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Nonlinear heart rate variability 
biomarkers for gastric cancer 
severity: A pilot study
Bo Shi1, Lili Wang2, Chang Yan3, Deli Chen2, Mulin Liu2 & Peng Li   3,4

Identifying prognostic factors by affordable tools is crucial for guiding gastric cancer (GC) treatments 
especially at earlier stages for timing interventions. The autonomic function that is clinically assessed by 
heart rate variability (HRV) is involved in tumorigenesis. This pilot study was aimed to examine whether 
nonlinear indices of HRV can be biomarkers of GC severity. Sixty-one newly-diagnosed GC patients 
were enrolled. Presurgical serum fibrinogen (FIB), carcinoembryonic antigen (CEA), and carbohydrate 
antigen 19-9 (CA199) were examined. Resting electrocardiogram (ECG) of 5-min was collected prior to 
surgical treatments to enable the HRV analysis. Twelve nonlinear HRV indices covering the irregularity, 
complexity, asymmetry, and temporal correlation of heartbeat fluctuations were obtained. Increased 
short-range temporal correlations, decreased asymmetry, and increased irregularity of heartbeat 
fluctuations were associated with higher FIB level. Increased irregularity and decreased complexity 
were also associated with higher CEA level. These associations were independent of age, sex, BMI, 
alcohol consumption, history of diabetes, left ventricular ejection fraction, and anemia. The results 
support the hypothesis that perturbations in nonlinear dynamical patterns of HRV predict increased GC 
severity. Replication in larger samples as well as the examination of longitudinal associations of HRV 
nonlinear features with cancer prognosis/survival are warranted.

The fact of late-stage presentation and inaccessible treatment is urging an early diagnosis of cancer, the second 
leading cause of death worldwide. Such a malignancy spreads equally without preference on human beings all 
over the world but gastric cancer (GC) acts rather eccentrically that has been pushed out as an exception. It is so 
common in China and other East Asia countries as well, ranking the second in cancer death as opposed to the 
fifth globally1. To improve GC prognosis and facilitate a better treatment planning, early and sensitive diagnosis 
with feasible and affordable clinical measurements is essential.

Converging evidence has suggested a pivotal role of the autonomic control in tumor progression, in par-
ticular the contribution of the vagal nerve activity through many tumor-inhibiting mechanisms2,3. As a clinical 
routine, the measurement of electrocardiogram (ECG) or more specifically the analysis of the beat-to-beat ECG 
RR interval variations – the heart rate variability (HRV) – is an optimal noninvasive biomarker for the auto-
nomic regulation4,5. In previous studies, reduced HRV was found in cancer patients compared to healthy peers6. 
Lower HRV at baseline was also reported to predict increased carcinoembryonic antigen (CEA) months later in a 
historical-prospective study7. In addition, in a most recent systematic review on HRV and cancer prognosis8, 19 
studies that involved various kinds of cancer patients were included and appraised. Regardless of the cancer types, 
this review concluded an adverse effect of lower HRV towards shorter survival, higher tumor burden, or more 
advanced metastasis stage. Consistently, in another recent clinical study of GC patients9, lower HRV was found to 
be associated with advanced clinical stage, increased tumor size, tumor infiltration, lymph node metastasis, and 
involvement of distant organs.

