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ABSTRACT The goal was to investigate the mechanisms of colistin resistance and
heteroresistance in Pseudomonas aeruginosa clinical isolates. Colistin resistance was
determined by the broth microdilution method. Colistin heteroresistance was evalu-
ated by population analysis profiling. Time-kill assays were also conducted. PCR se-
quencing was performed to detect the resistance genes among (hetero)resistant iso-
lates, and quantitative real-time PCR assays were performed to determine their
expression levels. Pulsed-field gel electrophoresis and multilocus sequence typing
were performed. Lipid A characteristics were determined via matrix-assisted laser de-
sorption–ionization time of flight mass spectrometry (MALDI-TOF MS). Two resistant
isolates and 9 heteroresistant isolates were selected in this study. Substitutions in
PmrB were detected in 2 resistant isolates. Among heteroresistant isolates, 8 of 9
heteroresistant isolates had nonsynonymous PmrB substitutions, and 2 isolates, in-
cluding 1 with a PmrB substitution, had PhoQ alterations. Correspondingly, the ex-
pression levels of pmrA or phoP were upregulated in PmrB- or PhoQ-substituted iso-
lates. One isolate also found alterations in ParRS and CprRS. The transcript levels of
the pmrH gene were observed to increase across all investigated isolates. MALDI-TOF
MS showed additional 4-amino-4-deoxy-L-arabinose (L-Ara4N) moieties in lipid A pro-
files in (hetero)resistant isolates. In conclusion, both colistin resistance and heterore-
sistance in P. aeruginosa in this study mainly involved alterations of the PmrAB regu-
latory system. There were strong associations between mutations in specific genetic
loci for lipid A synthesis and regulation of modifications to lipid A. The transition of
colistin heteroresistance to resistance should be addressed in future clinical surveil-
lance.
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Pseudomonas aeruginosa, a Gram-negative nonfermenting bacillus, is responsible for
various nosocomial infections, such as pneumonia, urinary tract infections, surgical

site infections, and bloodstream infections (1). The increased capacity to develop
antibiotic resistance is due to improper and excessive use of antibiotics. Carbapenems
were introduced to treat serious multidrug-resistant P. aeruginosa infections but even-
tually led to a rise of carbapenem-resistant isolates worldwide (2).

As a consequence, interest has been rekindled in “old” antibiotics such as the
polymyxins (i.e., polymyxin B and colistin). Owing to its high activity against Gram-
negative “superbugs,” including carbapenem-resistant P. aeruginosa, colistin is now
being administered as last-resort therapy for patients with isolates against which none
of the other available antibiotics is active (3). Although colistin maintains high antimi-
crobial activity against P. aeruginosa, colistin heteroresistance, a relatively poorly re-
ported phenotype, requires more attention.

Heteroresistance, an intermediate situation, may have certain similarities and differ-
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ences, compared with homogeneous resistance. It was first described for Haemophilus
influenzae and refers to a phenotype characteristic involving the presence of resistant
subpopulations among a susceptible population (4). This phenomenon was subse-
quently found for many antibiotics among both Gram-positive and Gram-negative
bacteria (5). Colistin heteroresistance has been described (6). Multiple studies have
indicated that the presence of this phenotype may account for unexplained treatment
failures (7–9).

Colistin homogeneous resistance develops mainly due to mutations in the two-
component regulatory systems (TCSs) (PhoPQ and PmrAB) (10, 11). Specific mutations
trigger constitutive upregulation of the pmrHFIJKLM-ugd operon, which leads to the
covalent attachment of 4-amino-4-deoxy-L-arabinose (L-Ara4N) to the lipid A compo-
nent of the outer membrane lipopolysaccharide (LPS) (12–14). Recently, ParRS, CprRS,
and ColRS TCSs have also been found to play a role in colistin homogeneous resistance
in P. aeruginosa (15–17). Moreover, colistin heteroresistance mechanisms include acti-
vation of PmrAB and PhoPQ TCSs (Acinetobacter baumannii, Klebsiella pneumoniae, and
Enterobacter cloacae) (9, 18, 19), soxRS-regulated overexpression of the acrAB-tolC efflux
pump (Enterobacter asburiae and E. cloacae) (20), biofilm formation (Klebsiella pneu-
moniae) (21), and putrescine/YceI communication (Burkholderia cenocepacia) (22). How-
ever, only sporadic cases of colistin heteroresistance in P. aeruginosa have been
reported (23), and their mechanisms of heteroresistance to colistin have not been
investigated. Our aim was to determine and to compare the mechanisms that are
responsible for resistance and heteroresistance to colistin in P. aeruginosa strains
isolated from a Chinese teaching hospital.

