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Abstract

Background.—Genome-wide association studies (GWAS) have identified thousands of
susceptibility variants, though most have been associated with small individual risk estimates that
offer little predictive value. However, combining multiple variants into polygenic risk scores
(PRS) may be more informative. Multiple studies have developed PRS composed of GWAS-
identified variants for cutaneous cancers. This review highlights data from these studies.

Objective.—To review published GWAS and PRS studies for melanoma, cutaneous squamous
cell carcinoma (cSCC), and basal cell carcinoma (BCC), and discuss their potential clinical utility.

Methods.—We searched PubMed and the National Human Genome Research Institute-European
Bioinformatics Institute GWAS catalogue to identify relevant studies.

Results.—Results from 21 GWAS (11 melanoma, 3 ¢SCC, 7 BCC) and 11 PRS studies are
summarized. Six loci in pigmentation genes overlap between these three cancers (AS/IARALY,
IRF4, MC1R, OCAZ, SLC45A2, and TYR). Additional loci overlap for cSCC/BCC and BCC/
melanoma, but no other loci are shared between cSCC and melanoma. PRS for melanoma show
roughly 2-to-3-fold increases in risk and modest improvements in risk prediction (2-7%
increases). PRS are associated with 2-fold and 3-fold increases in risk of cSCC and BCC,
respectively, with small improvements (2% increase) in predictive ability.

Conclusions.—Existing data indicate that PRS may offer small, but potentially meaningful,
improvements to risk prediction. Additional research is needed to clarify the potential utility of
PRS in cutaneous carcinomas. Clinical translation will require well-powered validation studies
incorporating known risk factors to evaluate PRS as tools for screening.
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Introduction

Genetic Association Studies.

Penetrance.

The role of genetic variation in the aetiology and pathogenesis of cancer and other complex
chronic diseases has been investigated using population- and family-based approaches.
Population-based designs investigate genotype-phenotype associations in unrelated
individuals using a candidate-gene or genome-wide approach, whereas family-based designs
examine related individuals using linkage analysis 1-3.

Most genetic association studies to date have focused on common single nucleotide variants/
polymorphisms (SNVs/SNPs), or single base pair changes in the genome occurring with a
minor allele frequency of >1% 4. Genome-wide association studies (GWAS) test variants
spanning the genome for correlation with disease status. This agnostic approach is well-
suited for investigating common variants in polygenic diseases and permits examination of
genes not previously known to be associated with a phenotype. Furthermore, GWAS have
greater statistical power than single gene approaches to detect small or modest effect sizes °.
As genomic technology has advanced and costs have decreased, GWAS have become a
popular and efficient way to study common genetic traits 6-9.

Disease-associated genetic variants display variable levels of penetrance, defined as the
proportion of people in a population who carry the disease-causing variant and who are also
affected by the disease. With complete penetrance, all individuals harbouring the pathogenic
variant develop the disease. Disorders caused by rare, highly penetrant variants typically
display Mendelian patterns of inheritance, in which a single genetic locus is responsible for
the disease. Most hereditary cancer disorders show incomplete penetrance and require other
genetic or environmental factors for disease development 10. Family-based linkage studies
are well-suited for studying these rare, highly penetrant alleles. In contrast, the majority of
the genetic risk for complex non-Mendelian phenotypes, such as cancer, is thought to be due
to lower-penetrance common variants with small effect sizes that act in concert to influence
aetiology 11.

Polygenic Risk Scores and Population Attributable Risk.

Genetic risk factors are potentially useful tools for preventive medicine 12. Effect sizes for
any given disease-causing variants are typically small, however, so while any particular
variant will not significantly impact risk prediction, an individual’s combination of variants
may be informative. Additive effects can be investigated by summing risk alleles and
weighting by their effect size to create a polygenic risk score (PRS). Different approaches
are used to construct PRS. One common approach incorporates variants reaching genome-
wide significance (defined as p < 5 x 1078). Other methods combine variants across the
genome, using pruning and thresholding techniques. Scores resulting from this latter
methodology are sometimes referred to as “genetic risk scores”. Here, we use PRS, but
acknowledge that the literature we review uses varying statistical methods for score
construction.

