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Abstract

Objective: In this paper, we introduce Global Maxwell Tomography (GMT), a novel, volumetric 

technique that estimates electric conductivity and permittivity by solving an inverse scattering 

problem based on magnetic resonance measurements.

Methods: GMT relies on a fast volume integral equation solver, MARIE, for the forward path 

and a novel regularization method, Match Regularization, designed specifically for electrical 

properties estimation from noisy measurements. We performed simulations with three different 
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tissue-mimicking numerical phantoms of different complexity, using synthetic transmit sensitivity 

maps with realistic noise levels as the measurements. We performed an experiment at 7T using an 

8-channel coil and a uniform phantom.

Results: We showed that GMT could estimate relative permittivity and conductivity from noisy 

magnetic resonance measurements with an average error as low as 0.3% and 0.2%, respectively, 

over the entire volume of the numerical phantom. Voxel resolution did not affect GMT 

performance and is currently limited only by the memory of the Graphics Processing Unit. In the 

experiment, GMT could estimate electrical properties within 5% of the values measured with a 

dielectric probe.

Conclusion: This work demonstrated the feasibility of GMT with Match Regularization, 

suggesting that it could be effective for accurate in vivo electrical property estimation. GMT does 

not rely on any symmetry assumption for the electromagnetic field and can be generalized to 

estimate also the spin magnetization, at the expenses of increased computational complexity.

Significance: GMT could provide insight into the distribution of electromagnetic fields inside 

the body, which represents one of the key ongoing challenges for various diagnostic and 

therapeutic applications.

Index Terms—

Electrical properties mapping; inverse scattering; Global Maxwell Tomography; Match 
Regularization

I. Introduction

ELECTRICAL properties (EP), namely electric permittivity and conductivity, dictate the 

interaction between electromagnetic (EM) waves and materials [1], [2]. Accurate estimation 

of the EP of biological tissue could improve therapeutic applications, such as radiofrequency 

(RF) ablation [3], [4], tailored transcranial magnetic stimulation [5], [6], and hyperthermia 

treatment [7], [8], [4], among others. Magnetic resonance (MR) is a promising tool for 

robust EP estimation, since it can provide tomographic measurements that reflect the 

curvature of the EM field inside an object due to EP. Current MR–based techniques can be 

divided into differential and integral approaches, which can be further categorized based on 

whether they use direct or iterative reconstruction.

Initial work in MR–based inverse scattering focused on manipulating the differential forms 

of Maxwell’s Equations to reconstruct EP directly. Haacke et al. first proposed using the 

ratio between the curvature of the transmit field b1
+ , measured by its gradient, and the 

absolute value of b1
+ to estimate conductivity in the one-dimensional case, using an iteration 

scheme to refine guesses of conductivity [9]. Katscher et al. introduced Electrical Properties 

Tomography (MR–EPT), a technique that extends the previous approach to three 

dimensions, and relies on post–processing b1
+ maps to estimate EP [10], [11]. MR–EPT 

assumes that transmit and receive phases are equal (the “transceive phase assumption”) and 

that the z–component of the magnetic field is negligible. These conditions are fully satisfied 

only in the central body regions surrounded by a birdcage coil at low field strength (≤ 1.5 T) 
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[11], [12]. Furthermore, MR–EPT’s central equation neglects gradients of EP, which is not 

valid at boundaries between tissues, or in electrically inhomogeneous tissues [11], [13].

More recent work has focused on addressing these simplifying assumptions of MR–EPT. 

Liu et al. and Zhang et al. extended MR–EPT to the case of multiple transmit coils and 

incorporated the effective receive fields into their algorithm [14], [15]. Huang et al. 

incorporated finite–element discretization in their MR–EPT implementation to improve 

conditioning [16], whereas Michel et al. proposed a nonlinear filter to denoise b1
+ maps prior 

to MR–EPT in order to reduce reconstruction errors [17]. Wan et al., Lee at al., and Marqués 

et al. proposed versions of MR–EPT that use receive sensitivities b1
− , which are simpler to 

measure and usually have higher SNR than b1
+, to estimate EP [18], [19], [20]. Lee et al. 

extended these approaches by operating on the phase of the product of transmit and receive 

sensitivities, in the low flip–angle regime [21]. Song and Seo tried to simplify the problem 

by allowing EP to vary in–plane, while assuming that the EP are constant in the through–

slice direction [22]. Gurler and Ider proposed a variation of the phase-based EPT technique 

for rapid mapping of electrical conductivity [23], which does not use the transceive 

assumption and accounts for EP gradients to avoid boundary artifacts [24]. Sodickson et al. 

proposed the first differential technique free of any assumptions, dubbed Local Maxwell 

Tomography, which uses both transmit and receive fields from multiple RF coils to 

reconstruct EP on a voxel–by– voxel basis [25]. Various multi–modal approaches have also 

been proposed, usually combining MR–EPT with electrical impedance tomography (EIT), 

which is an invasive method [26], [27], [16], [28]. While most techniques reconstruct EP 

directly, some recently proposed differential techniques are implemented with iterative 

reconstruction schemes. Ammari et al. proposed an iterative MR–EPT algorithm that does 

not assume dominant homogeneity of EP [29]. Borsic et al. used total–variation–like 

regularization along with iterative reconstructions to improve MR–EPT robustness to noise 

[30].

