. The cluster size nOD is 

calculated by B
mOD

− c /s.

Liu et al (Liu and Colditz, 2017) shows proof details of LODs and ODs when GEE models 

are considered in the sample size calculation. When comparing the algorithm in MMDs 

based on RE and efficiency (Van Breukelen and Candel, 2015), the revised algorithm is 

same as one of their maximin designs which maximizes the minimum efficiency. However, it 

works for any type of outcome including continuous, binary, and count.

Given a fixed budget, we can find the optimal design which maximizes the power for the 

proposed study but please note that the maximized power may be much different from 

nominal power η, eg. 80%. When a known value ρ is the same, or the parameter and design 

space are the same for three different types of outcomes, the optimal sample sizes including 

number of clusters and cluster size are same for these three as well. However, the maximized 

powers are different and depends on the outcome type.

5.3. Application

Equal cluster sizes are assumed in sections 5.1 and 5.2. However, equal cluster sizes are not 

guaranteed in practice. When designing a CRT to examine the treatment effect through GEE 

models, first we assume equal cluster sizes and n is given. The required number of clusters 

can be obtained from these two sections. We will then increase number of clusters in order 

to compensate for the efficiency loss due to unequal cluster sizes. Below are examples to 

demonstrate the calculation of number of clusters for unequal cluster sizes.

If we consider GEE models to design a CRT without financial constraints, the sample size 

formulas in section 5.1 are used for calculation. For instance, we want to compare two 

physical therapy treatments designed to increase muscle flexibility in a CRT. We must 

determine how many clusters are required to achieve a power of at least 80% to detect a 

group mean difference with n = 40 at the type I error of 5%. The mean difference of muscle 

flexibility between the standard treatment and the new treatment is 1, the common standard 

deviation of muscle flexibility is 3.1, and equal allocation (π = 0.5) and ρ = 0.01 are 

considered. Using equation (17), the number of clusters m = 20 are needed. The total sample 
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size is mn = 800. We consider this study as a medium CRT with medium number of clusters. 

As shown in section 4.2, REs are dependent of the pattern of p1, ⋯, pm and the worst 

scenarios for medium CRTs give 16%, 14%, and 16% efficiency loss for medium CRTs 

when the number of cluster is small, medium and large, respectively. The adjusted number 

of clusters will be 20/0.86=24.

If a study is designed under a given budget, then the sample size formulas in section 5.2 will 

be used. For example, total budget of the proposed study is $55,000, the study cost per 

cluster in the enrollment stage is $1,000, and each subject costs $100. Using equation (21), 

the locally optimal design with nLOD ≈ 8.00 and mLOD ≈ 30.55 are obtained given ρ=0.135. 

It is considered a small CRT with large number of clusters. The worst scenario for small 

CRTs gives 14% efficiency loss when the cluster size is small. Therefore, the adjusted 

number of clusters will be 30.55/0.86 ≈ 35.5. We need to enroll 36 clusters with cluster size 

of 8. The original proposed budget is 30(1000+100*8)=$54,000 and is within the budget 

while the budget after the adjustment is 36*1000+100*36*8=$64,800 and is beyond the 

budget. Obviously, the cost could be increased because the number of clusters rise. 

Therefore, there is a trade-off between the increase in number of clusters due to efficiency 

loss and the actual cost within the budget in the optimal design.

6 Discussion

The sample size formulas based on GEE methods have been derived in recent years (Liu and 

Liang, 1997; Shih, 1997; Pan, 2001; Amatya, Bhaumik, et al., 2013). As we notice, the 

sample size formulas assume the exchangeable working correlation structure and equal 

cluster sizes. However, the assumption of equal cluster size is not realistic. Therefore, 

researchers investigate the RE of unequal versus equal cluster sizes when testing the 

treatment effect. In the paper (Van Breukelen, Candel, et al., 2007), Breukelen et al consider 

linear regression models to address the RE of unequal versus equal cluster sizes with 

continuous outcome for CRTs. For a binary outcome in CRTs, Candel and Breukelen 

(Candel and Van Breukelen, 2010) utilize mixed effect logistic regression model and present 

the adjusted sample size formula for varying cluster sizes. In this paper, we investigate the 

REs based on GEE models to test the treatment effect in a two-group comparison in CRTs. 