BrJ Dermatol. Author manuscript; available in PMC 2020 December 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Roberts et al.

Objectives.

Page 3

Effect sizes of genetic variants can also be used to calculate the population attributable risk
(PAR), which measures the incidence reduction occurring if the causal factor(s) are
eliminated in a population. Here, the PAR estimates the extent to which a disease is due to
genetics. Although genetic variants cannot be eliminated, prevention strategies targeting
their pathways may be possible. The PAR calculation has several known limitations,

including the potential for inflated estimates, which have previously been described in detail
13

The use of PRS for risk stratification and prediction is well established 1214-16_Utility of a
predictor is evaluated by estimating the area under the receiver operating characteristic
(ROC) curve (AUC), which graphically displays the true positive rate (sensitivity) against
the false positive rate (1-specificity) for all possible cutpoints of a continuous predictor
(Figure 1). An AUC of 0.5 indicates that the predictor has no discriminatory ability (Figure
1a). Curves that align more closely with the upper left corner of the ROC plot have higher
AUC, maximizing the true positive and true negative fractions (Figure 1b).

PRS have been employed across a wide variety of diseases for clinical applications including
screening, diagnosis, prognosis, and treatment response. Translation of PRS to the clinical
setting is being facilitated by large biobanking efforts and large population-based genotyping
17-20 and PRS for breast and prostate cancer have demonstrated clinical utility. While PRS
are not currently clinically available for cutaneous carcinomas, research has significantly
increased our understanding of genetic susceptibility to cutaneous cancers.

We aim to provide an overview of PRS for melanoma, cutaneous squamous cell carcinoma
(cSCC), and basal cell carcinoma (BCC). We summarize GWAS findings and studies
examining PRS and PAR for cutaneous malignancies. We also highlight the potential clinical
utility of adding PRS to existing prediction models for these malignancies and discuss future
research directions.

Materials and methods

GWAS and PRS/PAR studies were identified using PubMed (https://www.ncbi.nlm.nih.gov/
pubmed) and the following search criteria: “genome wide association study” AND
[“melanoma” or “cutaneous squamous cell carcinoma” or “basal cell carcinoma’];
“polygenic risk score” AND [“melanoma” or “cutaneous squamous cell carcinoma” or
“basal cell carcinoma”]; “genetic risk score” AND [“melanoma” or “cutaneous squamous
cell carcinoma” or “basal cell carcinoma™]; “population attributable risk” AND
[“melanoma” or “cutaneous squamous cell carcinoma” or “basal cell carcinoma”]. We also
searched the National Human Genome Research Institute-European Bioinformatics Institute
GWAS catalogue (https://www.ebi.ac.uk/gwas/) for relevant studies, using the terms
“melanoma”, “cutaneous squamous cell carcinoma” and “basal cell carcinoma”. Separate
searches were conducted for each phenotype. References for each identified study were
searched to identify any additional citations not originally captured. We did not identify any
unpublished or non-English language studies, and studies from any time period were
included. A dermatology/epidemiology fellow (M.R.R.) identified relevant papers.
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Skin cancer GWAS.

Melanoma.

Numerous GWAS have revealed genetic variants associated with susceptibility for
melanoma, cSCC, and BCC (Figure 2). Importantly, many of these variants do not fall
within coding regions of the genes, and their function is mainly uncharacterized.

The earliest GWAS of melanoma risk identified susceptibility loci at 20q11.22, containing
MTH7B and PIGU, and 9p21, a region adjacent to M7APand flanking the familial
melanoma susceptibility locus CDKN2A 2122 Subsequently, more than 20 additional loci
have been identified, including skin pigmentation genes (MC1R, OCAZ2, ASIP/RALY, TYR,
IRF/EXOC2, SLC45A2), and loci containing genes for DNA repair (PARFPI), epidermal
development (CASPS8), telomere maintenance (7TERT/CLMPTIL, OFBCI), and cell cycle
progression (CCND1, CDK10, ATM) 23-31,

Squamous cell carcinoma.