All differential approaches are inherently limited by the need to numerically approximate 

first– and second–order derivatives, which considerably amplifies noise present in the 

measurements. Furthermore, the spatial resolution of the EP maps is dictated by the size of 

the derivative kernel [31], which has at least three voxels in each dimension, but usually 

more than three in order to filter out some of the noise. On the other hand, approaches based 

on integral operators are much less sensitive to spurious fluctuations due to noise. Balidemaj 

et al. recently proposed a two–dimensional integral equation–based technique, dubbed 

contrast–source inversion electrical properties tomography (CSI–EPT) [32]. To deal with 

noise, CSI–EPT uses a multiplicative regularization scheme that seeks to adaptively set the 

regularization weight as the algorithm iterates. As with MR–EPT, CSI–EPT also makes use 

of the transceive phase assumption, which limits its applicability [32]. Schmidt and Webb 

recently proposed an integral equation–based technique that follows a simple iteration 

scheme based on the Fast Fourier Transform (FFT), but this technique is applicable only to 

single slices and assumes a negligible longitudinal magnetic field component b1,z [33]. More 

recently, Hong et al. proposed a 3D iterative, residual– based technique that relies on volume 

integral equations, but it is not practical since it requires knowledge of the absolute RF phase 
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of b1
+, which cannot be measured directly in MR [34]. Guo et al. have proposed an iterative, 

integration–based method, but they use a number of simplifications, including the transceive 

phase assumption [35].

In this work, we present Global Maxwell Tomography (GMT), a volume–integral–equation–

based method for EP estimation that is posed as an inverse problem with respect to the EP. 

GMT is the first truly global method for MR– based EP estimation, meaning that all EP in a 

volume are inferred at once, instead of in a slice–by–slice fashion as in all previous 

differential and integral techniques. GMT is similar to its differential counterpart, LMT [25], 

in the fact that it does not make any assumptions about the transceive phase. We also 

introduce a novel regularization strategy, dubbed “Match Regularization,” which is inspired 

by Total Variation and is tailored for the volumetric EP estimation problem in GMT. 

Preliminary simulation results of GMT have been presented at recent scientific meetings 

[36], [37], [38], [39]. Here, we investigate the feasibility of GMT using both simulations and 

experiments.

II. Theory

GMT is based on a box-constrained optimization procedure that iteratively refines guesses 

of EP by reducing the difference between measured and predicted quantities. The algorithm 

includes Match Regularization as an additive regularization term.

A. Technical Background

GMT relies on MARIE, a fast, FFT–based volume integral equation solver [40], [41], [42], 

to calculate the electromagnetic field. For the convenience of the reader, here we summarize 

the two key components of our approach and we refer to [40], [41], [43] for further details.

1) Functional Form of Volume Integral Equations: GMT employs the second-form 

functional system of equations of MARIE:

ℐ − ℳχ /ϵ𝒩 j(r) = ceℳχ /ϵei (1)

The operator ℳχ /ϵ denotes pointwise multiplication of the Cartesian components of the 

volumetric currents j(r) by the ratio χ/ϵ. This is the ratio of complex relative electric 

susceptibility to complex relative permittivity, which is defined as ϵ = ϵR + σ
iwϵ0, where ϵR 

is the scalar relative permittivity, σ is the conductivity, i = −1, ω is the angular frequency of 

the applied fields, and ϵ0 is the permittivity of free space. The 𝒩 operator encodes the ∇ × ∇ 
× operation on the Helmholtz Green’s Function integral. ce is short-hand for iωϵ0. The term 

ei denote the incident electric field, namely the field generated by transmit sources in the 

absence of a scatterer.

Once the volumetric currents j(r) are calculated with the previous equation, the total electric 

and magnetic fields can be derived as the superposition of the incident fields and the 

scattered fields:
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et = ei + 1
cϵ

(𝒩 − ℐ) j(r) (2a)

ht = hi + 𝒦 j(r) (2b)

𝒦 is the dual integro–differential operator of 𝒩. and encodes the ∇ × operation on the 

Helmholtz Green’s Function integral, while hi is the incident magnetic field.

2) Discretized Form of Volume Integral Equations: In GMT, the system in Eq. 1 is 

discretized via Galerkin projection with a piecewise linear basis. Due to the Toeplitz 

structure of 𝒩 and 𝒦, these can be embedded in three-dimensional circulant operators, so 

that the matrix–vector product is then achieved via FFT, dramatically reducing 

computational cost [40]. The piecewise linear basis is given by four basis functions for each 

current component at each voxel [43]:

f n
1(r) = Pn(r) (3a)

f n
2(r) = Pn(r) x − xn /Δx (3b)

f n
3(r) = Pn(r) y − yn /Δy (3c)

f n
4(r) = Pn(r) z − zn /Δz (3d)

where rn = (xn, yn, zn) is the center of each voxel, Δx, Δy, Δz are the voxel spacing along 

each dimension and Pn(r) is a volumetric pulse that is equal to 1 inside voxel n and 0 

otherwise. The resulting discretized linear system of equations to calculate the discretized 

currents j is

Δ−M χ /ϵN j = ceM χ /ϵΔei . (4)

From j, ei and hi we obtain the total fields via Eqs. 2a and 2b. The discretized currents j, as 

well as the fields ei and hi are elements of ℂ
12Ns, where Ns is the number of voxels in the 

domain of the scatterer. These fields are vectorized from dimensions Ns × 3 × 4 to 

dimensions 12Ns ×1. The term Δ is a diagonal matrix, whose elements are equal to Δx·Δy·Δz 

for constant pulses (Eq. 3a) and Δx·Δy·Δz /12 for sloped pulses (Eqs. 3b, 3c, 3d).