RESULTS
Antibiotic susceptibility and homology characteristics of resistance and het-

eroresistance among P. aeruginosa isolates. Of the 736 P. aeruginosa isolates, 2
isolates (TL1671 and TL2204) were resistant to colistin, with MICs of 8 mg/liter and
4 mg/liter, respectively. It is worth noting that some isolates displayed “skipped wells”
in the first round of MIC testing, which indicated the possibility of heterogeneous
bacterial behavior against colistin. Considering that not all heteroresistant strains
exhibited skipped wells in routine susceptibility test, population analysis profiles (PAPs)
were performed as the standard method for determining heteroresistance. Of 231
carbapenem-nonsusceptible P. aeruginosa isolates, 9 heteroresistant isolates (TL1722,
TL1736, TL1744, TL2294, TL2314, TL2917, TL2967, TL3008, and TL3086) were detected.
The results showed the growth of subpopulations with 4- to 32-fold higher colistin MICs
than their parental populations (Fig. 1). The frequency of heteroresistant subpopula-
tions ranged from 3.61 � 10�8 to 7.06 � 10�6. The colistin MICs against the resistant
subpopulations remained the same after 1 week of subculturing in antibiotic-free
medium. Five of 11 colistin-resistant or heteroresistant isolates exhibited multidrug
resistance (Table 1).

Pulsed-field gel electrophoresis (PFGE) results confirmed the isogenic nature of
resistant subpopulations and their respective native strains (Fig. 1). Multilocus sequence
typing (MLST) analysis revealed that 11 (hetero)resistant isolates belonged to 10
different sequence types (STs), suggesting low homology among the investigated
isolates (Table 1).

Time-kill kinetics of colistin-resistant and heteroresistant P. aeruginosa iso-
lates. Time-kill curves for colistin against P. aeruginosa isolates TL1671 (colistin resis-
tant), TL1736 (colistin susceptible and heteroresistant), and PAO1 (colistin susceptible
and not heteroresistant) are presented in Fig. 1. For PAO1, colistin showed rapid killing
even at the lowest colistin concentration. Nevertheless, regrowth was observed at 4 to
6 h with 0.5�MIC to 1�MIC. In contrast, TL1671 and TL1736 both showed regrowth,
after a reduction, at concentrations up to 4�MIC. However, there was a substantial
difference in the killing of bacteria by colistin, with TL1736 regrowth being faster than
TL1671 regrowth, particularly at 1� and 2� MIC.
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Detection of colistin-(hetero)resistance-associated mutations. In this study,
pmrA, pmrB, phoP, phoQ, oprH, parR, parS, cprR, cprS, colR, and colS were sequenced for
2 resistant isolates and 9 heteroresistant isolates, to investigate possible mechanisms.
Major nonsynonymous substitutions in PmrB (i.e., V15I, S27R, D45E, G68S, G179D,
V185A, A190G, V199I, P216S, S257N, Y345H, and I349V) were detected in all colistin-
(hetero)resistant isolates except TL2917. The only V260G variation in phoQ was found
in the heteroresistant isolates TL2314 and TL2917. It was noticeable that both pmrB and
phoQ mutations were found in TL2917. In addition to PmrAB and PhoPQ TCSs, we

FIG 1 Verification of colistin heteroresistance, resistance, and susceptibility among P. aeruginosa isolates. (A) TL1671 (colistin-resistant clinical isolate). (B) TL1736
(colistin-susceptible and heteroresistant clinical isolates). (C) PAO1 (colistin-susceptible and control isolates). The arrows indicate the CFU of bacteria on
antibiotic-free plates and plates with the highest concentration of colistin. The blue regions represent the differences in MICs between the native strain and
the heterogeneous subpopulation.
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observed ParR (R146H) and CprS (V181I and R209L) substitutions in TL1722 (Table 2). No
mutation in colRS was detected among the isolates (data not shown).

