Skip to main content
. 2019 Apr 8;26(5):198–210. doi: 10.1038/s41434-019-0075-6

Fig. 1.

Fig. 1

The AAV5 serotype leads to the most efficient transduction and strongest transgene expression in primary spinal cord astrocytes. a Vector constructs containing a dYFP transgene under the control of a GFAP or GfaABC1D promoter were packaged into AAV serotypes (5, 9 or Rec2) and transduced cultures; AAV5-GFAP-dYFP, AAV5-GfaABC1D-dYFP, AAV9-GFAP-dYFP, AAVRec2-GFAP-dYFP (4 × 109 vg/well). dYFP gene expression was visualised using fluorescent immunocytochemistry and captured at ×10 magnification using a Nikon Eclipse TE2000-U microscope. Each is a representative image. Scale bar = 200 µm. b The number of dYFP-positive cells per image were counted. Values represent the mean and standard error of the mean (n = 4; independent cultures). Two-way ANOVA followed by Tukey’s multiple comparisons were used to determine statistical significance (not reported on the graph). c dYFP gene expression was visualised using fluorescent immunocytochemistry and images captured at ×10 magnification using a Nikon Eclipse TE2000-U microscope using identical settings and the number of dYFP-positive cells were counted. The integrated densities were determined for each image using ImageJ and used to determine the fluorescent intensity per cell. Values represent the mean and standard error of the mean (n = 4 independent cultures; three technical repeats for each; three images per technical repeat). One-way ANOVA followed by Tukey’s post-hoc analysis *P < 0.05, **P < 0.001