B. Inverse Problem

The recovery of the unknown electrical properties is formulated as an optimization problem 

with regularization [44]. The following subsections detail our approach.
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1) Optimization Algorithm: A cost function that measures the degree of mismatch 

between measured and predicted quantities is minimized to estimate the underlying EP 

distribution. The cost function, f(ϵ), includes a regularization term, fr(ϵ) weighted by a 

constant parameter α, that is proportional to EP inhomogeneity (see subsection below about 

Match Regularization). Box constraints on the real and imaginary parts of complex relative 

permittivity are applied to ensure realistic EP, namely ϵR ≥ 1 and σ ≥ 0.

minimize
ϵ ∈ ℂ

Ns
f (ϵ) + α f r(ϵ)

s.t. Re ϵ = ϵR ≥ 1

Im ϵ = − σ
ωϵ0

≤ 0

(5)

The co-gradients of the cost functions f(ϵ) and fr(ϵ) with respect to the complex relative 

permittivity are provided in Appendix A. While other choices are possible without changing 

the GMT algorithm, in this work the cost function uses only b1
+, which describes the transmit 

sensitivity of an MRI coil, because it can be measured experimentally and it is independent 

from the spin magnetization. In particular, the cost function operates on the weighted L2 

norm of the residual between measured and predicted b1
+ maps. We choose to use the L2 

norm because its smoothness is amenable to our particular optimization algorithm (L–

BFGS–B, see Methods).

f (ϵ) =
∑k ∑n wk ⊙ wn ⊙ δkn 2

2

η , (6a)

Where

δkn = bk
+ ⊙ bn

+ − bk
+ ⊙ bn

+ (6b)

η = ∑
k

∑
n

wk ⊙ wn ⊙ bk
+ ⊙ bn

+
2
2

(6c)

And

bk
+ ⊙ bn

+ ≡ |bk
+| ⊙ |bn

+| ⊙ e
j ϕk

+ − ϕn
+

. (6d)

The symbol ☉ denotes the Hadamard product. The two summations over n and k iterate 

over all of the unique field maps of a multiple–channel transmit array. bk
+ and bk

+ refer to the 
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kth estimated and measured b1
+ maps, respectively. The exponential term in Eq. 6d denotes 

the relative phase factor between maps k and n. Note, in fact, that the absolute phase of the 

transmit fields cannot be measured with standard MRI experiments [25]. wk refers to a set of 

weights pertaining to map k, which, depending on the specific numerical experiment, were 

set either to the ratio of |bk
+| to its peak amplitude or to the square root of such ratio (see 

Results section). We introduced these weights to prioritize regions with higher SNR when 

estimating EP.

2) Forward Path: The forward problem involves calculating quantities that can be 

compared with measurements obtained in the MR setting. The first step consists of solving 

for equivalent volumetric distributions of currents induced by given incident fields within the 

scatterer (Eq. 2b), which allow us to calculate the total magnetic field (ht). Then b1
+ maps, 

which are equivalent to the right-hand circularly polarized component of the magnetic flux 

densities in the imaging sample (i.e., the scatterer), can be calculated as:

b+ = Fμ0ht = Fμ0 hi + K j . (7)

The operator F carries out the extraction of the piecewise constant right-handed circularly 

polarized component. The operator K is the discretization of the operator in 2b. Given the 

discretized total magnetic field ht, the operator F is defined as

F ≡ 1 i 0 ⊗ 1 0 0 0 ⊗ INs
, (8)

where INs
 denotes the identity matrix of dimensions Ns × Ns and ⊗ denotes the Kronecker 

product. Note that the z– component of the total magnetic field is lost when b1
+ is extracted. 

In fact, MR coils have very limited sensitivity to detect the z–component of the RF field, 

because it is oriented in the same direction of the much stronger static magnetic field.

3) Match Regularization: Regularization is essential to address additive physical noise 

in the measurements and ill– conditioning in the optimization. Our proposed Match 

Regularization algorithm acts on the finite–difference approximation of EP along each 

Cartesian axis | Δτϵ| for every voxel:

f M Δτϵ = f S ∘ f TV Δτϵ = 1 − e
β c − c2 + Δτϵ 2

(9)

where τ = x, y, z. The symbol denotes the composition of the following two nonlinear 

operations on the magnitude of the difference in complex relative permittivity at each voxel:

y = f TV(x) = c2 + | x|2 − c (10a)
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f S(y) = 1 − e−βy
(10b)

The first function is a continuous relaxation of L1–based total variation. The second function 

is a saturation function that causes the output to be bounded between 0 and 1. This saturation 

is a critical part of Match Regularization because for large jumps in EP, the saturation causes 

the differential dependence of the regularizer on the magnitude of the jump in EP to vanish. 

In other words, the regularizer leaves large transitions in EP unperturbed. This behavior is 

essential for GMT because the unregularized problem is ill-conditioned, which in the case of 

typical regularizers, results in small gradients of f(ϵ) (see Eq. 5) in the vicinity of large 

jumps in EP being dominated by gradients that do not decay to 0. The quantities c and β in 

Eqs. 9 and 10 are judiciously chosen constants. In particular, β can be used to specify the 

desired sensitivity to changes in EP, by defining

β = c2

|Δϵ |min
2 c2 + | Δϵ|min

2 . (11)

In this expression, |Δϵ|min is the smallest jump in EP along any direction that one expects to 

be resolved by GMT and Eq. 11 guarantees that the derivative 
d f M
dx  attains a maximum for 

such value.

The behavior of the nonlinear transformation in Eq. 9 can be characterized according to the 

magnitude of the jump |Δτϵ|. For small inputs y, fS(y) ≈ βy/2. Therefore, for sufficiently 

small jumps in material properties along direction τ, f M Δτϵ ≈ β
2 f TV Δτϵ .. When |Δτϵ|<c, 

f TV Δτϵ ≈
Δτϵ 2

2c , which resembles L2–based Tikhonov regularization. When |Δτϵ| > c and 

βfTV (Δτϵ) ≪ 1, fTV (|Δτϵ|) ≈ |Δτϵ| which resembles L1–based TV regularization. Finally, 

when βfTV (Δτϵ) ≪ 1 no longer holds, the saturation function starts to contribute, saturating 

at a value of 1 and causing the differential dependence of fM to decay exponentially. The 

overall result is a nonlinear transformation that for very small arguments maps to L2–based 

regularization, then, as the arguments increase, to L1–based regularization, and finally, for 

large arguments, to what can be considered to be a relaxation of L0–based regularization. 

