Skip to main content
. Author manuscript; available in PMC: 2019 Sep 25.
Published in final edited form as: Biom J. 2018 Mar 25;60(3):616–638. doi: 10.1002/bimj.201600262

Table 1.

Multinomial distribution with probabilities (p1, ⋯, pm) with m = 100 and n = 20

Pattern Description (p1, ⋯, pm)[1] Other Parameters
1 Constant
P1 = p2 ⋯ = pm
Pi = 1/m, i = 1, ⋯, m
2 Monotonically increasing
P1 < p2 < ⋯ < pm
P1# = 0.006,
pi = p1 + (i − 1)d, i = 2, ⋯, m
d=21/mp1m1
3 Constant followed by monotonically increasing
P1 = ⋯ = pk < pk+1 < ⋯ < pm
k# = 50,
pi=Pkk, i=1, , k
pi = pk + (ik)d, i = k + 1, ⋯, m
Pk#=i=1kpi=0.2,
d=2mk(1Pk+Pkkmk+1Pkk)
4 Monotonically increasing followed by constant
P1 < ⋯ < pk = pk+1 = ⋯ = pm
k# = 50
Pk#=i=k+1mpi=0.65
pi = pk − (ki)d, i = 1, ⋯, k − 1
 Pk#=i=k+1mpi=0.65
d=2k1(Pkmk1Pkk)
5 Constant, monotonically increasing followed by constant
p1=p2=pk1<pk1+1<<pk2==pm
k1# = 20, k2# = 70,
pi=Pk1k1, i=1, , k1
pi=pk1+(ik1)d,i=k1+1, , k2
Pk1#=i=1k1pi=0.05,
d=2(1mPk1/k1)( k2k1)[2*(m k2)+( k2k1+1)]
6 Monotonically increasing, constant followed by monotonically increasing
p1<p2<pk1=pk1+1==pk2<<pm
k1# = 25, k2# = 75
pi=Pk2k2k1, i=k1, , k2
pi=pk1(k1i)d1,i=1, , k11
pi=pk2+(ik2)d2,i=k2+1, , m
Note:k12Pk2k2k1<Pk1<k1Pk2k2k1
Pk1#=i=1k1pi=0.15,   Pk2#=i=k1+1k2pi=0.5
d1=2k11(Pk2 k2k1Pk1k1),
d2=2 mk2(1Pk1Pk2+Pk1k1 mk2+1Pk2 k2k1)
[1]

(p1, ⋯, pm) are probabilities and i=1mpi=1.

#:

required parameters.