Surprisingly, all studies reviewed above used only traditional linear HRV measures, albeit a commonly 
accepted nonlinear nature of HRV10,11. It is considered highly complex owning to the competition between spon-
taneity and adaptability of the heart beat regulation. Across a variety of studies in the field of cardiovascular 
diseases, nonlinear dynamical HRV analysis has shown a tremendous advantage over these linear time- and 
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frequency-domain methods10–17. Therefore, we would like to examine the potential of nonlinear HRV meas-
ures in cancer diagnosis, prognosis, and treatment planning. At the time of analysis, 61 consecutive patients 
diagnosed with GC were enrolled. In this pilot phase, we explored the relationships of 12 commonly-used non-
linear HRV measures including (1) six entropy-based measures: approximate entropy (ApEn), sample entropy 
(SampEn), fuzzy entropy (FuzzyEn), permutation entropy (PermEn), conditional entropy (CE), distribution 
entropy (DistEn); (2) four asymmetry indices: Porta’s index (PI), Guzik’s index (GI), slope index (SI), area index 
(AI); and (3) detrended fluctuation analysis (DFA) derived metrics α1 and α2 with serum indices that are highly 
relevant to cancer prognosis including fibrinogen (FIB)18,19, CEA20, and carbohydrate antigen 19-9 (CA199)21. We 
hypothesized that patients with nonlinear HRV measures changing towards lower complexity/higher randomness 
had increased serum FIB, CEA, and CA199 levels.

Results
Figure 1 shows examples of RR interval time-series that illustrate the construction of RR interval time-series 
from ECG without ectopic beats and with ectopic beats, respectively. Table 1 summarizes the demographics and 
the clinical and HRV measures of patients. Pearson correlation analyses resulted in six nonlinear HRV features, 
i.e., FuzzyEn, PermEn, DistEn, PI, α1, that had significant (p < 0.1) correlations with at least one of the three 
clinical GC parameters (Table 2). Based on these results, linear regression models of FIB with separately FuzzyEn, 
PermEn, PI, or α1 were performed; linear regression models of CEA with PermEn, DistEn, or PI separately were 
performed; linear regression models of CA199 with PI or GI were separately examined. Results from linear 
regressions were summarized in Table 3.

After correcting for multiple comparisons, α1, PI, and PermEn were significantly associated with FIB, specif-
ically, FIB increased by 0.41 ± 0.10, −0.35 ± 0.10, and 0.30 ± 0.11, respectively, for each 1-SD increase in α1, PI, 
and PermEn (all false discovery rate [FDR]-corrected p < 0.05). PermEn and DistEn were significantly associated 
with CEA, specifically, CEA increased by 0.36 ± 0.15 and −0.32 ± 0.14, respectively, for each 1-SD increase in 
PermEn and DistEn (both FDR-corrected p < 0.05). These five significant associations are further explained by 
the partial correlation plots as shown in Fig. 2 (the corresponding correlation plots without adjust for demograph-
ics were shown in Fig. S1 documented in the online Supplemental Materials). No parameters were significantly 
associated with CA199. After further adjusting for BMI, alcohol consumption, history of diabetes, Hb, and LVEF, 
all these associations still held with slightly changes in the estimated coefficients as shown in Table 4.
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Figure 1.  Construction of heart rate variability time-series. Upper panel: shown left an electrocardiogram 
(ECG) segment (a zoomed-in portion from the complete recording) without ectopic beats and right another 
ECG segment with ectopic beats (the beat marked in red). Middle panel: the time interval (RR interval) 
between the current R beat and the following R beat. Two anomaly intervals related to the ectopic beat are 
shown in red with gray dashed lines on the right-hand side. Bottom panel: the time-series used for analysis. 
The RR interval time-series on the left-hand side without anomalies is used directly for analysis. The anomalies 
on the right-hand side are removed and the resulted two pieces are sewed together to make one time-series for 
analysis.
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The associations of FIB with α1, PI, and PermEn were also significant in secondary analysis using logistic regres-
sion with dichotomized outcomes, specifically, the odds of having higher FIB increased by 168% (95% confidence 
interval [CI]: [43%, 478%]), −52% (95% CI: [−76%, −14%]), and 79% (95% CI: [2%, 232%]), respectively, with 

Variables Values

Demographics

N (female/male) 61 (16/45)

Age (years) 63.6 (10.4)

BMI (kg/m2) 22.6 (3.3)

Medical

History of alcohol consumption (yes/no) 9/52

History of diabetes (yes/no) 11/50

LVEF 56.9 (4.0)

