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ABSTRACT The quorum-sensing (QS) system is an intercellular cell-cell communica-
tion mechanism that controls the expression of genes involved in a variety of cellu-
lar processes and that plays critical roles in the adaption and survival of bacteria in
their environment. The LuxS/AI-2 QS system, which uses AI-2 (autoinducer-2) as a
signal molecule, has been identified in both Gram-negative and Gram-positive bac-
teria. As one of the important global regulatory networks in bacteria, it responds to
fluctuations in the numbers of bacteria and regulates the expression of a number of
genes, thus affecting cell behavior. We summarize here the known relationships be-
tween the LuxS/AI-2 system and drug resistance, discuss the inhibition of LuxS/AI-2
system as an approach to prevent bacterial resistance, and present new strategies
for the treatment of drug-resistant pathogens.
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The quorum-sensing (QS) system is an intercellular cell-cell communication mecha-
nism that controls the expression of genes involved in a variety of cellular processes

and that plays critical roles in the adaption and survival of bacteria in their environment
(1). For intra- and interspecific communication, bacteria use chemical signals and their
corresponding receptors (2). When an extracellular threshold concentration is reached,
these molecules bind to their receptors, thereby activating the QS system. With the
discovery of autoinducer-2 (AI-2) and its corresponding synthase, LuxS, the first possible
interspecies QS system was found, as the synthase is widespread among the bacterial
kingdom in both Gram-positive and Gram-negative bacteria (3). The LuxS/AI-2 QS
system modulates various cellular processes involved mainly in the regulation of
virulence factors, bacterial luminescence, sporulation, motility, toxin production, bio-
film formation, and drug resistance (4, 5).

The emergence of antibiotic-resistant bacterial pathogens was reported in a major
health challenge worldwide (6). Recently, some studies have shown that the QS system
may be involved in bacterial resistance (7–9). Consequently, inhibition of bacterial QS
has become a new and promising antibacterial strategy, which not only prevents the
development of bacterial resistance but also eliminates the virulence factor gene
expression related to population density (10–12).

LUXS/AI-2 QS SYSTEM

The LuxS/AI-2 system, coexisting in both Gram-negative and Gram-positive bacteria,
is a QS regulatory mechanism that enables bacteria to make collective decisions with
respect to the expression of a specific set of genes by secreting and detecting the signal
molecule AI-2, a furanosyl-borate-diester as it has been identified in Vibrio harveyi, as a
furan molecule existing in Escherichia coli (13, 14). The synthesis of AI-2 involves the
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conversion of S-adenosylhomocysteine (SAH) to homocysteine either by a one-step
reaction using the enzyme SAH hydrolase (SahH) or a two-step reaction that requires
the SAH nucleosidase (Pfs) and LuxS, which catalyzes the cleavage of the thioether
linkage of SRH to produce 4,5 dihydroxy-2,3-pentanedione (DPD), which can rearrange
to R- or S-2-methyl-2,3,3,4-tetrahydroxytetrahydrofuran (R- or S-THMF), both better
known as AI-2 (15–19). The discovery that the AI-2 signal molecule produced by one
bacterial species can be sensed by bacteria of different species led to the proposition
that AI-2 is probably a universal signaling molecule that functions in interspecies
communication (20). LuxS, the AI-2 synthase, has been identified in a wide range of
Gram-negative and Gram-positive bacteria (1). LuxS not only participates in the pro-
duction of AI-2 signaling molecules but also plays an important role in activating the
methyl cycle as part of the bacterial central metabolism (18, 19). LuxS is mainly
responsible for the hydrolysis of S-adenosyl homocysteine to S-adenosylmethionine
(SAMe) as a methyl donor, which is an important pathway for bacteria to recover
methyl groups and plays an important role in bacterial vitamin synthesis and polyamine
formation (21). Challan Belval et al. showed that the luxS mutation can also cause
changes in the extracellular concentration of S-ribosyl homocysteine (SAMe with LuxS
function) (18). The biological importance of the LuxS/AI-2 QS system has been dem-
onstrated by numerous experimental evidences, which showed that LuxS/AI-2 is in-
volved in physiological processes such as biofilm formation, conjugation, virulence, and
antibiotic resistance (22–24).

LUXS/AI-2 QS SYSTEM CONTRIBUTES TO ANTIBIOTIC RESISTANCE

The modulation of antibiotic bacterial resistance by the LuxS/AI-2 system is complex
(25–27). As summarized in Fig. 1, the LuxS/AI-2 system contributes to antibiotic
resistance through effects on efflux pumps, mobile genetic elements, the VraSR two-
component system, and the folate synthesis pathway. The fact that the LuxS/AI-2
system coordinates bacterial biofilm formation further contributes to bacterial resis-
tance. Each of these aspects will be discussed separately. Table 1 lists the antimicrobials
mentioned in this review, as well as their major mechanisms of action.