Analysis of expression levels resulting from genetic mutations. To connect the
molecular genetic mutations described above with the transcriptional levels expected,
the pmrA, phoP, parR, cprR, and pmrH expression levels of 11 colistin-(hetero)resistant
isolates were analyzed (Fig. 2A). The results were presented in Fig. 2. All (hetero)resis-
tant isolates (except TL2314) without mutation of pmrAB showed higher pmrA expres-
sion levels (2.8- to 40.5-fold higher levels) than the reference isolates, and only 1 isolate
(TL1722) had no statistical significance (P � 0.05). The 2 isolates with phoPQ mutations
(TL2314 and TL2917) showed increased expression of phoP (12.1- and 15.7-fold higher
levels, respectively), which was found to be statistically significant (P � 0.05). TL1722,
the colistin-heteroresistant isolate with substitutions in ParRS and CprRS, also showed
significant increases in parR (6.15-fold) and cprR (161.75-fold) expression (P � 0.05). In
addition, the pmrH gene, which encodes the enzyme responsible for biosynthesis of
L-Ara4N and attachment to lipid A, showed significantly upregulated expression in all
of studied isolates (P � 0.05) (Fig. 2B and C).

Identification of L-Ara4N addition to lipid A isolated from P. aeruginosa LPS.
Lipid A extracted from (hetero)resistant strains was profiled using matrix-assisted laser
desorption–ionization time of flight mass spectrometry (MALDI-TOF MS) to analyze
modifications associated with observed genetic alterations. The structures of lipid A in
P. aeruginosa in this study showed diversity (see Table S2 and Fig. S1B in the supple-
mental material). Among them, the pentaacylated form of lipid A (wild type; m/z 1,445)
was predominant in all isolates (Fig. S1A). Lesser quantities of various modifications
accompanied the wild-type lipid A, including dephosphorylation (�PO3), deacylation
(�3-OH-C10), acylation (�3-OH-C10), palmitoylation (�C16), dehydroxylation (�OH),
hydroxylation (�OH), and glycosylation (�L-Ara4N). The corresponding m/z values of
these signature ions ware depicted. In the colistin-susceptible strain (PAO1) or sub-
populations, the ions are present at m/z 1,195, 1,274, 1,366, 1,429, 1,445, 1,462, 1,600,
1,616, and 1,684. In comparison, mass spectra of colistin-resistant populations or
subpopulations have additional ion peaks at m/z 1,497, 1,576, 1,731, and/or 1,747,
indicating a mass shift of m/z �131, caused by modification of L-Ara4N to the penta-
acylated or hexaacylated lipid A (m/z 1,366, 1,445, 1,600, and 1,616) (Fig. 3).

DISCUSSION

Colistin, regarded as a last-line antibiotic, has received increasing attention for
treating multidrug-resistant Gram-negative pathogen infections reliably (24). Despite

TABLE 2 Mutational analysis of the PmrAB, PhoPQ, ParRS, and CprRS regulatory pathways

Strain

PmrB (477 aa)a

PhoQ
(448 aa)

ParR
(235 aa)

CprS
(431 aa)

TM1
(aa 15–37)

PD
(aa 38–160)

TM2
(aa 161–183)

HAMP
(aa 186–238)

HisKA
(aa 239–304)

HATPase c
(aa 344–459)

