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Abstract

Oligodendrocytes (OL) are the only myelinating cells of the central nervous system thus 

interferences, either environmental or genetic, with their maturation or function have devastating 

consequences. Albeit so far neglected, one of the less appreciated, nevertheless possible, regulators 

of OL maturation and function is the circadian cycle. Yet, disruptions in these rhythms are 

unfortunately becoming a common “disorder” in the today’s world. The temporal patterning of 

behaviour and physiology is controlled by a circadian timing system based in the anterior 

hypothalamus. At the molecular level, circadian rhythms are generated by a transcriptional/

translational feedback system that regulates transcription and has a major impact on cellular 

function(s). Fundamental cellular properties/functions in most cell types vary with the daily 

circadian cycle: OL are unlikely an exception! To be clear, the presence of circadian oscillators or 

the cell-specific function(s) of the circadian clock in OL has yet to be defined. Furthermore, we 

wish to entertain the idea of links between the “thin” evidence on OL intrinsic circadian rhythms 

and their interjection(s) at different stages of lineage progression as well as in supporting/

regulating OL crucial function: myelination. Individuals with intellectual and developmental 

syndromes as well as neurodegenerative diseases present with a disrupted sleep/wake cycle; hence, 

we raise the possibility that these disturbances in timing can contribute to the loss of white matter 

observed in these disorders. Preclinical and clinical work in this area is needed for a better 

understanding of how circadian rhythms influence OL maturation and function(s), to aid the 

development of new therapeutic strategies and standards of care for these patients.
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In the central nervous system (CNS), mature myelinating oligodendrocytes (OL) send 

processes that wrap around the axons to form myelin sheaths, which insulate axons and have 

a critical influence on the passive electrical properties of neurons. Myelination involves a 

finely-tuned pathway of OPC specification, proliferation and migration followed by 
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differentiation. This is an ongoing dynamic process in the CNS and alterations due to 

external environmental influences, genetic deficiencies or disease will directly affect the 

speed at which action potentials can travel down an axon and thus change the functional 

connections among circuits in the CNS, affecting cognitive functions [1–4]. Prominent 

myelinated tracks in the CNS are commonly referred to as white matter (WM) [5–7]. Beside 

myelinating the axons and modifying their conduction velocity, OL have a number of 

supporting roles, which makes them an invaluable and irreplaceable partner for the axons. 

The latter rely on the OL also for their survival and integrity and deficits in such partnership 

play a role in neuropsychiatric and neurological disorders. As described in previous work, 

deficits in WM observed in some neurodevelopmental disorders are presumably a reflection 

of abnormalities in OL maturations or their ability to properly form and assemble myelin 

[3,4,8].

Oligodendrocyte progenitor cells (OPC) actively proliferate during brain development and 

are present in adulthood. OL lineage progression is probably the best characterized in the 

CNS (Fig. 1) and recent reviews are available [9,10]. Importantly, these are the last neural 

cells to mature, hence, this process occurs in an intricate environment under the influence of 

highly coordinated signals from the surrounding neural cells. Both cell intrinsic and extrinsic 

factors regulating OL maturation have been identified and extensively studied [11–13]. 

Many aspects of OL maturation are modulated by local extrinsic signals, including astrocytic 

and neuronal activity, as well as more global signals like hormones [13–15]. OPC and OL 

cells express a variety of neurotransmitter receptors and ion channels [16–17], and neural 

activity alters their maturation and consequently myelination of axons in both the developing 

and mature CNS. For example, some of the major neurotransmitters controlling arousal like 

Acetylcholine (ACh) and Norepinephrine (NE) regulate neurogenesis, but also OPC 

proliferation and survival [18–21]. Both neural activity and the release of neurotransmitters 

involved in the control of arousal (ACh, NE, etc) vary with a daily cycle and thus the 

circadian system is likely to influence OPC development, at least, through the regulation of 

cell extrinsic factors.

Hence, we propose that the circadian system may also be involved in the regulation of the 

intrinsic factors controlling OL maturation. Several cell types possess an intrinsic clock that 

regulate their maturations and function(s) and is aligned and reset by internal and external 

environmental cues. Segments of the cell maturation processes, such as cell cycle and 

differentiation, are “timed”. OPC, like other precursor cells, will divide a specific number of 

times controlled and limited by this intrinsic timer, before exiting the cell cycle and 

terminally differentiate [22,23]. Remarkably, this “counting” seems to be maintained even in 

the absence of a cell cycle regulator, the cyclin-dependent kinase inhibitor p27 [24]. There is 

strong evidence for a cross talk between circadian rhythms and the cell cycle [25,26]. 

Perhaps, the circadian system regulates this timing mechanism and an important area for 

future work would be to see if clock mutants with long or short cycle lengths also exhibit 

corresponding changes in OL maturation.