For the purposes of GMT, L2– based regularization tends to minimize the overall presence of 

jumps, L1–based regularization tends to enforce sparsity in the jumps of EP, and L0–based 

regularization would amount to an even more extreme version of L1–based regularization, 

again enforcing sparsity in jumps in EP.

Finally, the regularization cost function, fr(ϵ) in Eq. 5 is given by

f r(ϵ) = 1

3Ns

2
3

∑
n ∈ S

∑
τ ∈ x, y, z

f M Δτϵn ,
(12)
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where S denotes the set of indices of the voxels of the scatterer. This cost function is simply 

an average over all voxels after the nonlinear transformation in Eq. 9 is applied to each voxel 

and along each axis. The normalization constant 
1

3Ns
2/3  is not simply 1 (3Ns) because, for a 

voxelized geometry, the number of jumps in EP scales as Ns

2
3 . This normalization strategy 

reduces the dependence on the underlying resolution when applying regularization, which is 

another feature of GMT.

III. Methods

A. Numerical Phantoms

1) Four–Compartment Phantom: We used a numerical phantom shaped as a 10 cm × 

10 cm × 10 cm rectangular parallelepiped. The unique tissue-like relative permittivities and 

corresponding conductivity values of the four compartments were 51, 56, 65 and 76, and 

0.56S m, 0.69S m, 0.84S m and 1.02S m, respectively. Figs. 1b and 1c show the ground truth 

material property distributions of the Four-Compartment Phantom. This phantom was used 

to test GMT at 6 mm and 3 mm isotropic resolutions to evaluate the dependence of GMT on 

voxel size.

2) Torso–Mimicking Phantom: We also used a torso– mimicking phantom, 

characterized by sharp contrast and a high degree of asymmetry in the EP.

This phantom, which was previously proposed to evaluate EP mapping techniques [25], had 

five compartments mimicking the electrical properties of lungs, torso, kidneys, heart and 

spine (Fig. 1d). The associated relative permittivity and conductivity values were 22.62, 

52.64, 60.95, 63.46, and 69.22; and 0.337S m, 0.6314S m, 1.0975S m, 0.92S m, and 2.3S m; 

respectively. Figs. 1e and 1f depict the ground truth EP distribution of the Torso–Mimicking 

Phantom, which was used with an isotropic resolution of 10 mm.

3) Human–Head Phantom: We evaluated our technique for the case of a realistic 

human head model. In particular, we used Billie from the Virtual Family [45], with an 

isotropic resolution of 5 mm. More specifically, we cropped the head from the rest of the 

body. The ground truth EP at 300 MHz are shown in Figs. 1h and 1i.

B. Simulations

1) Incident Field Distributions: The performance of GMT, as that of any EP mapping 

technique, depends on the number of independent measurements available to solve for the 

unknown quantities at each voxel. For this reason, the particular transmit array design and 

linear combination of the associated fields (e.g., RF shims) used for the excitation can affect 

the accuracy of the reconstructed EP maps. In order to investigate the performance of GMT 

and Match Regularization independently from transmit array design and excitation strategy, 

we used basis functions instead of actual coils. Specifically, we generated a basis set of 

orthogonal Maxwell’s Equations-compliant incident fields from equivalent volumetric 

sources, adapting an approach previously proposed to calculate the ultimate intrinsic signal-
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to-noise (SNR) inside an heterogeneous head model [46], [47], and chose the first eight 

principal components of the basis sets as transmit elements of an hypothetical array. This 

truncation was motivated by the fact that 7 Tesla MR systems can typically support eight 

independent transmit channels. We used the transmit fields without applying any RF 

shimming combinations. The generation of basis fields is summarized in Appendix B.

2) Synthetic Noise Generation: It is challenging to characterize the SNR of a b1
+ map. 

One possible choice is to use the mean SNR over the entire volume; however, when a map is 

highly localized, the mean SNR can deviate significantly from the SNR present in excited 

regions of tissue. Therefore, we opted to characterize SNR by its peak value. In particular, 

we added noise to all of the uncorrupted b1
+ maps by setting the standard deviation of the 

noise to the ratio of the peak value of b1
+ to the prescribed peak SNR (Fig. 2). This process 

was separately repeated for every b1
+ map in consideration.

C. Experiment

1) Data Acquisition: Experimental measurements were performed on a 7 T MR scanner 

(Magnetom, Siemens Healthineers, Erlangen, Germany), equipped with 8 transmit channels 

and 32 receive channels. We constructed a mono–compartment cylindrical phantom 

(diameter of 12 cm, length of 24 cm), and filled it with a solution of distilled water, sodium 

chloride and Polyvinylpyrrolidone [48]. We used a dielectric probe (Agilent, Santa Clara, 

CA) to measure the relative permittivity and electrical conductivity of the solution, which 

were 64 and 0.65S m, respectively. We matched and tuned (297.2 MHz, the operating 

frequency of the 7 T scanner) an 8–element transmit/receive RF coil array prototype [49] in 

the presence of the constructed phantom. We used a 3D version of a previously proposed 

MR Fingerprinting technique [50] to reconstruct b1
+ maps for each of the 8 transmit channels 

(Fig. 7) for a 64–slice transverse slab at the center of the cylindrical phantom (256 × 256 

matrix size, 1.0 × 1.0 × 2.0 mm3 voxel resolution, TE/TR = 3.3/7.5 ms, BW = 600Hz pxl.