Colistin-resistantb

TL1671 V15I P216S
TL2204 Y345H

Colistin-heteroresistantc

TL1722 V199I S257N R146H V181I R209L
TL1736 V185A
TL1744 V15I G68S
TL2294 G179D I349V
TL2314 V260G
TL2917 G179D V260G
TL2967 D45E
TL3008 A190G
TL3086 S27R

aaa, amino acids.
bFor colistin-resistant isolates, the sequences were compared with the colistin-susceptible Pseudomonas aeruginosa strain PAO1.
cFor colistin-heteroresistant isolates, the comparisons were carried out between susceptible and resistant subpopulations.
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its favorable bacterial killing, resistance and heteroresistance to colistin have been
described (3, 5). Heteroresistance is a phenomenon in which subpopulations of seem-
ingly isogenic bacteria exhibit variable susceptibilities to a particular antibiotic (9). It has
drawn extensive attention clinically, because the resistant proportion of bacterial
isolates may survive and become predominant during therapy, leading to treatment
failure and even lethal infections (25). In this study, 2 colistin-resistant isolates and 9
colistin-heteroresistant isolates were identified among P. aeruginosa clinical isolates by
the broth microdilution method and PAPs, respectively.

Molecular mechanism analysis indicated that alteration of the PmrAB regulator
system was mainly involved in colistin resistance and heteroresistance mechanisms,
while other TCSs, such as PhoPQ, ParRS, and CprRS, also played a role in mediating
colistin (hetero)resistance. Subsequently, we found that the lipid A from studied
isolates displayed additional L-Ara4N modifications, corresponding to genetic findings.

It has been said that heteroresistance serves as an intermediate stage, which could
transition from susceptibility to full resistance under certain conditions (26). We have
attempted to uncover the underlying correlation between resistance and heteroresis-
tance in P. aeruginosa through series studies.

FIG 2 Analysis of the mechanisms for colistin resistance and heteroresistance in P. aeruginosa clinical isolates. (A) Substitutions in PmrAB, PhoPQ, ParRS, and
CprRS detected in this study. Black blocks represent amino acid substitutions, while gray blocks represent nonexistence. CST-FR, fully colistin-resistant isolates;
CST-HR, colistin-heteroresistant isolates. (B) Expression levels of resistance genes in fully colistin-resistant isolates. (C) Expression levels of resistance genes in
colistin-heteroresistant isolates. SP, susceptible population; RSP, resistant subpopulation. *, P � 0.05.
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Case reports showed that both resistant and heteroresistant isolates were collected
from patients who had never been treated with colistin, thus indicating that the
resistance and heteroresistance observed may not be related to prior exposure to
colistin. Nevertheless, it was reported that colistin heteroresistance may act as a
resistance reservoir, leading to the proliferation of resistant subpopulations upon
exposure to colistin (27).

In the time-kill studies, colistin-heteroresistant isolates revealed stable growth at the
MIC and showed evident regrowth after exposure to colistin at up to 4�MIC for 24 h.
Pharmacokinetic studies demonstrated that plasma colistin concentrations in patients

FIG 3 MALDI-TOF MS of P. aeruginosa differential colistin susceptibility. The resistant isolate TL1671 and the heteroresistant pair TL1736 were grown overnight
in LB culture at 37°C, and lipids were extracted and analyzed by MS. (A and B) In the heteroresistant pair, the colistin-susceptible subpopulation shows ions
at m/z 1,366, 1,445, and 1,616, corresponding to base-pentaacylated or hexaacylated lipid A, while the resistant subpopulation shows ions at m/z 1,497, 1,576,
and 1,747, indicating an L-Ara4N addition to the base structures. The colistin-resistant isolate TL1671 also shows ions at m/z 1,497, 1,576, and 1,747. (C to E)
Molecular structures of the lipid A molecules found in mass spectra from heteroresistant and resistant isolates.
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reached 1 to 4 mg/liter after intravenous administration of colistin methanesulfonate
(24). Therefore, colistin-resistant isolates would require alternative treatment, while
colistin-susceptible isolates harboring resistant subpopulations would proliferate rap-
idly and cause clinical treatment failure.