Although developmental myelination is not complete in the cortex until early adulthood, 

there is abundant evidence that this process can continue until late in the adult brain. Adult 

myelination is important to allow remyelination in response to injury and to permit plasticity 
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in function. Circadian rhythms and sleep are likely to be crucial regulators of the maturation 

of OPCs into myelinating OL in the adult. For example, Cirelli and colleagues [27] showed 

that OPC proliferation in the adult subventricular zone (SVZ) doubles during sleep but is 

disrupted by sleep deprivation. In the adult, levels of neural activity as well as of 

neurotransmitters, known to influence OL lineage progression at different “check-points”, 

do vary with the sleep/wake cycle (Table 1). Hence, to a first approximation the increase in 

neural activity and release of neurotransmitters, such as glutamate, during wake would 

inhibit OPC proliferation, while lower activity and reduced secretion during rest would 

allow for proliferation to occur. In agreement, it was reported that activation of glutamatergic 

receptors, AMPA-subtype, on OPC in culture as well as in vivo elicits a reversible blockade 

of proliferation and likely regulates their migration [21,28–32]. In contrast, activation of 

GABAB, but not GABAA receptors, stimulates cell proliferation and migration [28,33–35]. 

These observations are consistent with a highly plausible model in which the circadian 

system through direct regulation of arousal and neural activity would act in concert with 

sleep to regulate the temporal pattern of OPC proliferation and migration.

OL intracellular transcriptional dynamics vary with sleep/wake cycle.

OL adapt to changes in the brain and one of the most prominent changes in the CNS 

involves the daily sleep/wake cycle. Pioneering work by Cirelli [36,37] and colleagues has 

been exploring day/night differences in brain gene expression, and most importantly, how it 

is affected by sleep deprivation [38]. They reported a sleep-associated increase in the 

transcription of factors involved in OL maturation such as the insulin-like growth factor 

binding protein 2, as well as of OL genes encoding for myelin components and enzymes 

(Myelin Oligodendrocyte Basic Protein, Mobp; myelin-associated glycoprotein, Mag; 

plasmolipin, CD9, 2′:3′-cyclic nucleotide-3′-phosphodiesterase, CNPase). Furthermore, 

increased levels in the expression of genes involved in fatty acid synthesis and in the 

synthesis and transport of cholesterol, a major constituent of myelin and other membranes, 

were observed during sleep. Cirelli’s group continued this line of work by delineating the 

genome-wide mRNA profile in immature and mature OL as a function of sleep, wake, and 

acute sleep deprivation [27]. In this work, by specifically targeting mRNAs attached to 

ribosomes, so that the transcripts were more likely to be translated into proteins, they found 

that genes implicated OPC differentiation, as well as in apoptosis, cellular stress, and 

metabolism were upregulated during wake, whilst those involved in OPC proliferation, 

phospholipids synthesis, and myelination were preferentially transcribed during sleep. 

Crucially, sleep deprivation disrupted this temporal pattern of expression [38–40] and caused 

changes to myelin structure in adolescent mice [41]. This evidence advocates for the pivotal 

role of sleep/wake cycles during windows of rapid OL maturation and intense myelination, 

which bizarrely coincide with those periods in life when physiologically longer sleep times 

are natural, i.e. from birth to late adolescence. Given the well-documented restriction and 

problems with sleep in the present society, especially during vulnerable periods of brain 

development such as adolescence when myelination is an actively ongoing process, the 

authors understandably interpreted their work in the context of sleep regulation. However, 

anatomically distinct neural cell populations control sleep and circadian rhythms but work 

together to generate rhythms in sleep and rest. The temporal pattern of sleep is regulated by 
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the circadian timing system [42], and these sleep/wake effects can, and should, be 

considered as the result of circadian regulation.

The Molecular Clock

At a cellular level, circadian rhythms (Fig. 2) are generated by the highly coordinated 

functional interaction of the core circadian clock genes, such as Circadian Locomotor 
Output Cycles Kaput (Clock), Brain and Muscle Aryl Hydrocarbon Receptor Nuclear 
Translocator-Like Protein 1 (Bmal1), Period (Per)1/2/3, and Cryptochrome (Cry) 1/2. This 

clockwork drives waves of transcription in most cells in the body, including neurons and 

astrocytes. The negative transcription-translation feedback loop is dependent upon the 

interaction of two heterodimer complexes: CLOCK/BMAL1 and PER/CRY, with PER2 

levels being the limiting factor. The CLOCK/BMAL1 complex works as a transcriptional 

activator to initiate transcription of Per1/2/3 and Cry1/2 genes, then formed PER/CRY 

complexes will reach the stoichiometric levels to inhibit the transcriptional activity of 

CLOCK/BMAL1. The functional interactions of this heterodimer trigger the expression of 

the Per1/2/3 and Cry1/2 genes with a cycle length of approximately 24 hours. In addition to 

the core feedback loop, Retinoic Acid Receptor-Related Orphan Receptor (ROR) and 

Reverse ERB (REV-ERB)α/β activate and suppress Bmal1 transcription, respectively, to 

augment the 24-hour cycle. Phosphorylation of the negative regulators of the molecular 

clock (by kinases such as casein kinase I) can target these proteins for proteasomal 

degradation or increase the rate of nuclear translocation. CLOCK-controlled PAR-domain 

basic leucine zipper transcription factors DBP, TEF, and HLF are highly expressed in many 

cell populations with circadian rhythmicity [43,44]. Genome-wide analyses of the clock 

feedback loop revealed a global circadian control over processes involved in tissue-specific 

temporal regulation of functionally important pathways, such as transcription, and chromatin 

modifications and remodelling [43,44], critical players in OL maturation, regeneration and 

survival [45,46]. Broadly speaking, the targets of circadian clocks are intimately linked to 

the regulation of cell growth, maturation, metabolism, so, why not also in OL? (Fig. 2).