2) Radiofrequency Coil Modeling: We constructed a model of the array using GMSH 

[51] with 2912 triangular mesh elements. Each coil in the array had three fixed (4–8 pF) and 

three variable capacitors for capacitive decoupling of 1st order neighbors, while 2nd order 

neighbors were decoupled through a pair of perfectly counter wound inductors (22 nH). 

Each port was matched to 50 Ω by a capacitor connected in parallel to the port.

The electromagnetic scattering phenomena of the coil were simulated with the surface 

electric field integral equation expanded with RWG basis functions [52], while the lumped 

elements and the feed ports were simulated with the delta-gap method [53]. In order to 

account for the effect of currents scattered from the object to the coil conductors, we 

performed a coupling simulation [41] based on a volume-surface IE solver.

Tuning and matching of the array were performed as follow, using a numerical phantom 

with the same electrical properties (based on the dielectric probe measurements) and 

dimensions of the actual phantom. First, we removed the tuning capacitors and treat them as 
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feeding-ports. Second, we performed 24 coupling simulations, by considering 1 V at each 

feeding-port, while the other ports were short-circuited. This resulted in a 24 × 24 S 

parameter matrix, which was reduced to an 8 × 8 matrix, through an optimization procedure 

that consisted in testing different values for the tuning capacitors until each entry of the 

matrix was smaller than −17 dB. Third, the capacitors, with the optimized values, were re-

inserted on the coil and 8 additional coupling simulations were performed to retrieve the 

surface equivalent currents jcoil,p on the coil, generated by each port p = 1, …, 8 

independently. Finally, the incident electromagnetic fields in the absence of the scatterer 

were calculated as [54]

ei, p = 𝒩 jcoil , p(r) (13a)

hi, p = 𝒦 jcoil , p(r), (13b)

where the operators 𝒩 and 𝒦 were defined in Eqs. 2a and 2b.

3) Transmit Voltage Calibration: Due to uncertainty in the coil model, the scattering 

parameters obtained in simulation during tuning and matching were not accurate. Since the 

incident fields depends on both the prescribed transmit voltage and the scattered voltage, we 

performed an optimization to infer the total voltages at each coil. More precisely, we 

minimized the same cost function of GMT over a set of complex-valued weights (ξ), or RF 

shims, needed to accurately drive each coil:

minimize
ξ ∈ ℂ

Nc × Ntx
f (ξ)

 s.t. Re ξ1, 1 ≥ 0

Im ξ1, 1 = 0,

(14)

where

f (ξ) =
∑k ∑n wk ⊙ wn ⊙ δkn(ξ) 2

2

η , (15)

And

δkn = bk
+ ⊙ bn

+ − Bk
+ξk ⊙ Bn

+ξn . (16)

Nc refers to the number of coils and Ntx is the number of transmit maps (8 in our case). The 

cost function minimizes the difference between the measured b+ maps and the shimmed B+ 

maps, generated by driving each coil with 1 V, while setting the others to 0 V and using the 

same numerical phantom employed for tuning and matching. Since absolute transmit phases 
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are not measurable in MR, we constrained the phase of the first coil to be zero and compute 

all other coil phases relative to it (Eq. 14).

D. Optimizer

Due to the sheer size of the inverse scattering problem (hundreds of thousands of unknowns 

at 3 mm isotropic resolution), the Hessian of the GMT cost function cannot be computed 

efficiently. As such, we rely on quasi–Newton algorithms that form approximations of the 

Hessian. Specifically, we used L– BFGS–B, or limited-memory BFGS with box constraints 

[55]. The box constraints are an essential part of the algorithm, as a lower limit on the real 

part of permittivity of 1 and a lower bound on conductivity of 0 guarantee physically 

compliant EP. No upper bounds on EP were imposed.

IV. Results

A. Four–Compartment Phantom

For the 6 mm resolution phantom, we set the peak SNR to 50 and wk = |bk
+|

‖bk
+‖∞

 for the 

cost function. As a result, the associated mean SNRs of the eight volumetric b1
+ maps were 

approximately 19.1, 26.2, 22.4, 24.9, 15.1, 14.6, 21.7 and 28.6.

We selected the regularization parameters heuristically, setting c = 0.5 and |Δϵ|min = 1.5 in 

Eqs 9 and 11, and α = 10−2 in Eq. 5.

Starting from a homogeneous initial guess of EP, after 148 iterations of GMT, the peak 

relative errors in permittivity and conductivity were approximately 1.64% and 2.55%, 

respectively, while the corresponding average errors over 3,375 voxels were 0.38% and 

0.77%, respectively (Fig. 3).

For the same phantom at 3 mm resolution, we again set the peak SNR to 50 and 

wk = |bk
+|

‖bk
+‖∞

, to maintain consistency with the 6 mm case. The associated mean SNRs 

over the volume of the eight maps were approximately 17.9, 25.4, 17.2, 24.3, 13.6, 15.4, 

20.5, and 29.1. We did not need to change the regularization parameters because, as 

explained in the Theory section, our Match Regularization approach is roughly independent 

of resolution.

After 257 iterations, starting again from a worst–case homogeneous guess, the peak relative 

errors for permittivity and conductivity were 2.26% and 4.54%, respectively, whereas the 

corresponding average errors over 27,900 voxels were 0.44% and 1.06%, respectively (Fig. 

4).