The molecular mechanisms of resistance to colistin in P. aeruginosa, such as substi-
tutions in PmrAB, PhoPQ, ParRS, CprRS, and ColRS TCSs, have been characterized in
detail (3). In this study, the substitutions (i.e., V15I, G68S, and S257N in PmrB and V260G
in PhoQ) that had been reported previously for resistant isolates were detected in
heteroresistant isolates (28–30). Therefore, there are some similarities between colistin
resistance and heteroresistance. In addition, to our best of knowledge, this is the first
report of the S27R, D45E, G179D, V185A, A190G, V199I, P216S, and I349V substitutions
in PmrB, the R146H substitution in ParR, and the V181I and R209L substitutions in CprS
that may mediate colistin heteroresistance. It was notable that TL1722 (PmrAB, ParRS,
and CprRS) and TL2917 (PmrAB and PhoPQ) had more than one TCS involved in colistin
heteroresistance. The interplay between several genes in heteroresistance should be
further investigated.

The modification of lipid A, such as the addition of L-Ara4N, phosphoethanolamine,
and galactosamine, was linked to homogeneous colistin resistance in various bacteria
(12, 31). In P. aeruginosa, lipid A is modified with the addition of L-Ara4N through the
pmrHFIJKLM operon and under the control of pmrAB and phoPQ, which leads to colistin
resistance (32). However, there have been few studies of lipid A structure with respect
to colistin heteroresistance. Research has demonstrated that E. cloacae lipid A is
modified with L-Ara4N to induce colistin heteroresistance (14). Here we further analyzed
the lipid A profiles to uncover the LPS-modified features in heteroresistant isolates and
to determine the association between resistant and heteroresistant strains. Concor-
dantly, the lipid A profiles for both colistin-resistant strains demonstrated the addition
of L-Ara4N to the major hexa- and pentaacylated lipid A species (33). In addition, there
were lipid A differences between colistin-heteroresistant pairs. Compared to those for
susceptible subpopulations, the lipid A profiles for the resistant subpopulations dis-
played additional L-Ara4N modifications.

This study provides the first report of colistin-resistant and heteroresistant P. aerugi-
nosa isolates. Comparative results did not show discrepancies for both colistin resis-
tance and heteroresistance in P. aeruginosa being mainly caused by alterations in the
PmrAB regulatory system, resulting in upregulation of the LPS modification system. The
mechanisms involved in colistin heteroresistance are diverse and complicated, as has
been described for several bacteria (9, 18–22) and shown for P. aeruginosa. The
heteroresistance of bacteria is considered an indication of the mutator phenotype
described in the literature (34, 35). The high mutation frequency may give rise to the
emergence of resistance to antibiotics. Therefore, we screened for the mutator phe-
notype using rifampin plates (36), and we found that 5 of 9 heteroresistance isolates
had the mutator phenotype, in contrast to PAO1 (see Table S3 in the supplemental
material). Doßelmann et al. observed that mutations in mutS along with a mutator
phenotype could facilitate resistance evolution (37). The possibility of amplification-
driven heteroresistance mechanisms dependent on the genetic background of the
isolate was noted (38). The evolutionary dynamics of heteroresistant P. aeruginosa
isolates should be included in further study. Among other possibilities, the overexpres-
sion of efflux pump regulators in colistin heteroresistance cannot be ruled out. Two
studies proved that efflux pumps could confer heteroresistance to colistin in Entero-
bacter spp. and A. baumannii (8, 20). In contrast, Chambers and Sauer showed that the
MerR-like regulator BrlR could impair P. aeruginosa tolerance to colistin (39). The
participation of efflux pumps in P. aeruginosa remains to be elucidated. In addition,
biofilms constitute excellent niches for the emergence of heterogeneous variants, and
Silva et al. showed that biofilm formation could trigger heteroresistance to colistin in K.
pneumoniae (21). Interestingly, Pamp et al. indicated that colistin tolerance was related
to heterogeneity within biofilms and depended on the pmr and mexAB-oprM genes
(40). Hence, there seemed to be a complicated interplay between colistin heteroresis-
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tance and TCSs, efflux pumps, and biofilms. More studies are needed to better
understand the extent of the colistin phenomenon.