Somewhat surprisingly, the presence of such a circadian clock in OL has not been 

documented as yet. Nevertheless, there are good reasons to assume that such timing system 

is present in this glial cell type. First, most cell populations contain a cell autonomous 

molecular clock that gates the transcription of genes important to the function of that cell 

population, including the other main macroglial cell type, the astrocytes (see below). 

Second, OL do express most of the genes that generate circadian oscillations as reported by 

the Barres group, who carried out gene profiling using Affymetrix GeneChip Arrays in 

fluorescent-activated cell sorted OL from S100β-GFP transgenic mice at postnatal day 1 and 

30 [47]. This transcriptome database indicated that both the key positive elements Clock and 

Bmal1 as well as the negative elements Per1, Per2, Cry1 and Cry2 are expressed in mouse 

OL, and even some well-known clock-controlled genes such as D-box binding PAR bZIP 
transcription factor (Dbp). Third, a number of OL-enriched genes, such as platelet-derived 

growth factor receptor alpha (PDGFαR), myelin oligodendrocyte glycoprotein (Mog), Mag, 

myelin basic protein (MBP), CNPase, serum- and glucocorticoid-inducible kinase 1 (Sgk1) 

have been shown to be rhythmically regulated in the CNS (Fig. 3; please see: CircaDB: 

http://circadb.hogeneschlab.org/about & SCNseq: http://www.wgpembroke.com/shiny/
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SCNseq/; [48]). For instance, the expression of Sgk1 in rats OL and WM was shown to 

fluctuate accordingly with the diurnal variations of corticosterone, with a peak in the early 

night/active phase near the time for the peak of this steroid secretion [49]. Finally, there 

appear to be daily rhythms in the proliferation of OPCs in the adult hippocampus [50] and in 

the SVZ [27]. Therefore, while untested, it seems likely that the OPC and OL exhibit cell 

autonomous circadian rhythms and disrupting the circadian clock would impact OPC and 

OL, after all “they can count time”. The mechanisms through which the central clock in the 

hypothalamus would regulate cell autonomous oscillations in OPC/OL have still to be 

identified. However, it is worth emphasizing that a large number of factors known to display 

circadian fluctuations, also have a demonstrated role in OL maturation and their function, 

i.e. myelin biogenesis (Table 1). There is no shortage of candidate signalling molecules that 

could serve to link the central circadian clock with cell autonomous oscillations in OL and 

their progenitors.

Cell-type specific function of the molecular clock in OL, just a gossip?

We can only speculate about the function of the molecular clockwork in OL but, based on 

work done in other cells types, can expect at least three key intracellular processes to be 

rhythmically regulated in OL. Since the assembly of the myelin sheet requires high levels of 

lipid synthesis locally in the CNS as the blood brain barriers would largely prevent lipids 

originating in the liver from reaching the brain [51], one of the most obvious links would be 

the temporal control of cholesterol metabolism. The brain is the most cholesterol-rich organ, 

containing perhaps 20% of the whole body’s contents [52], and cholesterol metabolism is 

strongly regulated by the circadian system [53]. This rhythmicity is likely to temporally 

synchronize the consumption of cholesterol during wake to its metabolism and processing 

into cell membranes.

Next, fatty acid synthesis and β-oxidation are important for myelination and, at least in the 

liver, are tightly controlled by the circadian system [54]. Alteration of the liver circadian 

clock disrupts fatty acid biosynthesis. Mitochondrial acetyl CoA is exported to the 

cytoplasm, where ATP citrate lyase (ACLY) is a rate-limiting enzyme. The circadian peak of 

ACLY expression coincides with feeding. In addition, the rate of mitochondrial β oxidation 

is limited by the entry of fatty acyl groups into the mitochondria by carnitine palmitoyl 

transferase (CPT) 1 and 2. The levels of L-carnitine, CPT1, and CPT2 all show circadian 

rhythms. Such circadian- and feeding-mediated regulation generates a daily rhythm in fatty 

acid synthesis and oxidation, which peak during feeding and fasting, respectively.