B. Torso–Mimicking Phantom

For the torso–mimicking phantom, at an isotropic resolution of 10 mm, we set the peak SNR 

to 200. The associated mean SNRs of the eight maps were approximately 45.6, 84.0, 89.9, 
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85.5, 68.7, 79.5, 76.7, and 67.8. We found it beneficial to set wk = |bk
+|

‖bk
+‖∞

. We did not 

exhaustively search for new regularization parameters in this case, instead opting to recycle 

the values for c and |Δϵ|min and setting α to 6 10−4.

Fig. 5 show the GMT results for the torso-mimicking phantom. After 500 GMT iterations, 

starting from a homogeneous initial guess, the peak relative errors in permittivity and 

conductivity were 20.6% and 2.89%, respectively, although the average errors over 5,730 

voxels were 0.32% and 0.16%, respectively.

C. Human–Head Phantom

For the human–head phantom, at an isotropic resolution of 5 mm, we set the peak SNR to 

200. The associated mean SNRs of the eight maps were approximately 71.8, 90.3, 85.0, 

78.2, 85.1, 64.7, 82.0 and 88.9. We set wk = |bk
+|

‖bk
+‖∞

. We used the same c and |Δϵ|min as 

for the torso–mimicking phantom, but we set α to 2 10−4.

The results for the human–head phantom are shown in Fig. 6. After 1000 GMT iterations, 

starting from a homogeneous initial guess, the average errors in permittivity and 

conductivity over 24,144 voxels were 3.82% and 2.33%, respectively. The corresponding 

peak errors of 262% and 99% were outliers.

D. Experiment

The experimental b1
+ maps (Fig. 7) were downsampled to a 4.0 mm3 isotropic voxel 

resolution, due to computation time and memory limitations of the Graphics Processing Unit 

(GPU). We set wk = |bk
+| ⊙ (r < R) ⊙ (|bk

+| ≥
‖bk

+‖∞
10 ),, where R represents the inner radius of 

the phantom (i.e., we removed voxels belonging to the plastic shell) and the normalization 

by 10 was heuristically chosen to avoid numerical zeros in the optimization. While b1
+ maps 

were acquired only for central slab half the size of the phantom, the optimization was 

performed over the entire volume of the phantom, which coincided with the field of view of 

the array. After few trial and error iterations, we set c = 1.0, |Δϵ|min = 3.0 and α to 4 10−1. 

Fig. 8 summarizes the experimental results. After 421 iterations, starting from a 

homogeneous initial guess (ϵR = 40, and σ = 0.30S m), the reconstructed relative permittivity 

and conductivity for the cylindrical phantom were 67.2 ± 0.6 and 0.686± 0.007S m, 

respectively. These values are within 5% deviation from the EP measured invasively with the 

dielectric probe.

V. Discussion

We demonstrated through three numerical experiments that GMT with Match Regularization 

can estimate EP with negligible errors. Using dielectric probe measurements as the gold 

standard, we showed that GMT could estimate EP in a phantom at 7 T with high precision 

and accuracy. Although a quantitative comparison with previous work is not possible, due to 
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different numerical phantoms and SNR definitions, to our knowledge, there is no other 

technique capable of delivering similar results from noisy MR measurements. GMT infers 

conductivity and permittivity for the entire object volume at once, without making any 

assumptions on the distribution of either the EM field or the electrical properties. The only 

other assumption–free EP mapping technique, LMT [25], showed comparable experimental 

results on a single slice for a uniform phantom, but proved to be impractical in the presence 

of noise and EP boundaries, as all differential techniques intrinsically are to various extents. 

Integral approaches based on iterative algorithms can address noise via regularization. For 

example, CSI–EPT [32] uses a multiplicative regularizer to improve conditioning in the 

presence of noisy measurements, but that comes at the expense of blurring near regions of 

high contrast. In fact, all regularization strategies proposed until now for EP estimation have 

resulted in blurring or corruption of the reconstructed EP maps. Our proposed Match 

Regularization is ideally suited for piecewise homogeneous data, because it tends to enforce 

sparsity in the number of edges without corrupting the gradient of the cost function in the 

presence of large jumps in EP. Fig. 9 confirms that, without Match Regularization, after few 

iterations GMT would start to fit the noise and then rapidly converge to a noise map. While 

our results demonstrate the effectiveness of Match Regularization for GMT, the same 

regularization approach could be adapted in a straightforward manner to other EP mapping 

techniques and inverse problems, for which it is known a priori that the solution consists of 

piecewise constant blocks. On the other hand, Match Regularization would not be effective 

for applications such as image smoothing, because images are typically not piecewise 

constant but exhibit smooth gradients in their intensity.

Previous EP mapping techniques derived from the original MR–EPT [10], [11] either used 

the transceiver phase assumption or other symmetry assumptions, which have limited their 

applicability. While GMT can be used without making any such assumptions, its current 

implementation requires modeling the transmit array in order to calculate the incident fields. 

For the simulations, we used basis modes as transmit elements in order to decouple the 

performance of the algorithm from the quality of the excitation. This also avoided the need 

to test GMT for various coil designs, which would have been a time–consuming endeavor 

beyond the scope of this work. In general, as far as a non–zero b1
+ excitation can be produced 

at every voxel by at least one transmit coil, GMT should be able to reconstruct artifact–free 

EP maps. The basis modes used here may even provide physical insight to design a transmit 

array and/or a shimming approach that it is optimal for GMT. For the experiment, we used 

an existing coil array prototype available at our research center. Due to the peculiar coil 

design and uncertainty in some values of the lumped elements, we could not accurately 

model the coil, which limited the achievable accuracy of the experimental reconstruction. 