Three cSCC GWAS have been published, identifying skin pigmentation genes, including
5p13 (SLC45A2), 6p25 (I1RF4), 9p22 (BNCZICNTLN, a putative pigmentation locus),
11q14 (TYR), 15q13 (HERC2 OCA2), 16024 (DEF8 MCIR), and 20q11 (ASIARALY).
Other notable loci include variants near HLA class Il genes (6p21, HLA-DQAI) and
11023.3, containing the metastasis suppressor gene CADM1 32734,

Basal cell carcinoma.

The first GWAS (2008) identified signals at 1p36 (containing PAD/4, PADI6, RCCZ, and
ARHGEFIO0L) and 142 (the nearest gene is ras-homolog RHOU) 35. Since then, other
studies have identified susceptibility loci within genes involved in skin pigmentation,
immune function (HLA-DQAZ, HLA-B, LPF, NEU1, ZBTB10, TICAM/PLIN3), and
telomere maintenance (7ER7ICLPTMIL, OBFCI). Tumour progression loci include tumour
suppressor gene 7P53, MYCN oncogene, p13 (transcription factor FOXPI), 7922.1 (CUX1,
involved in cellular proliferation and differentiation), 7q12.3 (7NS3), and 6q27 (MIR3939).
Susceptibility loci within epidermal development genes include type 3 transglutaminase
(TGM3), which is indispensable for normal epidermal formation 36, keratin 5 (KRT5),
10p14 (GATAS), and 2q33 (CASPSIALSCRI12) 3743,

Shared genetic pathways.

Loci important containing important pigmentary genes have been identified in all three
malignancies (Figure 2). Loci containing immune regulatory genes have also been identified
for cSCC and BCC, although the specific loci do not appear to overlap between these
tumour types. Similarly, loci containing cell cycle progression genes have been identified in
BCC and melanoma, but the specific loci are unique to each cancer. Other loci show some
overlap between ¢SCC and BCC (Figure 2), but no additional shared loci have been
identified between ¢SCC and melanoma.
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Skin Cancer PRS and PAR.

Melanoma.

PRS and PAR have been used to examine the genetic aetiology of skin cancers (Tables 1 and
2).

For melanoma, PRS risk estimates range from 1.34 — 3.22. Addition of PRS to clinical risk
factor models has resulted in modest improvements to predictive value.

Using data from the Michigan Genomics Initiative, investigators conducted a phenome-wide
association study, exploring associations between PRS and multiple cancer sites. For
melanoma, a 16-variant PRS was constructed, and participants in the top quartile were found
to have a 2.4-fold increase in melanoma risk compared to those in the bottom quartile, after
adjustment for age, sex, genotyping array, and ancestry (OR=2.4, 95% confidence interval
(C1) 2.0-2.8) 44, The predictive ability of the PRS was not investigated.

A second population-based study from Greece found a PRS of 26 GWAS-identified SNVs
was associated with a modest increase in discriminative ability between models containing
only phenotypic risk factors (age, sex, eye/hair/skin colour, phototype, and tanning ability)
and phenotypic factors plus PRS (AUC, phenotypic model = 0.764, 95% CI 0.741-0.787;
AUC, phenotypic model + PRS = 0.775, 95% CI 0.752-0.797) 4°. This study was limited by
a relatively small sample size as well as lack of family history and other known melanoma
risk factors.

In another study, GWAS and candidate gene results were used to create an 11-SNV PRS.
The highest PRS tertile was associated with 69% increased risk of melanoma compared to
individuals in the lowest tertile (OR=1.69, 95% confidence interval (Cl) 1.28-2.25), after
adjustment for traditional melanoma risk factors (age, sex, eye/hair/skin colour, tanning
ability, and family history of melanoma) 46. Incorporation of the PRS into a standard risk
prediction model consisting of age, sex, and pigmentation marginally improved prediction
(AUC increase = 0.03, p<0.001). The authors also explored reclassification of melanoma
risk based on known risk factors and the PRS. For participants with predicted risk 20-50%
based on phenotypic risk factors, 17% of cases and 22.5% of controls were reclassified as
having predicted risk >50% when the PRS was added 46.