Last, there is a growing body of data indicating that OL metabolically support the axons 

[8,55–57] and the circadian system controls the temporal pattern of mitochondrial function 

[58] (Fig. 4). The energy for the axon, in the form of ATP, would be generated from glucose 

in the neuronal cell bodies but it is likely that local energy is required to maintain axonal 

function along its long course. A detailed proteomic map of myelin has been drawn 

revealing a number of mitochondrial proteins [59], in conformity with early work [60,61], as 

well as more recent [62], that demonstrated the presence of mitochondria in the cytoplasmic 

veins of myelin-like membrane in both the peripheral and central NS. Furthermore, 

functional enzymes for the glycolytic and Kreb’s cycles are expressed in myelin [63]. More 
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recent work examined the impact of a conditional loss of the mitochondrial complex 4 

(COX) in OL [64], reporting, among other findings, no signs of demyelination or axonal 

degeneration, but increased brain lactate concentrations. The authors suggested that lactate 

originating from the OL is enough to “maintain” the axon under these low energy 

conditions. This work complements findings [65] that the lactate transporter 

monocarboxylate transporter 1 (MCT1, Slc16a1) is highly enriched within OL, and 

disruption of its functions can produce axonal damage and neuronal loss in both cell culture 

and mouse models. Notably, the Slc16a1 gene exhibits a strong circadian rhythm in the CNS 

but also in peripheral tissue (liver, heart, lung).

Undoubtedly, the circadian timing system is intimately linked to metabolism at a cellular, 

molecular and system level [66]. One of the most dramatic daily rhythms in the body is the 

feeding/fasting cycle in which an organism has a number of hours with abundant glucose 

followed by hours without [54]. The circadian system regulates both ingestive behaviours 

and the metabolic systems by which the food is processed, and as mentioned above, also 

sleep. One of oldest theories explaining the function of sleep is to reduce activity during a 

time that it is not energetically advantageous. Thus, the circadian clock coordinates 

appropriate metabolic responses within peripheral tissues with the light-dark cycle. For 

example, the liver clock will promote gluconeogenesis and glycogenolysis during the sleep/

fasting period, while fostering glycogen and cholesterol synthesis during the wake/feeding 

period.

To adapt to the daily feeding/fasting cycle, mitochondria are highly dynamic in form and 

function. Interestingly, recent studies have suggested that a viable circadian clock is required 

for the generation of new mitochondria and changes in their morphology. Furthermore, 

diurnal variations in mitochondrial respiration were shown in several organ tissues [58,67]. 

Electron carriers, also called electron shuttles, are small organic molecules that play key 

roles in cellular respiration such as nicotinamide adenine dinucleotide (NAD+). The rate-

limiting enzyme in NAD+ biosynthesis, nicotinamide phosphoribosyltransferase (NAMPT), 

and NAD+ levels both exhibit circadian oscillations under the control of the core clock 

machinery, at least in mice. In particular, they are involved along with Sirtuin (SIRT) 1/

CLOCK:BMAL1 in a feedback loop to promote oscillation of the clock gene Per2 [68]. 

Mice with a perturbed molecular clock displayed compromised mitochondrial rhythmicity 

and altered cellular respiration [69], which were restored by imposing a scheduled feeding 

time that coincided with the active phase of the animals [58]. A role for malfunctioning 

mitochondria and impaired metabolism has also been proposed in neurodegenerative 

disorders and dys/demyelinating diseases [69,70]. Children with mitochondrial disorders 

present with abnormal and delayed myelination [71]. Hence, it is possible that genetic and/or 

environmental disruption of the circadian system can contribute to perturb myelination by 

compromising the energy supplies, and so a, still to be proven, dysfunctional clock in OL 

would interfere with the reciprocal axonal-OL/myelin support.

Astrocytes are rhythmic

In contrast to the limited information about circadian rhythms in OL, compelling data 

indicate that astrocytes possess robust circadian rhythms in gene expression and that these 
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rhythms are functionally significant. Optical reporters have helped to demonstrate that 

astrocytes exhibit a robust circadian clock and rhythmic gene expression [72], and not 

surprisingly, clock genes regulate astrocytic glutamate uptake and ATP release [73–75]. The 

fact that astrocytes can exhibit circadian rhythms in intracellular calcium has been long 

appreciated [76,77], and stunning new observations suggest that their circadian clock is 

essential for the rhythms expressed in the neural circuit within the central circadian clock in 

the suprachiasmatic nucleus (SCN) [78]. These data fit nicely with other work showing that 

disruption of the molecular clock by removing Bmal1 only in astrocytes altered daily 

rhythms in behaviour [69,79,80]. Brain-specific Bmal1 deletion weakened the blood-brain 

barrier by causing loss of pericytes [82], elicited astrogliosis, microglia activation and 

elevation of inflammatory gene expression mediated in part by suppression of glutathione-S-

transferase signalling [69,81]. Functionally, loss of Bmal1 in astrocytes promoted neuronal 

death in vitro [82].

Implications for “broken” circadian rhythms in OPC and OL: 4 case studies 

to highlight the potential significance.