Even after performing a separate optimization to calibrate the transmit voltages at each port, 

accounting for coupling between elements, the modeled fields were not completely accurate 

(Fig. 7). In principle, the calibration of the incident fields could be done once on a phantom 

of known electrical properties and used for any other experiment. However, that is not 

possible with the current implementation of GMT because it does not include a volume-

surface IE solver in the forward problem, therefore the currents on the coils do not account 

for the effect of the scattered fields, i.e., they do not depend on the EP. This feature will be 

incorporated in the next version of GMT. To avoid errors associated with inaccurate coil 
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modeling, future work will include designing and constructing a tailored coil array. 

Directional couplers near the ports could be integrated in the design to calibrate the transmit 

voltages directly during the experiment for each specific object [56]. This could enable 

reliable experiments without needing a volume-surface IE solver in GMT, but the 

reconstructed EP would be sensitive to calibration errors.

While we showed that GMT performance is independent from voxel size, the highest 

achievable spatial resolution is currently limited by the memory of GPU. For example, using 

a K40 GPU (Nvidia, Santa Clara, CA) would enable in vivo experiments for small 

anatomies (e.g., the head) with approximately 3 mm isotropic voxels and require several 

days to reconstruct EP. GPUs with more memory and/or optimizing the GMT code, which is 

currently written in MATLAB (Math-Works, Natick, MA), would enable EP mapping at 

typical clinical resolutions in the future.

Increasing the speed of GMT would also be a critical factor for clinical translation. In this 

work we used a homogeneous initial guess and Fig. 10 shows that our results were not 

biased by this particular choice and, in fact, the accuracy of GMT could further improve 

using different initial guesses. Furthermore, starting from an EP distribution closer to the 

underlying object structure would reduce the required number of iterations. This could be 

achieved, for example, by registering morphological images, or parameter maps (e.g., T1 

and T2 maps), to the entries of a pre–computed anatomical atlas with average tissue EP. 

GMT could be further accelerated by parallelizing its execution over several GPUs. In 

addition, Krylov subspace–recycling techniques could be employed to further reduce the 

computational cost of solving the forward and adjoint systems.

In this work, we tuned the parameters of the regularization function manually, by trial and 

error. Such an approach could be time consuming for in vivo applications and lead to sub– 

optimal performance. A possible solution to ensure high performance of Match 

Regularization could be to train a machine learning algorithm to automatically tune the 

parameters for each specific case.

In the case of the human–head phantom, the large errors in the EP maps were outliers, 

mostly localized in regions, such as the skull, where it is not possible to obtain accurate b1
+

measurements. However, knowledge of EP in these regions is less important than in other 

areas, such as the brain, where the GMT reconstruction was accurate.

VI. Conclusion

In conclusion, we introduced a new technique for EP estimation from MR measurements 

and a new regularization strategy, specifically tailored to the inverse scattering problem in 

question. We demonstrated the performance of GMT with Match Regularization in 

simulation using b1
+ maps with realistic SNR levels as measurements. We confirmed the 

accuracy and precision of GMT in a 7 T experiment. In future work we will explore the use 

of both b1
+ and MR signal measurements in the cost function, with the goal to solve for the 

unknown spin magnetization in addition to EP. Such an implementation would increase the 
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computational complexity of the algorithm roughly by a factor equal to the number of 

receive RF coils, requiring further software optimization to be practical.

Acknowledgment

This work was supported in part by NIH R01 EB024536, NSF 1453675, and it was performed under the rubric of 
the Center for Advanced Imaging Innovation and Research (CAI2R, www.cai2r.net), a NIBIB Biomedical 
Technology Resource Center (NIH P41 EB017183).

Appendix A: Gradient of the Cost Function

We used Complex–Real (CR) or Wittinger calculus to obtain the co-gradients of the cost 

function with respect to the complex relative permittivities [57]. The resulting gradients 

effectively constitute an adjoint formulation of the forward problem in terms of integro-

differential operators, with a computational cost roughly equal to that of the forward 

problem.

The complex-valued co-gradient of the b1
+–based cost function (Eq. 6a) can be calculated as

∂ f
∂ϵ * = −

μ0QT

f (ϵ)η2 ∑
k

ψk ⊙ γk ⊘ ϵ2 , (17a)

where ⊘ denotes Hadamard division, η is defined in Eq. 6c. The terms γk and ψk are given 

by the following equations:

A*γk = K*F* ∑
n

wk ⊙ wn
2 ⊙ bn ⊙ δkn (17b)

and

ψk = ceΔek
i + N jk . (17c)

where ce is short-hand for jωϵ0. The term A* refers to the adjoint system of equations (see 

Eq. 4) and K is the operator that maps from currents to magnetic field Eq. 7. The residual 

δkn is defined in Eq. 6b. Given a vectorized input, the operator QT is given by

QT = 1 1 1 ⊗ 1 1 1 1 ⊗ INs
, (18)

where INs
 denotes the Ns × Ns identity matrix. More concisely, the operator QT sums the 

basis function coefficients at each voxel. Finally, the operator F* is given by

F* ≡
1
−i
0

⊗

1
0
0
0

⊗ INs
. (19)
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The complex-valued co-gradient of the Match Regularization cost function in Eq. 12 can be 

calculated as where

∂ f r
∂ϵ * = β

6Ns

2
3

∑
τ ∈ x, y, z

Δτ*gτ (20)

where

gτ = e
c − c2 + Δτ

2
⊙ Δτϵ ⊘ c2 + Δτϵ 2

Appendix B: Basis Fields Generation

The generation of the basis set used for the incident fields is summarized as follows. A low-

rank approximation of the transfer function from currents to fields was generated by first 

applying the Adaptive Rank Finder algorithm and then applying the full Randomized 

Singular Value Decomposition (rSVD) algorithm [58]. More specifically, in each voxel of 

the source region Sr, we embedded Cartesian electric and magnetic currents, j′ and m′, and 

calculated the fields in the target region St. The transfer function from sources to scaled flux 

densities (b′ and d′) is given by

d′
b′ = Δ 0

0 Δ
−1 N −ceK

cmK N
Δ 0
0 Δ

j′
m′ (21)

where ce = jωϵ0 and cm = j!χ0. The input and output of this system are “semi–volumetric”, 

meaning that the pointwise representation of the waves is scaled by the square root of the 

Gramian operator. The fields are orthogonalized in semi– volumetric format so as to ensure 

that the näıve inner product of the coefficients of the fields is equal to the functional inner 

product of the fields described by the coefficients.