Hematology

FIB (g/L) 3.49 (0.84)

CEA 3.32 [4.66]

CA199 13.6 [48.31]

Hb 125.5 (21.4)

HRV

ApEn 0.98 (0.14)

SampEn 1.82 (0.34)

FuzzyEn 1.35 (0.26)

PermEn 3.12 (0.25)

CE 1.95 (0.28)

DistEn 0.65 (0.08)

PI 0.51 (0.03)

GI 0.50 (0.01)

SI 0.50 (0.01)

AI 0.50 (0.01)

α1 1.13 (0.23)

α2 1.05 (0.19)

Table 1.  Demographical, clinical, and HRV measures of patients. Values are expressed as mean 
(standard deviation) or median [inter-quartile range]. Abbreviations: ApEn = approximate entropy; 
AI = area index; BMI = body mass index; CA199 = carbohydrate antigen 19-9; CE = conditional entropy; 
CEA = carcinoembryonic antigen; DistEn = distribution entropy; FIB = fibrinogen; FuzzyEn = fuzzy entropy; 
GI = Guzik’s index; Hb = hemoglobin; LVEF = left ventricular ejection fraction; PermEn = permutation 
entropy; PI = Porta’s index; SampEn = sample entropy; SI = slope index.

FIB CEA CA199

ApEn (−0.09, 0.5) (−0.05, 0.7) (0.00, >0.9)

SampEn (−0.09, 0.5) (0.20, 0.1) (0.00, >0.9)

FuzzyEn (−0.25, 0.05) (0.05, 0.7) (−0.01, >0.9)

PermEn (0.38, 0.003) (0.35, 0.006) (0.03, 0.8)

CE (−0.08, 0.5) (0.05, 0.7) (0.13, 0.3)

DistEn (−0.21, 0.1) (−0.32, 0.01) (0.05, 0.7)

PI (−0.44, 0.0004) (−0.26, 0.05) (−0.25, 0.05)

GI (−0.20, 0.1) (−0.06, 0.6) (−0.27, 0.04)

SI (−0.17, 0.2) (−0.15, 0.3) (−0.20, 0.1)

AI (−0.19, 0.2) (0.04, 0.8) (−0.19, 0.1)

α1 (0.49, <0.0001) (−0.04, 0.8) (0.05, 0.7)

α2 (0.21, 0.1) (−0.05, 0.7) (−0.07, 0.6)

Table 2.  Bivariate correlation between clinical gastric cancer parameters and nonlinear HRV 
parameters. Values are expressed as (r, p). Bold indicates statistically significant at p < 0.1. Abbreviations: 
ApEn = approximate entropy; AI = area index; BMI = body mass index; CA199 = carbohydrate antigen 19-9; 
CE = conditional entropy; CEA = carcinoembryonic antigen; DistEn = distribution entropy; FIB = fibrinogen; 
FuzzyEn = fuzzy entropy; GI = Guzik’s index; PermEn = permutation entropy; PI = Porta’s index; 
SampEn = sample entropy; SI = slope index.
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each 1-SD increase in α1, PI, and PermEn (all p < 0.05; Table 5). The associations of CEA with PermEn and DistEn 
became not significant in the logistic regression models. However, PI showed significant associations with CA199 
with an odds ratio of 0.53 (95% CI: [0.27, 0.95]) for 1-SD increase in PI (p = 0.03; Table 5).

Discussion
With 61 pathologically-diagnosed GC patients in this pilot study, for the first time we demonstrated significant 
associations between clinical cancer markers and several nonlinear HRV measures after accounting for multi-
ple comparisons. Specifically, the increase of short-range temporal correlations in heartbeat fluctuations (i.e., 
increase in α1 which was calculated within time scales 4–16 beats), the decrease of the asymmetry in heartbeat 
acceleration/deceleration patterns (i.e., PI), and the increase of the irregularity of heartbeat fluctuations (i.e., 
PermEn) were associated with higher serum FIB level. The increase in PermEn as well as the decrease of the 
complexity of heartbeat dynamics (i.e., DistEn) were also associated with higher serum CEA level. Importantly, 
these associations were independent of several potential confounding factors including age, sex, BMI, alcohol 
consumption, history of diabetes, Hb, and LVEF.