MATERIALS AND METHODS
Bacterial strains. A total of 736 nonduplicated P. aeruginosa clinical isolates were recovered from the

First Affiliated Hospital of Wenzhou Medical University, China, between 2015 and 2017. Each isolate
represents a single sample from one patient. The isolates were identified as P. aeruginosa by the Vitek
MS automated system (bioMérieux, Hazelwood, MO, USA). Colistin MICs were determined by broth
microdilution in cation-adjusted Mueller-Hinton Broth (CAMHB) (Fig. 4). The CAMHB was prepared by
adding appropriate amounts of Mg2� and Ca2� to Mueller-Hinton broth, to give final concentrations of
10 to 12.5 mg/liter and 20 to 25 mg/liter, respectively. The colistin MICs for P. aeruginosa were interpreted
according to Clinical and Laboratory Standards Institute (CLSI) guidelines (susceptible, �2 mg/liter;
resistant, �2 mg/liter) (45). ATCC 27853 was served as the quality control for susceptibility testing. The
wild-type, colistin-susceptible, P. aeruginosa strain PAO1 was included as a control.

Population analysis profiles. PAPs are used as the reference method to define antibiotic hetero-
resistance (9). The analysis was performed among 231 carbapenem-nonsusceptible isolates, based on
previous analyses (23). Bacterial cultures were grown overnight to log phase, and then serial dilutions
were plated on Luria-Bertani (LB) agar with or without various concentrations of colistin (0, 0.25, 0.5, 1,
2, 4, 8, or 16 mg/liter). Plates were then incubated at 37°C, and CFU were enumerated after 48 h. The limit
of detection was 20 CFU/ml. Colistin heteroresistance was defined as a colistin-susceptible isolate (MIC
of �2 mg/liter) with subpopulations growing in the presence of �2 mg/liter colistin (41). The rate of
colistin resistance was calculated as the number of bacterial colonies that grew on colistin-containing
plates divided by the number of bacteria that grew on LB broth without drug. For each isolate, a single
colony was selected from the highest antibiotic concentration, and the colistin MIC was reassessed after
serial passaging on antibiotic-free medium, to evaluate the stability of the heteroresistant phenotype.
Cultures with resistant or susceptible subpopulations were isolated from the highest colistin concentra-
tion or drug-free medium separately for further studies. The details are shown in Fig. 4.

Antimicrobial susceptibility testing. The MICs for clinical routine antimicrobial agents, including
amikacin (AMK), aztreonam (ATM), ceftazidime (CAZ), ciprofloxacin (CIP), gentamicin (GEN), imipenem
(IPM), levofloxacin (LVX), tobramycin (TOB), cefepime (FEP), and meropenem (MEM), were determined
using the broth microdilution method, in accordance with CLSI guidelines.

Homology analysis. PFGE of SpeI-digested genomic DNA of P. aeruginosa isolates was performed
with a CHEF-DRIII system (Bio-Rad, Hercules, CA), and banding patterns were compared according to
published criteria (42). MLST was carried out by sequencing seven housekeeping genes (acsA, aroE, guaA,
mutL, nuoD, ppsA, and trpE) (43).

Time-kill kinetics. The time-kill kinetics for colistin were examined according to a published protocol
(6), with several modifications (Fig. 4). In brief, 1 resistant isolate (TL1671), 1 heteroresistant isolate
(TL1736), and 1 control strain (PAO1) were selected as experimental strains. Tubes containing LB broth
with colistin at 0�MIC, 0.5�MIC, 1�MIC, 2�MIC, or 4�MIC for the selected isolates were seeded with
a log-phase bacterial inoculum of 107 CFU/ml. Viable cells were counted by plating 50-�l samples, after

FIG 4 Workflow for detecting colistin-resistant and heteroresistant P. aeruginosa clinical isolates and investigating mechanism differences in induction of colistin
resistance and heteroresistance.
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appropriate dilution with saline, on antibiotic-free Mueller-Hinton agar plates 0, 2, 4, 6, 12, and 24 h after
antibiotic addition. The analysis was performed independently three times for these isolates, and the
mean values of viable CFU were estimated and plotted on a semilogarithmic graph.