In the Women’s Health Initiative, PRS were calculated based on 21 GWAS SNVs.
Postmenopausal women with the highest PRS tertile had increased melanoma prevalence
(OR=1.91, 95% CI 1.50-2.42) and incidence (HR=1.89, 95% CI 1.42-2.52), compared to
the lowest tertile. Small improvements in risk prediction were observed (AUC increase =
0.075 (prevalent), 0.068 (incident)) 47.

In Australian and United Kingdom (UK) participants, the highest tertile of a PRS derived
from 45 SNVs in 21 loci was associated with increased risk of melanoma (Australia:
OR=3.22, 95% CI 2.30-4.51; UK: OR=2.84, 95% CI 2.14-3.77). In both populations,
addition of the PRS to a phenotypic risk factor model (age, sex, city, ancestry, eye/hair/skin
colour, adult freckling, photosensitivity, self-reported nevi, sunbed use, history of
keratinocyte carcinomas (KC), family history of melanoma, sun exposure, and blistering
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sunburns) resulted in an approximately 2-3% AUC increase (Australia: AUC change=0.023,;
UK: AUC change=0.028) 48.

Finally, different methods for creating PRS have been investigated using data from the
Melanoma Meta-Analysis Consortium, the largest meta-analysis of melanoma GWAS
currently available 4. Four PRS were constructed, ranging from 18-204 SNVs (AUC
0.628-0.644). The best-performing PRS, containing 204 variants, was validated in the
MelaNostrum Consortium, a southern European population. When adjusted for age, sex,
country, eye/hair colour, phototype, and number of nevi, the 204-SNV PRS was associated
with a 23% increase in melanoma risk, per PRS quintile (OR=1.23, 95% CI 1.13-1.35).
Addition of the PRS to a risk prediction model containing those covariates resulted in a
0.8% change in the AUC (AUC, covariates + PRS = 0.810, 95% CI 0.798-0.822). Based on
the variants in the PRS, the authors also calculated a PAR of 26%.

Squamous cell carcinoma.

A recent study, using summary-level GWAS data, estimated a PAR of 62% and showed that
the relative risk for cSCC increases with higher percentiles of a 21-SNV polygenic score,
with men having higher risk than women at all percentiles 30. Because this study did not use
individual-level data, phenotypic risk factors were not incorporated.

Two studies have investigated PRS using individual-level data, finding approximately 2-fold
increases in ¢cSCC risk 4451, One, using data from the Michigan Genomics Initiative
biorepository, found that a 5-variant PRS was associated with a 2-fold increased risk of
cSCC, after adjustment for age, sex, genotyping array, and ancestry (OR=2.0, 95% ClI 1.6-
2.5, for the highest versus lowest quartile of PRS) 44. The second, examining a population of
renal transplant recipients, observed an association of similar magnitude after adjustment for
age at transplant, era of transplant, recruitment site, and ancestry (OR=1.97, 95% CI 1.32-
2.93, per one standard deviation increase in the normalized PRS) 1. In this population, the
predictive ability of the PRS was also explored, although this analysis grouped all KCs
together. A small increase in the AUC was observed when the PRS was added to a model
containing age, era of transplant, and recruitment site as predictors (model with PRS and
ancestry, AUC=0.66; model with age, era of transplant, and recruitment site, AUC=0.79;
model with age, era of transplant, recruitment site, ancestry, and PRS, AUC=0.81) °L,
Neither study included known risk factors for cSCC, which may influence predictive power.

A recently developed risk prediction tool, cSCCscore, assigns the probability of developing
one or more cSCCs within 3 years, and includes age, tendency to sunburn, history of actinic
keratosis and cSCC, and inherited predisposition, based on the total count of risk alleles at
16 GWAS-identified loci 52. This model resulted in an AUC of 0.84 (95% CI 0.83-0.85) for
women and 0.86 (95% CI 0.85-0.86) for men, indicating strong discriminatory ability
between those who do and do not develop a new cSCC within 3 years.