Outcome Predictor
Coefficient 
(Estimate ± SE)* p

FDR-
corrected p

FIB α1 0.41 ± 0.10 0.0001 0.0009

FIB PI −0.35 ± 0.10 0.0009 0.004

FIB PermEn 0.30 ± 0.11 0.007 0.02

CEA PermEn 0.36 ± 0.15 0.02 0.04

CEA DistEn −0.32 ± 0.14 0.02 <0.05

CA199 GI −0.65 ± 0.33 0.06 >0.05

CEA PI −0.27 ± 0.15 0.07 >0.05

CA199 PI −0.44 ± 0.23 0.07 >0.05

FIB FuzzyEn −0.19 ± 0.11 0.08 >0.05

Table 3.  Results from linear regression models (adjusted for age and sex). *Effects for 1-standard deviation 
increase in the predictor adjusted for covariates. Abbreviations: CA199 = carbohydrate antigen 19-9; 
CEA = carcinoembryonic antigen; DistEn = distribution entropy; FDR: false discovery rate; FIB = fibrinogen; 
FuzzyEn = fuzzy entropy; GI = Guzik’s index; PermEn = permutation entropy; PI = Porta’s index; SE: standard 
error.
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Figure 2.  Partial correlation plots for the significant associations after correcting for FDR. Re{Y ~ X}: the 
residual for regressing Y against X. Abbreviations: CEA = carcinoembryonic antigen; DistEn = distribution 
entropy; FIB = fibrinogen; PermEn = permutation entropy; PI = Porta’s index.
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Nonlinear HRV measures as markers of autonomic nervous function modulating tumor pro-
gression.  The autonomic nervous function is an accepted component involved in cancer etiology22. There 
is mounting evidence supporting the vagal neuromodulation hypothesis in tumorigenesis through its effects of 
anti-inflammation, antioxidative stress, and sympathetic activity2,3,23 including animal studies24–26 that demon-
strated a causal pathway.

Through the analysis of vagal and sympathetic modulation on heartbeat, HRV is a well-known and 
widely-applied noninvasive tool for assessing the autonomic nervous function. Increased HRV has consistently 
been associated to better prognosis in cancer patients7,8,22,27–30. There is also an increasing preference in the bio-
medical science/engineering communities of using nonlinear analysis approaches as complements to the tra-
ditional linear methods. Coming from the fields of statistical physics and nonlinear dynamics, these nonlinear 
approaches could uniquely capture the information content (i.e., entropy-based measures), asymmetry, or scaling 
invariant properties (i.e., DFA), all of which has been shown to offer additional, valuable knowledge to the under-
lying control mechanism, i.e., the autonomic regulation12,31–35.

Nonlinear HRV measures for the organisms’ plasticity and adaptability coping with stress.  
Although being not immediately interpretable with regards to the vagal or sympathetic regulation, there are pub-
lished pilot studies that have already explored the effects of vagal and sympathetic outflows on several nonlinear 
measures of heartbeat dynamics including entropy measures and DFA scaling exponents36,37. Using both human 
and animal models, they have offered the direct evidence of autonomic control influencing the complex behavior 
of the heart.