Once the range of the system in Eq. 21 is sufficiently approximated [58], the SVD basis is 

truncated according to a predefined tolerance. After truncation, the pointwise incident 

electric and magnetic fields can be extracted from the scaled flux densities as follows.

ei

hi
= Δ 0

0 Δ
−1 ce 0

0 cm

−1 d′
b′

(22)

Given pointwise incident and magnetic fields, b1
+ can be calculated following Eq. 7.
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Fig. 1: 
Numerical phantoms and corresponding ground truth of relative permittivity (ϵR) and 

conductivity (σ). (a-c) Tissue–Mimicking Four–Compartment Phantom (transverse slice); 

(d-f) Torso–Mimicking Phantom (coronal slice); (g-i) Human–Head Phantom (sagittal slice).
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Fig. 2: 

Comparison of b1
+ maps before (a, c, e) and after (b, d, f) corruption with additive Gaussian 

noise. b1, k
+  and ηk refer to the kth uncorrupted b1

+ map and associated noise map, 

respectively. The peak SNR of the noisy b1
+ maps was set to 50.
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Fig. 3: 
Estimated relative electric permittivity (top) and conductivity (bottom) for the four–

compartment phantom at 6 mm isotropic resolution, reconstructed from a homogeneous 

initial guess (a and e) and using b1
+ measurements with peak SNR of 50. Reconstructed EP 

are shown for a representative transverse slice through the center of the phantom, at the end 

of the GMT procedure (b and f). Figs. c and g show the peak-normalized absolute error, 

along the same transverse slice. Figs. d and h show the distribution of the error in the final 

EP over all 3,375 voxels.
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Fig. 4: 
Estimated relative electric permittivity (top) and conductivity (bottom) for the four–

compartment phantom at 3 mm isotropic resolution, reconstructed from a homogeneous 

initial guess (a and e) and using b1
+ measurements with peak SNR of 50. Reconstructed EP 

are shown for a representative transverse slice through the center of the phantom, at the end 

of the GMT procedure (b and f). Figs. c and g show the peak-normalized absolute error, 

along the same transverse slice. Figs. d and h show the distribution of the error in the final 

EP over all 27,900 voxels.
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Fig. 5: 
Estimated relative electric permittivity (top) and conductivity (bottom) for the tissue–

mimicking phantom at 10 mm isotropic resolution, reconstructed from a homogeneous 

initial guess (a) and using b1
+ measurements with peak SNR of 200. Reconstructed EP are 

shown for a representative coronal slice through the center of the phantom, at the end of the 

GMT procedure (b and f). Figs. c and g show the peak-normalized absolute error, along the 

same coronal slice. Figs. (d) and (h) show the distribution of the error in the final EP over all 

5,730 voxels.
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Fig. 6: 
Estimated relative electric permittivity (top) and conductivity (bottom) for the Billie head 

phantom at 5 mm isotropic resolution, reconstructed from a homogeneous initial guess (a 

and e) and using b1
+ measurements with peak SNR of 200. Reconstructed EP are shown for a 

representative sagittal slice through the center of the phantom, at the end of the GMT 

procedure (b and f). Figs. c and g show the peak-normalized absolute error, along the same 

sagittal slice. Figs. d and h show the distribution of the error in the final EP over all 24,144 

voxels.

Serrallés et al. Page 26

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2020 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 7: 

Experimental coil-phantom setup (a) and measured b1
+ magnitude of each transmit coil for 

the central coronal plane (b) are compared to the b1
+ maps simulated with the coil model (d) 

using a numerical phantom with the same electrical properties and dimensions of the actual 

phantom. Due to the complexity of the transmit array, the incident fields could not be 

accurately modeled; therefore measured and simulated maps were not identical.
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Fig. 8: 
Estimated relative electric permittivity (top) and conductivity (bottom), reconstructed from a 

homogeneous initial guess (a and d), using experimental b1
+ measurements (see Fig. 7). 

Reconstructed EP are shown for a representative coronal slice through the center of a 

uniform cylindrical phantom, at the end of the GMT optimization (b and e). The final 

distribution of EP over 44,713 voxels is shown in c and f. Voxels belonging to the plastic 

shell surrounding the phantom were treated as vacuum.
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Fig. 9: 
Evolution of the estimated relative permittivity starting from the same homogeneous initial 

guess (a and f) using the unregularized cost function (b-e) vs. Match Regularization (g-j), for 

the four–compartment phantom at 6 mm isotropic resolution using peak SNR of 50 for the 

synthetic b1
+ measurements. Without regularization, GMT starts fitting the noise after a few 

iterations and converges to a noisy map after 40 iterations. With Match Regularization the 

solution converges toward the correct values. Final results after 148 iterations are shown in 

Fig. 3b.
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Fig. 10: 
Estimated relative electric permittivity for the four–compartment phantom at 6 mm isotropic 

resolution, using b1
+ measurements with peak SNR of 200. Results are shown for a 

homogeneous initial guess of vacuum (a) and using the true permittivity distribution rotated 

by 90° as the initial guess (e). In both cases the results (b and f) are accurate and comparable 

to the results in Fig. 3, obtained with a different initial guess.
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