The three outcomes of continuous, binary, or count data are discussed simultaneously. The 

variances of the estimator of the treatment effect were derived for three different types of 

outcome given the exchangeable working correlation structure. We define RE as the ratio of 

variance of the estimator of the treatment effect for equal to unequal cluster sizes. The 

simpler formulas of RE with continuous, binary, and count outcomes are given.

First, we find the formulas of REs are the same for continuous, binary, and count data using 

GEE models. That is, RE is not dependent on the type of outcome at the stage of study 

design. Second, RE β1  is independent of cluster allocations π and the parameters β0 and β1. 

Third, the performance of RE for the exchangeable working correlation structure is 

investigated through simulations since no closed form is provided. We make a conclusion 

about efficiency loss for the different sizes of CRTs-small, medium, and large. Fourth, the 

adjusted number of clusters accounting for efficiency loss are illustrated for CRTs without 

financial constraints and under a budget. Fifth, the expressions (Eq. (14) and (15)) are same 
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as those (Eq. (8) and (9)) in Breukelen et al (Van Breukelen, Candel, et al., 2007). They are 

an extension of published results on optimal sample sizes and on the relative efficiency of 

unequal versus equal cluster sizes in cluster randomized trials using GEE models. Last, 

Breukelen et al (Van Breukelen, Candel, et al., 2007) approximate the RE through Taylor 

series by assuming that ni, i = 1, ⋯, m are independent realizations of a random variable 

while we conduct simulation studies to investigate RE performance given that unequal 

cluster sizes follow a multinomial distribution under mn = ∑i = 1
m ni. The rationale here is that 

the number of clusters under the assumption of equal cluster sizes in the sample size 

calculation are obtained, resulting in a fixed sample size (N = mn). Next we investigate the 

performance of RE for unequal cluster size ni. Breukelen et al (Van Breukelen, Candel, et 

al., 2007) find that the loss of efficiency could be larger than 10% when CV exceeds 0.63. 

However, such a large CV is not expected to occur in real cluster randomized trials. As such, 

they conclude that the loss of efficiency due to variation of cluster sizes rarely exceeds 10 

per cent and can be compensated by sampling 11 per cent more clusters. Candel and 

Breukelen (Candel and Van Breukelen, 2010) find that 14% more clusters are needed to 

cover the efficiency loss in many cases with a binary outcome in CRTs. Our simulation 

results show that small CRTs give 21%, 11%, and 14% efficiency loss when the number of 

cluster is small, medium and large, respectively. They are 16%, 14%, and 16% for medium 

CRTs. The efficiency loss could be approximately 14%, even in large CRTs under the fact of 

mn = ∑i = 1
m ni. Please note that the corresponding CVs are larger than 0.63, thus, we make 

the similar conclusion as Breukelen et al (Van Breukelen, Candel, et al., 2007).

There are several limitations to this approach. The first limitation is that the covariates are 

not included in the consideration. If we include the covariates in GEE model, the sample 

size formulas are not shown to be simple as sections 5.1 and 5.2. Moreover, the performance 

of the sample size formula is sensitive to the distribution of the covariates (Liu and Liang, 

1997). However, it is reasonable to calculate the sample size without the consideration of 

covariates in the design stage in general. The next limitation is that our proposed RE is 

investigated on the exchangeable working correlation matrix only. The assumption of the 

exchangeable working correlation matrix may not hold in a real world application. However, 

the sample size formulas always use this assumption and it is acceptable in practice. The 

third limitation is that the performance of RE is determined by the pattern of p1, ⋯, pm as 

well as the number of cluster, cluster sizes, and association parameter (ρ). Obviously, we 

have no prior knowledge of p1, ⋯, pm. This paper shows the different scenarios of efficiency 

loss from six basic patterns. Sample size adjustments are made based on the worst scenario 

in order to be conservative. The last limitation is that GEE models may have poor 

performance when the number of clusters is not large enough. The performance of RE 

defined in section 3 and the sample size formula in section 5 must be used cautiously.

In conclusion, this paper discusses the efficiency loss based on GEE models when unequal 

cluster sizes occur in a real world. We believe that the proposed method is very useful and 

practical, especially for designing CRTs with any type of outcomes.
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Figure 1. 
Six basic patterns of probabilities (p1, ⋯, pm).
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Figure 2. 
Relative efficiency of the treatment effect for six patterns, with m = 100 and n = 20.
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Figure 3. 
Relative efficiency of the treatment effect for six patterns, with m = 20 and n = 100.
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Figure 4. 
Relative efficiency of the treatment effect for six patterns, with m = 50 and n = 40.
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