As detailed above, OPC/OL are likely to exhibit cell autonomous circadian rhythms and, in 

this section, we highlight some of the implications for these rhythms across different ages. In 

each of these cases, we would like to emphasize that an altered circadian clock can cause 

malfunctions of the immune system as well as metabolism. To date, it has not been possible 

to disentangle direct effects of circadian disruption on OPC/OL from those mediated by 

signalling from the neighbouring cell types.

Neonatal units and White Matter Injury

The duration of sleep that people need to be healthy varies with age with infants needing the 

most sleep, which is also, not surprisingly, the time in development when rapid OL 

maturation and myelination are occurring. This relationship could just be a coincidence but 

may also reflect a functional relationship if more sleep allows greater OPC proliferation and 

myelination as suggested by the work of Cirelli and colleagues [27,41]. This functional link 

is particularly relevant for neonatal intensive care units (NICU), which traditionally do not 

consider the importance of the light/dark cycle in the care of their patients. Many NICU 

keep their “isolettes” in constant light (LL) to facilitate the ability of the staff to monitor the 

infants. LL is particularly disruptive to the circadian timing system at a behavioural and 

system level [83], as it literally causes the single cell circadian oscillators to become 

desynchronised from each other [84]. Therefore, it should be perhaps no surprise that several 

studies on preterm infants revealed that imposing a rhythm to the NICU lighting conditions 

exerts beneficial acute effects, e.g. faster weight gain and recovery, shorter hospitalization 

[85–89]. Some benefits were found to be stronger than others, but all were encouraging. 

Lighting technologies are rapidly evolving, creating many opportunities for inexpensively 

improving the illumination of these facilities [90]. As far as we know, the long-term impact 

of the lighting conditions in the NICU on WM development in childhood and adult 

development/health has not been explored. However, this is an extremely important point as 

diffuse WM injury is extremely common in survivor preterm infants (23–32 weeks of 

gestation) and has burdensome consequence on their cognitive, sensory and behavioural 
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functions. At this time, OL maturation is ongoing in the human brain and the WM is mainly 

populated by pre-myelinating OL, a stage highly sensitive to oxidative stress and ischemia/

hypoxia-induced cell death, whereas OPC and mature OL are more resistant. These brains 

do present with hypomyelination, as, albeit OPC are present and proliferating post injury, 

pre-OL fail to progress along the lineage with consequent failure in myelination [4,10,91]. 

This raises the possibility that the constant light in the NICU could further endanger the, 

already, aberrant OL maturation by, perhaps, disturbing and desynchronising their internal 

rhythms. Mechanistically, it is not known if the benefits observed by imposing a light-dark 

cycle were mediated by sleep and circadian rhythms on OPC development, but this is an 

important area for future work.

Poor sleep in Adolescents with Intellectual and Developmental Disabilities (IDD)

Adolescence is a crucial window of brain development with actively ongoing myelination 

along with refinement and pruning of synapses in regions centrally involved in cognitive 

functions and profound behavioural changes. Environmental stressors at such sensitive 

period may trigger long lasting changes in brain wiring and the emergence of psychiatric 

syndromes, which will have a worse outcome in individuals rendered more susceptible by 

genetic predisposition [4,92,93].

A significant proportion of individual with IDD experiences disturbances in their daily 

sleep/wake cycles, which become particularly obvious during adolescence. Among the most 

common complaints are delayed bedtime and frequent nocturnal awakenings [94,95]. 

Perhaps because of this disrupted temporal pattern of sleep, individuals with IDD are more 

exposed to light via electronic screens during the night [96,97]. This nocturnal light 

exposure by itself has been shown to delay sleep in healthy young people [98–100]. These 

disruptions to sleep and circadian rhythms could also impact OL maturation and function. 

Several studies have found evidence for abnormalities in white matter connectivity in autism 

and other IDDs [101,102], although these findings are not universal [103]. Even in typically 

developing adolescence, there appears to be a relationship between white matter structures 

and cognitive abilities [104]. Intriguingly, sleep variability in adolescence has been 

associated with alterations in brain connectivity, reduced academic performance and 

increased risk-taking behaviour [105–107].

In general, adolescents are, already, particularly vulnerable to disruption of the circadian 

timing due to social influences [108,109]. The human circadian cycle varies with age and 

young adults have the longest cycle length. This translates to a natural tendency to stay up 

late and sleep in for many in this age group. Cross-cultural data suggests a typical mid-point 

of sleep to be between 5 and 5:30am for young adults [110]. This tendency runs into direct 

conflict with school start times that frequently befall at 7:30 in the morning. So that, to get to 

school on-time, many teens are forced to wake up between 5:30–6:00am, or just after the 

midpoint of their sleep cycle. Of course, additionally demanding loads of homework and 

extracurricular activities make the sleep problem even worse as does the use of light-

emitting devices not only for homework, e.g. entertainment and socialisation. The net result 

is a population of sleep-deprived teens with altered circadian cycles. Later school start times 

have been associated with improved sleep and academic performance [111]. Given the links 
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between circadian rhythms, sleep and OL maturation highlighted above, it seems likely that 

the early school start times would be negatively impacting the myelination in the brain.