A more traditional or systemic level viewpoint is that the nonlinear behavior of HRV is attributed to the 
competing regulation on the heart coming from the two branches of the autonomic nervous system and the 
spontaneity of the organism itself. Such competition renders healthy organisms high complexity, enabling daunt-
ing plasticity and adaptability to the stresses/perturbations of everyday life38,39. In parallel with this complex 

Outcome Predictor
Coefficient 
(Estimate ± SE)* p FDR-corrected p

FIB α1 0.41 ± 0.10 0.0002 0.002

FIB PI −0.34 ± 0.11 0.003 0.01

FIB PermEn 0.33 ± 0.11 0.005 0.02

CEA PermEn 0.38 ± 0.16 0.02 <0.05

CEA DistEn −0.34 ± 0.15 0.02 >0.05

CA199 PI −0.41 ± 0.25 0.1 >0.05

FIB FuzzyEn −0.18 ± 0.12 >0.1 >0.05

CEA PI −0.24 ± 0.16 >0.1 >0.05

CA199 GI −0.52 ± 0.37 >0.1 >0.05

Table 4.  Results from the augmented linear regression models (adjusted for age, sex, BMI, alcohol 
consumption, history of diabetes, Hb, and LVEF). *Effects for 1-standard deviation increase in the predictor 
adjusted for covariates. Abbreviations: CA199 = carbohydrate antigen 19-9; CEA = carcinoembryonic 
antigen; DistEn = distribution entropy; FDR: false discovery rate; FIB = fibrinogen; FuzzyEn = fuzzy entropy; 
GI = Guzik’s index; Hb = hemoglobin; LVEF = left ventricular ejection fraction; PermEn = permutation 
entropy; PI = Porta’s index; SE: standard error.

Outcomea Predictor OR (CI 95%)* p

FIB α1 2.68 (1.43, 5.78) 0.001

FIB PI 0.48 (0.24, 0.86) 0.01

FIB PermEn 1.79 (1.02, 3.32) 0.04

CEA PermEn 1.62 (0.91, 3.03) 0.1

CEA DistEn 0.61 (0.33, 1.06) 0.07

CA199 GI 0.45 (0.17, 1.06) 0.07

CEA PI 0.64 (0.35, 1.14) 0.1

CA199 PI 0.53 (0.27, 0.95) 0.03

FIB FuzzyEn 0.62 (0.34, 1.08) 0.09

Table 5.  Results from Logistic regression models (adjusted for age and sex). Results presented in the same 
order as in Table 3. Bold p values indicate statistically significant at alpha = 0.05 level. *Effects for 1-standard 
deviation increase in the predictor adjusted for covariates. aOutcomes are each dichotomized with a threshold 
value: 3.5 for FIB, 5 for CEA, and 37 for CA199. Abbreviations: CA199 = carbohydrate antigen 19-9; 
CEA = carcinoembryonic antigen; CI = confidence interval; DistEn = distribution entropy; FIB = fibrinogen; 
FuzzyEn = fuzzy entropy; GI = Guzik’s index; PermEn = permutation entropy; OR = odds ratio; PI = Porta’s 
index.
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physiology hypothesis, aging and disease progressions are usually accompanied by a progressive reduction of the 
complexity12,34,38,40; and the other way around the degradation of the complexity also predicts future incidence of 
disease41.

In keeping with the complexity loss theory, our results suggest that GC patients with worse prognosis showed 
lower autonomic control complexity even though each different nonlinear metric showed different changing 
directions. Theoretically, the most complex system should be neither too random nor too regular; it should cor-
respond to a critical point in-between42. The departure of α1 from the value 1, whichever direction, both imply 
a reduced complexity43. In our case, it was a reduction towards the regular side (i.e., increase of α1 towards 1.5). 
The decrease of PI indicates a loss of time irreversibility, an important property of complex system which sug-
gests an evolution of the system to equilibrium or a loss of hysteresis44. The increase of PermEn indicates higher 
irregularity which suggests a seemingly controversial behavior as compared with α1. However, the calculation of 
PermEn focused on the fluctuation motifs composed of 3 heart beats that were not included in the calculation of 
α1 for sake of a robust fitting. The decrease of DistEn, although it is in nature an entropy metric, directly suggests 
a decrease in complexity as evidenced by the simulation analysis in the original DistEn study45.