Basal cell carcinoma.

A 29-SNV PRS for BCC, created using summary statistics from published GWAS, revealed
a higher relative risk for BCC with increasing percentiles of the PRS (unpublished data). A
2-fold increased risk of BCC was observed at the 86! percentile of the PRS for men and the
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95t percentile for women, indicating that 14% of men and 5% of women can be identified
at clinically increased risk of BCC using the PRS. Using five loci, the PAR for BCC was
estimated at 45% 3%, and when variants from four additional loci were included (KR75,
9p21, 7932, TERT-CLPTMIL), this estimate increased to 74% 43, suggesting that these
additional loci account for a substantial proportion of the PAR.

PRS developed using individual-level data have also been associated with an approximate 3-
fold increase in risk of BCC 4451, A 19-variant PRS, developed using data from the
Michigan Genomics Initiative, was significantly associated with BCC risk (OR=2.7, 95% CI
2.2-3.2; top versus bottom quartile, adjusted for age, sex, ancestry, and genotyping array) 44.
In a study of renal transplant recipients 1, a 3-fold increase in risk of BCC was observed
after adjustment for age at transplant, era of transplant, recruitment site, and ancestry
(OR=3.03, 95% CI 1.78-5.16, per one standard deviation increase in the normalized PRS).
The predictive power of a PRS for BCC risk has not been explored in the general population.

Discussion

Non-Genetic Skin Cancer Risk Prediction Models.

Several groups have developed risk prediction models for melanoma, cSCC, and BCC using
demographic, lifestyle, and clinical risk factors. For melanoma, models frequently contain
age, sex, hair colour, sunburn history, number of nevi, skin type (including skin colour and
tanning ability), freckle density, first degree family history of melanoma, history of KCs, and
measures of sun/UV exposure as predictors, with varying discriminatory ability (AUC 0.62—
0.86) 23-56_ prediction models for KCs, particularly among organ transplant recipients
(OTRs), who are at substantially greater risk of developing post-transplant cutaneous
carcinomas, have also been evaluated °. Predictors include age at transplant, sex, eye
colour, skin type, daily UV exposure, climate, childhood sunburn, and pre-transplant KC,
Bowen’s disease, or actinic keratosis 5880, For KC risk prediction in the general population,
a model containing age, sex, ethnicity, skin colour, tanning ability, freckling tendency,
number of childhood sunburns (age <10), previously excised or destroyed skin lesions, and
smoking status achieved an AUC of 0.80 (95% CI 0.79-0.81) 1.

Potential Clinical Use of PRS in Cutaneous Malignancies and Future Directions.

Risk prediction models based on demographic, lifestyle, and clinical variables have resulted
in varying degrees of discriminatory power and adding PRS to models containing these
features modestly improves predictive value. In the general population, PRS may be used to
identify individuals at both ends of the risk spectrum: those who are at higher risk for skin
cancer and would benefit from routine screening, and those who are at very low risk, for
whom reduced frequency of skin screening may lead to fewer unnecessary procedures and
alleviate patient anxiety. Despite the potential for PRS to improve skin cancer risk
stratification beyond that currently afforded by non-genetic risk factors, the available data do
not yet support their use in routine clinical practice. Given that relatively few studies have
investigated PRS, particularly for KCs, more data are needed before conclusions as to the
efficacy of PRS can be drawn. If additional studies, ideally incorporating both genetic and
non-genetic risk factors, demonstrate substantial increases in the AUC, a stronger argument
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for the use of PRS in clinical practice may be made. This is supported by the demonstrated
clinical utility of PRS for breast and prostate cancers, for which commercial panels are now
available. Clinical trials to evaluate the ability of PRS to inform breast cancer screening
recommendations are currently underway 2:63, We propose that similar utility could be
gained by adding PRS to risk prediction methods for cutaneous malignancies, which may
then be used to inform screening recommendations for high- and low-risk individuals.
Realizing this potential will require large cohorts with detailed genetic and non-genetic risk
factor data for model development and validation.