Multiple sclerosis (MS)

MS is a demyelinating disease with an age of onset starting in the 20s and lasting through 

middle age [112]. Sleep disturbances characterised by sleep fragmentation, apnoea, and 

daytime sleepiness are common in MS patients [113,114]. The majority of these data come 

from patient surveys providing valuable, although subjective, insights, some of which were 

corroborated by more quantitative EEG-based, polysomnography analyses [115]. These data 

also indicated that there is a strong correlation between the individuals with the worse sleep 

pattern and the severity of their clinical symptoms [116–118]. These findings alone do not 

specifically implicate circadian dysfunctions. For instance, sleep apnoea is directly related to 

respiration, since obstructive sleep apnoea and central sleep apnoea (more common in MS) 

occur as a consequence of disrupted airflow through the throat and miscommunications 

between the brain and the muscle that control breathing, respectively. Even so, other clinical 

data support the possible dysregulation of the circadian system in MS patients. In fact, these 

individuals exhibit malfunctioning of two of the strongest outputs driven by the central 

circadian clock, the SCN, i.e. the circadian rhythm in the secretion of cortisol [119] and 

melatonin [120,121]. Together the rhythmic secretion of cortisol (peaks in the morning) and 

melatonin (peaks in the evening) provides vital temporal cues for the circadian clocks in 

peripheral organs and tissues, such as liver, heart, adipose tissue. So, the disruption of the 

hormonal rhythms is likely to have an impact on tissues throughout the body. Furthermore, 

the severity of MS symptoms, especially central fatigue, appears to vary with the daily cycle 

[122–125]. Finally, genetic polymorphisms in the circadian clock genes Per3, Bmal1 and 

Clock have been associated with MS [126,127]. These clinical associations support the use 

of sleep and circadian measurements as biomarkers for the disease progression [128] but, of 

course, do not establish causal relationships.

A clear missing piece in this story is the availability of data from animal models of MS to 

specifically test the involvement of the circadian system. The three most characterized 

animal models are (1) the experimental autoimmune/allergic encephalomyelitis (EAE), (2) 

the virally-induced chronic demyelinating disease, known as Theiler׳ s murine 

encephalomyelitis virus (TMEV) infection, which best mimic the autoimmune and 

inflammatory components as well as the “clinical manifestations” of MS, and (3) the 

cuprizone-induced demyelination [129], better suited to investigate myelin injury and repair. 

All of the models have advantages and disadvantages but, as far as we can tell, no work has 

been done on possible circadian dysfunction in the TMEV or neurotoxin-evoked models. In 

the EAE model, one study found a clear disruption in the diurnal (light-dark) rhythms in 

heart rate, blood pressure, corticosterone and leptin levels, along with abnormal rhythmic 

expression of PER2 in the liver [130]. A more recent study delineates a pathway through 

which the circadian timing system may affect EAE pathophysiology [131]. The authors 

reported diurnal rhythm in the accumulation and activation of various immune cells, which 

were dependent upon the circadian clock gene Bmal1. This gene is important for the 

maintenance of anti-inflammatory responses, and its loss in myeloid cells enhanced the 

inflammatory environment in the CNS through the expansion and infiltration of IL-1β-
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secreting monocytes. The result was elevated levels of activated T-cells in the absence of 

Bmal1 or at times of the day when BMAL1 levels are naturally low. This study revealed the 

importance of the molecular clock in the immune cells but did not explore the possible 

impact of EAE on the central circadian timing system. A critical test to determine the causal 

involvement of the circadian system would be to place the organism in constant darkness 

and determine if the rhythmicity and robustness of the wake/sleep cycles are preserved. This 

is difficult to do in humans and animal are critical to address this issue as well as exploring 

the underlying pathogenesis. Future work should examine validated animal models of MS to 

confirm that the genetic or environmental disruption of the circadian clock impacts 

myelination/remyelination but also to develop new treatments.

An intriguing example of the interactions between circadian disorders and MS comes from 

work on the interplay between the PPARγ and the WNT/β-Catenin signalling pathways 

[132]. PPARγ is a circadian transcription factor [133], know to regulate rhythmic 

metabolism, including glucose and lipid metabolism, and to have an anti-inflammatory 

effect by acting on the levels of NF-κB. Dysregulation of the circadian system results in the 

activation of NF-κB [134,135], which in turn leads to the upregulation of WNT/beta-catenin 

pathway. Impaired OPC differentiation and failure to remyelinate in MS and EAE are, at 

least in part, a consequence of overactivation of the WNT/β-Catenin signalling pathway. 

PPARγ absence aggravates EAE pathophysiology, whilst, its agonists have shown anti-

inflammatory and neuroprotective effects, in addition to rendering the environment 

permissive to remyelination and ameliorating both EAE and MS symptoms [132]. Hence, 

PPARγ agonists appear a promising treatment to promote remyelination by abolishing the 

prohibitive effects of the WNT/beta-catenin pathway through regulation of NF-κB activity.