Potential clinical relevance and usefulness.  With the rising of global GC epidemic, the assessment of 
HRV may potentially meet the clinical urgency in three ways:

	(1)	 HRV analysis may offer a sensitive and noninvasive tool targeting an early GC diagnosis. On one hand, the 
nonlinear approaches used in this study are necessary in the way that they cope well with the nonlinear 
and nonstationary nature, resulting thus in a more robust assessment as compared with the existing linear 
methods. On the other hand, it might be possible to leverage these nonlinear indices with the existing 
linear measures to construct an integrated biomarker for early GC diagnosis. Further studies with larger 
samples are required to test this hypothesis.

	(2)	 HRV could help with the evaluation of prognosis and treatment planning for GC patients. The link 
between HRV and survival time suggests a role of HRV in helping screen the general health status and 
prognosis of cancer patients8,29,30. Previous studies also discovered a link between serum FIB and adjacent 
organ involvement18. Given the strong associations of serum FIB with HRV nonlinear indices reported 
in the current study, HRV analysis may thrive as a sensitive tool for the surgical planning of GC patients. 
Further clinicopathological studies are warranted to formally examine their associations.

	(3)	 HRV might be a target for interventions to prevent the disease or to slow down the progression. Although 
only cross-sectional associations were reported in this current study, previous animal studies have estab-
lished a causal link between vagal activity and tumor genesis24–26. A case-control study that focuses on ex-
posure to interventions improving HRV especially in terms of nonlinear properties is required to validate 
this causal pathway in humans.

Study limitations.  There are several notable limitations. First, the sample size is relatively small. Aside 
from the four indices (i.e., α1, PI, PermEn, DistEn) the other nonlinear HRV measures may also be correlated 
with the serum markers while their negative observations may simply be due to the power issue. Second, the 
cross-sectional nature of the study design limits our inference about longitudinal prediction ability of HRV non-
linear measures. It is of great clinical value to examine whether those presurgical HRV indices can predict longer 
term outcomes including treatment response and survival. Besides, it is also meaningful to check whether deg-
radations of these nonlinear properties in otherwise normal people predict higher risk of developing GC later. 
Third, although the FIB, CEA, and CA199 are well developed serum markers of cancer severity or prognosis, 
the gold standard is pathological examination. We are still working to retrieve and pool detailed pathology data 
together in addition to the final diagnosis and are expecting to scrutinize their interrelationships with HRV non-
linear features in follow-up studies.

Materials and Methods
Patients and data collection.  This study was approved by the Institutional Review Board of The First 
Affiliated Hospital of Bengbu Medical College and was performed in accordance with the ethical standards laid 
down in the 1964 Declaration of Helsinki and its later amendments. From March 2018 to December 2018, 126 
patients were diagnosed with GC based on endoscopy and pathological examinations in The First Affiliated 
Hospital of Bengbu Medical College. Among them, 90 patients provided written informed consent and were 
enrolled in this study.

Serum FIB, CEA, and CA199 levels were examined before breakfast 1-week before surgical treatments. 
FIB levels were determined using the Clauss method (Sysmex CS51000, Sysmex Corporation, Kobe, Japan). 
Chemiluminescent assays were used to determine the CEA and CA199 levels (Architect i2000sr, Abbott 
Diagnostics, Abbott Park, IL, USA). ECG data were recorded continuously for 5 min one day before treatments 
with patients lying down for at least 20 min before the formal collection (HeaLink-R211B, HeaLink Ltd., Bengbu, 
China). The sampling frequency of ECG collection was 400 Hz. The precordial V5 lead was configured and the 
Ag/AgCl disposable electrodes were used (Junkang Ltd., Shanghai, China).