PCR and sequencing. Whole-cell DNA of colistin-resistant and -heteroresistant isolates was extracted
using the Bio-Spin bacterial genomic DNA extraction kit (BioFlux, Tokyo, Japan), according to the
manufacturer’s instructions. The genes pmrA, pmrB, phoP, phoQ, oprH, parR, parS, cprR, cprS, colR, and colS
in P. aeruginosa isolates were investigated by PCR using the primers and conditions described in Table
S1 in the supplemental material. The amplicons of pmrA, pmrB, phoP, phoQ, oprH, parR, parS, cprR, cprS,
colR, and colS were sequenced by Shanghai BGI Technology Co. and then analyzed with BLAST
(https://blast.ncbi.nlm.nih.gov/Blast.cgi). The sequences of isolates with homogeneous resistance were
compared with those of PAO1; for the isolates with heterogeneous resistance, comparisons were carried
out between susceptible and resistant subpopulations (Fig. 4).

Quantitative real-time PCR. Total RNAs of resistant isolates and heteroresistant isolates (includ-
ing susceptible and resistant subpopulations) were extracted from the log-phase bacterial inocula
using a bacterial RNA miniprep kit (Biomiga, Shanghai, China). An aliquot of RNA from each isolate
was subjected to cDNA synthesis using the RevertAid first-strand cDNA synthesis kit (Thermo Fisher,
Shanghai, China). Expression levels of pmrA, phoP, parR, cprR, and pmrH were performed by
quantitative real-time PCR, as described previously (24). The 30S ribosomal rpsL gene served as
the internal gene. The expression levels of five genes in heteroresistant isolates and resistant iso-
lates were determined relative to their expression levels in P. aeruginosa PAO1. For colistin-
heteroresistant isolates, the analysis of transcript levels was performed by comparing the susceptible
and resistant subpopulations (Fig. 4). Experiments for each gene were conducted in triplicate. The
primers used in this study are listed in Table S1.

Lipid A isolation from whole cells. Lipid A was isolated by using an optimized large-scale
protocol based on mild acid hydrolysis (44). Overnight cultures (200 ml at 37°C) in LB broth were
harvested by centrifugation at 3,220 � g for 30 min. Bacterial pellets were washed with single-phase
Bligh-Dyer mixture (chloroform/methanol/water, 1:2:0.8 [vol/vol]) and centrifuged at 3,220 � g for
15 min. The LPS pellets were suspended in sodium acetate buffer (50 mM [pH 4.5]) and incubated
at 100°C for 30 to 45 min. Reactions were moved into a two-phase Bligh-Dyer mixture (chloroform/
methanol/water, 1:1:0.9 [vol/vol]) and centrifuged at 3,220 � g for 15 min. The lower phases were
removed to clean tubes and dried using rotary evaporation. The dried samples contained whole-cell
extracts of lipid A.

Lipid A characterization by MALDI-TOF MS. Dried lipid A samples were resuspended in 100 �l
chloroform/methanol (1:1 [vol/vol]), and 3 �l 2,5-dihydroxybenzoic acid (DHB) matrix (20 mg/ml in
TA30 solvent) was mixed with 3 �l lipid A. Aliquots of the mixture were spotted directly onto the
well of the MALDI-TOF MS plate (ground steel). Mass spectra were recorded for optimal ion signals
in negative-ion mode using a Bruker autoflex MALDI-TOF mass spectrometer (Bruker Daltonics Inc.,
Billerica, MA, USA). Data were acquired and processed by flexControl and flexAnalysis 3.4 (Bruker
Daltonics Inc.).
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