Huntington Disease (HD)

HD is a progressive neurodegenerative disorder caused by a CAG trinucleotide repeat 

expansion within the Huntingtin gene, and a typical middle age onset inversely correlated 

with the length of the repeats [136]. Recent evidence suggests that myelin loss and circadian 

dysregulation may be centrally involved in HD. The hallmark pathology in HD is loss of 

neurons in the striatum with consequent decline of motor functions. However, cognitive 

impairments along with altered sleep/wake cycles manifest much earlier in pre-symptomatic 

stages. Prior work has firmly established loss of white matter in HD patients [137–140]. 

Myelin deficits have, as well, been reported in mouse models of HD [141–143] along with 

altered levels of cholesterol in the striatum [144], gangliosides in the corpus callosum [145] 

and altered transcription of myelin-related genes [146]. In addition, sleep disorders are 

extremely common in HD patients and have detrimental effects on the daily functioning and 

quality of life of patients and their caregivers [147,148]. One of the first signs of the disease 

in HD patients is a phase delay in the nightly rise in melatonin [149] and, by the end of life, 

the central circadian clock (SCN) shows evidence of degeneration [150]. Mouse models of 

HD also exhibit a progressive and rapid breakdown of the circadian rest/activity cycle that 

closely mimics the condition observed in human patients. Phenotype includes loss of 

consolidated sleep, increased wakeful activity during the rest phase, and more sleep during 

the active phase [147,151–153]. Collectively this prior research supports the hypothesis that 

circadian dysfunction is an integral component of HD pathophysiology and could be 
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contributing to the deficits in white matter. Recently, we have shown that some of the 

behavioural, physiological, and transcriptional deficits in HD animal models were improved 

by ‘re-aligning’ the circadian timing of these mice by imposing a daily feeding/fasting cycle 

[154,155]. We are presently determining whether restoration of the circadian rhythms would 

delay the loss of axonal and myelin integrity observed in these models and perhaps similar 

environmental manipulations could become regular practice in the preventive treatment of 

HD and similar neurodegenerative disorders.

Conclusions

In conclusion, although not proven, the findings presented and discussed in this review are 

consistent with the assumption that OL and their progenitors contain their own cell-

autonomous circadian clock. The function of this clock would be to control the temporal 

pattern of gene expression of transcripts important for OL maturation and myelination 

during windows of rapid brain development plus additional critical functions in the adult 

CNS. The circadian clock is intimately tied to cellular metabolism and there is increasing 

evidence that the OL metabolically support the axons that they insulate. In the liver, the 

circadian system strongly regulates cholesterol and lipid metabolism: two biochemical 

processes also important in OL. These cellular clocks are normally synchronized by a neural 

circuit centred in the SCN. The SCN circuit synchronizes the rest of the CNS through 

control of centrally active hormones including glucocorticoids and melatonin as well as the 

driving of neural activity and secretion in arousal centres in the locus coeruleus (NE), Raphe 

nucleus (5HT) and basal ganglia cholinergic cell populations (ACh). Many of these 

hormones and neurotransmitters have been shown to alter OPC proliferation, migration and 

lineage progression, and now Cirelli and colleagues [27,41] have extensively documented 

the impact of sleep on these cells. Finally, many individuals in the present society exhibit 

disrupted sleep/wake cycles, including patients with IDD or neurological/neurodegenerative 

disorders, raising the possibility of underlying alterations of the circadian timing system in 

the aetiology of these disorders.
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Fig. 1: Circadian regulation of OL maturation likely occurs at multiple points.
The circadian system (shown by the sine wave) likely gates the production of OPCs from 

stem cells [156] and modulates their lineage progression through its regulation of extrinsic 

factors like neural activity, secretion of neurotransmitters, levels of growth factors and 

hormones. Schematic representation of the developmental stages of the OL lineage, after 

Traiffort et al., 2016, [157], along with a list of some of the commonly used stage-specific 

markers.
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Fig. 2: Circadian timing system is likely to be active in OPC and OL.
A. schematic of the transcriptional/translational negative feedback loop that drives circadian 

rhythms in gene expression in most cells in our body. At the beginning of the cycle, CLOCK 

and BMAL1 protein complexes bind a specific promoter region (E-box) to activate the 

transcription of a family of genes including the Period (Per1/Per2/Per3) and Cryptochrome 
(Cry1/Cry2) genes. The levels of the transcripts for Per and Cry reach their peak during mid 

to late day, while the PER and CRY proteins peak in the early night. The PERs, CRYs, and 

other proteins form complexes in the cytoplasm that translocate back into the nucleus and 

turn off the transcriptional activity driven by CLOCK–BMAL1 with a delay (due to 

transcription, translation, dimerization, nuclear entry). The proteins are then degraded by 

ubiquitation allowing the cycle to begin again. In its simplest form, many cells contain this 

molecular feedback loop that regulates the rhythmic transcription of a number of genes. 