We further excluded participants with the following conditions: (1) recurrent GC (N = 1), (2) poor ECG qual-
ity (N = 2), (3) presence of ectopic beats (>10% of all beats; N = 8), or (4) administering of blood transfusion 
(N = 15) or chemotherapy (N = 3) prior to ECG collection. Therefore, data of 61 participants were presented and 
analyzed in this current study. Their demographics and clinical characteristics were shown in Table 1.

https://doi.org/10.1038/s41598-019-50358-y


7Scientific Reports |         (2019) 9:13833  | https://doi.org/10.1038/s41598-019-50358-y

www.nature.com/scientificreportswww.nature.com/scientificreports/

Nonlinear HRV analysis.  R-wave peaks were located automatically using a template-matching approach46 
followed by visual inspections. Ectopic beats were identified manually during the visual inspection (1–3 ectopic 
beats, either premature atrial contraction or premature ventricular contraction, presented in 14 out of the 61 
patients). The final HRV time-series were constructed for each patient by consecutive normal sinus R-R intervals. 
The normal to ectopic or ectopic to normal intervals were discarded and the corresponding two segments were 
stitched together to assure a reasonable length of the RR interval time-series. Figure 1 shows examples of the 
construction of RR interval time-series without and with ectopic beats.

For each RR interval time-series, 12 nonlinear HRV indices covering the irregularity, complexity, asymmetry, 
and temporal correlation of heartbeat fluctuations were calculated. The 12 indices included (1) six entropy-based 
measures: approximate entropy (ApEn), sample entropy (SampEn), fuzzy entropy (FuzzyEn), permutation 
entropy (PermEn), conditional entropy (CE), distribution entropy (DistEn); (2) four asymmetry indices: Porta’s 
index (PI), Guzik’s index (GI), slope index (SI), area index (AI); and (3) two detrended fluctuation analysis (DFA) 
derived metrics α1 and α2. The detail algorithms for calculating these indices were summarized in Supplemental 
Methods documented in the online Supplemental Materials.

The extraction of R-peaks, visual inspections of ectopic beats, and asymmetry analysis were done in MATLAB 
(Ver. R2018a, The MathWorks Inc., Natick, MA, US). Entropy analysis was performed using the EZ Entropy soft-
ware47. The Kubios HRV software was used to perform the DFA48.

Statistical analysis.  Histograms of CEA and CA199 both showed an obvious right skewness; they were 
thus natural-log-transformed prior to further analysis (unless otherwise indicated). Bivariate Pearson correla-
tions of FIB, CEA, and CA199 with each of the 12 nonlinear HRV measures were performed to screen potential 
predictors. Conservatively, features with p level of <0.1 were considered significant. Linear regressions were then 
performed for these pairs that passed this screening process with either FIB, CEA, or CA199 as an outcome. These 
models were adjusted for age and sex. To avoid collinearity, the HRV features were each included in a separate 
regression model as a predictor. To determine the statistical significance, the Benjamini-Hochberg procedure was 
used to control for false discovery rate (FDR) within multiple comparisons49. FDR-corrected p < 0.05 is consid-
ered statistically significant. These models were then augmented by further adjusting for BMI50, alcohol consump-
tion51, history of diabetes52, LVEF53, and anemia as assessed by Hb54 followed by the same multiple comparison 
correction procedure. As an exploratory analysis, FIB, CEA, and CA199 were dichotomized each by a separate 
threshold value19: (1) FIB was considered high if >3.5 mg/mL and low if otherwise; (2) CEA was considered 
high if the original CEA level ≥ 5 and low if otherwise; and (3) CA199 was considered high if the original CA199 
level ≥ 37 and low if otherwise. Logistic regression models were performed with each of the three dichotomized 
clinical parameters as an outcome and with each feature in the corresponding significant HRV feature set as a 
predictor while adjusted for age and sex. All statistical analyses were performed using the JMP Pro (ver. 14, SAS 
Institute, Cary, NC).

Data Availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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