One area where PRS may show particular value is in improving risk stratification for OTRs.
Fitzpatrick skin phototype and polymorphisms in the OCAZ/HERCZ and /RF4 pigmentation
genes have been associated with development of post-transplant cSCC 64-66. Additional
research is needed to determine whether PRS can improve risk prediction above established
risk factors. PRS may also explain some of the heritability in families containing multiple
skin cancer diagnoses and aid in pathologic diagnoses. Evidence suggests that histologic
factors may affect tumour aggressiveness and patient prognosis in melanoma and KCs 67:68,
One study, for example, found that two SNVs in /RF4and PLAZG6 were associated with
BRAF/NRAS melanoma subtypes 9. However, PRS studies to date have combined
histologic subtypes together, which could lead to confounding. Additional studies are
needed to clarify the relationships between PRS and histologic subtypes in cutaneous
malignancies.

Although current PRS studies have identified only modest gains in predictive ability, even
small improvements may be informative, and incorporation of additional variants and
exposure variables may further refine risk models. Model optimization will require
additional validation studies in large cohorts containing non-genetic risk factors. As GWAS
for cutaneous carcinomas have been performed exclusively on European populations, where
incidence is highest, PRS using these data may not be generalizable to other populations.
Investigations including other races/ethnicities are needed to maximize clinical benefit.

Finally, while available research indicates that knowledge of one’s genomic susceptibility
does not influence preventative behaviour 79, skin cancer prevention has not specifically
been examined. Additional studies are needed to evaluate how knowledge of genetic risk
may affect skin cancer prevention, as well as how to effectively communicate this
information to patients 7172,

Conclusion

Our understanding of the genetic architecture of cutaneous malignancies has increased
substantially, although much work remains before clinical implementation of PRS becomes
viable for the field of dermatology. Large, well-powered studies comprehensively evaluating
PRS in conjunction with known phenotypic and clinical risk factors will be needed to
determine clinical value.
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Review questions:
What is already known about this topic?

. Over 50 susceptibility loci for melanoma, basal cell carcinoma (BCC) and
cutaneous squamous cell carcinoma (cSCC) have been identified in genome-
wide association studies (GWAS).

. Polygenic risk scores using variants identified from GWAS have also been
developed for melanoma, BCC, and ¢cSCC, and investigated with respect to
clinical risk prediction.

What does this study add?

. This review provides an overview of GWAS findings and the potential clinical
utility of polygenic risk scores for melanoma, BCC, and cSCC.
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Figure 1. Sensitivity, specificity, and receiver-operating characteristic curves.
a. Examples of receiver-operating characteristic curves (ROC). The red line demonstrates a

ROC with an area under the curve (AUC) of 0.5, indicating a predictor with no ability to
discriminate cases from controls. The solid and dashed blue lines indicate increased AUC,

and thus greater predictive ability.

b. For a given dichotomous outcome and predictor, the proportions of true positive, false

positive, true negative, and false negative cases may be defined. Sensitivity is defined as the
true positive fraction, or the proportion of cases correctly identified by the test (predictor) as
having the outcome. Specificity is defined as the true negative fraction, or the proportion of
cases correctly identified by the test as not having the outcome.
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Figure 2. Susceptibility loci identified in published genome-wide association studies.
The nearest genes to significant loci for melanoma, cutaneous squamous cell carcinoma

(cSCC), and basal cell carcinoma (BCC) are shown. Overlapping regions indicate loci
identified in more than one tumour type. Loci involved in key pathways are highlighted as
follows: skin pigmentation, red; immune regulation, blue; cell cycle progression, gold. For
¢SCC and BCC, loci at 2p22.3 (cSCC) and 21¢22.3 (BCC) include long non-coding RNA’s.
For melanoma, 1g21.3 is a region spanning 10 genes, including ARN7ISETDBI and
1g42.12 is a region including the DNA repair gene PARP. The loci at 10925.1 lies between
the SORCS1 and SORCS3 genes, which are involved in vacuolar protein production.
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