Additional feedback loops serve to contribute to the precision and robustness of this core 

oscillation. B. Microarray analysis indicates that OL express most of the genes that generate 

circadian oscillations [47]. The temporal profile of clock gene expression in OLs has not 

been established. A number of gene networks critical to OL function are known to be 

rhythmic and listed in this figure. C. O4 (left, green) and D. CNPase (right, white) positive 
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OL in the white matter of adult C57bl/6j mice express PER2 (magenta). Arrows highlight 

OL co-expressing the markers. Mice were perfused at Zeitgeber Time (ZT) 6 and double-

immunolabelling for O4 or CNPase and Per2 was performed as previously reported 

[158,159]. PER2 expression can be also appreciated in other neural cells surrounding the O4 

positive OL. It should be noted that cells from different lineages will exhibit the peak of 

PER2 expression at different phases of the daily rhythm. The O4 hydridoma was a kind gift 

of Drs. Pfeiffer and Bansal, University of Connecticut [160,161].
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Fig. 3: Transcripts of OL specific genes are rhythmically expressed.
Search of publicly available databases indicates that a number of OL-enriched genes express 

a daily rhythm. Expression levels were measured by RNA-seq. A. Platelet-derived growth 

factor receptor alpha (Pdgfra), B. Myelin basic protein (Mbp), and C. Myelin 

oligodendrocyte glycoprotein (Mog). (SCNseq: http://www.wgpembroke.com/shiny/

SCNseq/) [48]. Hitherto, the functions of these transcriptional rhythms are unknown.
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Fig. 4: Circadian clock likely to influence metabolic role of mature OL.
There is a growing body of data indicating that OL metabolically support axons [8,55,57]. 

The circadian system controls the temporal pattern of mitochondrial function [58] as well as 

the availability of glucose. Some of the key gene networks known to be regulated by the 

circadian system include the transporters Glut1 and MCT1, glycolysis, cholesterol as well as 

lipid biosynthesis, after Saab et al., 2016 [8] & Saab and Nave, 2017 [57].
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Table 1:
Factors known to display circadian fluctuations have a role in OL maturation as well as 
myelination, another link?

The timing of sleep and arousal is controlled by the circadian timing system with a central clock located in the 

suprachiasmatic nucleus (SCN) of the hypothalamus. The SCN synchronizes independent circadian clocks 

located in each organ of the body to generate tissue specific rhythms. Light entrains the master pacemaker in 

the SCN, which in turn synchronizes extra-SCN central (brain) and peripheral clocks. Brain clock outputs 

include behavioural rhythms (i.e., sleep, feeding), while peripheral clock outputs include metabolic rhythms 

(i.e., glucose and lipid homeostasis). Among the rhythmically regulated SCN outputs important for 

oligodendrocytes are melatonin, glucocorticoids, arousal circuits mediated by NE and ACH.

Additional factors and supporting evidence, not an exhaustive list

Insulin
Roth et al. (1985) J Neurol Sci 71(2–3):339–50
Haroutunian et al (2014) Glia 2014 62(11):1856–77
Chirivella et al. (2017) Stem Cells 35(12):2403–2416

Glucocorticoids Chetty et al. (2014) Mol Psychiatry 19(12):1275–1283
Hinds et al. (2017) PLoS One 12(4):e0175075

Thyroid hormone
Almazan et al. (1985) Dev Neurosci 7(l):45–54.
Lee & Petratos (2016) Mol Neurobiol 53(9):6568–6583
Zhang et al. (2016) Mol Neurobiol 53(7):4406–16

Melatonin Wen et al. (2016) J Neuroimmune Pharmacol. ll(4):763–773
Ghareghani et al. (2017) Cell Mol Neurobiol. 37(7):1319–1324

BDNF Miyamoto et al. (2015) J Neurosci 35(41): 14002–8
Peckham et al. (2016) Glia 64(2):255–69

Norepinephrine
Ghiani CAetal. (1999) Development 126(5):1077–90
Ghiani & Gallo (2001) J Neurosci 21(4):1274–82
Marinelli et al. (2016) Front Cell Neurosci. 10:27

Acetylcholine

Cohen et al. (1996) Brain Res Mol Brain Res 43,193–201
Zhou et al. (2004) Cell Biol Int 28:63–67
De Angelis et al. (2012) Dev Neurobiol 72(5):713–28
Imamura et al. (2015) J Neurochem. 135,1086–1098
Marinelli et al. (2016) Front Cell Neurosci. 10:27
Fields et al. (2017) Glia 65(5):687–698

Histamine Chen et al. (2017) PLoS One 12(12):e0189380
Schwartzbach et al. (2017) J Neurol 264(2):304–315

Glutamate Gallo et al. (1996) J Neurosci 16(8):2659–70
Gallo & Ghiani (2000) Trends Pharmacol Sci 21(7):252–8
Fannon et al. (2015) Glia 63(6):1021–35

GABA
Yuan et al. (1998) Development 125(15):2901–14
Luyt et al. (2007) J Neurochem 100(3):822–40
Hamilton et al. (2017) Glia 65(2):309–321.
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