LuxS/AI-2 affects drug resistance through efflux pumps. Overexpression of
multidrug (MDR) efflux pumps is considered one of the main mechanisms of bacterial
resistance (28–30). The expression of the efflux system is regulated in multiple levels,
involving local and global transcriptional regulation, as well as posttranscriptional and
posttranslational regulation (31). Studies have shown that overexpression of the QS
regulator SdiA leads to an increased expression of the AcrAB efflux pump, in addition
to participate in the MDR efflux pump system in E. coli (32). We recently showed that
the LuxS/AI-2 QS system affects the expression of the efflux pump SatAB, further
affecting the resistance to quinolone antibiotics in Streptococcus suis (33). This study
also showed that the reduced resistance of the luxS gene deletion mutant strain to the
quinolone antibiotics norfloxacin and enrofloxacin was achieved through the luxS gene
affecting the expression levels of the efflux pump genes SatA and SatB. Mou et al. (34)
showed no significant difference in cmeB efflux gene expression levels in the luxS
mutant compared to the wild type in Campylobacter jejuni. However, there is a decrease
in cmeR efflux gene expression in the luxS mutant, resulting in fewer CmeR proteins,
thereby reducing CmeABC inhibition. This may in turn lead to an increase in efflux
expression and function. Despite the lack of changes in cmeB expression, the luxS
deletion may trigger expression of other efflux systems associated with CmeR regula-
tory factors (34). In addition, bacterial signaling molecules need to be exported and
released outside the cell to be recognized by other bacteria. In Gram-negative bacteria,
the signaling molecule AHL is actively transported across the cell membrane by the
MexAB-OprM efflux pump (35). Our previous studies have brought evidence that
the signal molecule AI-2 is involved in the resistance to quinolone antibiotics (33). Once
the AI-2 produced by the luxS gene is excreted from the cells, it binds to the
corresponding receptors and regulates the overexpression of efflux pump SatAB in-
volved in bacterial resistance in S. suis. Further research in this area will reveal in depth
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the role of the LuxS/AI-2 system in controlling the effects of these efflux pumps on
bacterial resistance (33). The ability of the QS system to regulate MDR efflux pumps
represents a potential target for antibiotic resistance (36).

LuxS/AI-2 affects drug resistance through mobile genetic elements. Mobile
genetic elements such as plasmids, integron gene cassettes and transposable elements
play an important role in bacterial resistance (37). Plasmid-mediated resistance can
cause horizontal transfers among different bacteria, leading to the spread of bacterial
resistance, which can cause serious public health problems (38). Extended-spectrum
beta-lactamase (ESBL) is a type of lactamase encoded in plasmids that hydrolyzes most
of the beta-lactam antibiotics such as penicillin, cephalosporin, and aztreonam (39, 40).

FIG 1 Regulation mechanism between LuxS/AI-2 and bacterial resistance. Abbreviations: AI-2 autoinducer-2; LuxS, AI-2 synthase; LrsC, response regulator; MetF,
5,10-methylenetetrahydrofolate reductase; MetE, methionine synthase; MetH, B12-dependent homocysteine-5-methyltetrahydrofolate methyltransferase; THF,
tetrahydrofolate; GlyA, serine hydroxymethyltransferase; ThyA, thymidylate synthase; AICAR, 5-aminoimidazole-4-carboxamine ribonucleotide; DHF, dihydro-
folate; FolC, dihydrofolate synthase; FolA, dihydrofolate reductase; SAM, S-adenosylmethionine; SAH, S-adenosylhomocysteine; Pfs, S-adenosylhomocysteine
nucleosidase; SRH, S-ribosylhomocysteine; LuxS, S-ribosylhomocysteinase; DPD, 4,5-dihydroxy-2,3-pentanedione (the precursor of AI-2).
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TEM-type ESBL includes TEM-1 and TEM-2 (41). Xue et al. (42) showed that exogenous
AI-2 increased the antibiotic resistance of clinical E. coli strains isolated from cow’s
papillitis by upregulating the expression of TEM-type enzyme in an LsrR-dependent
manner. Transposons are a group of mobile genetic elements that are defined as a DNA
sequence (43). Because of its ability to move between bacterial chromosomes, plas-
mids, and phages, resistance on the transposon is more easily transmitted and dissem-
inated horizontally (44, 45). The antibiotic resistance gene tet(M) is located on the Tn916
family of junctional transposons (46). Our previous studies have shown that exoge-
nously added AI-2 affects the resistance of S. suis to tetracycline through an upregu-
lation of tet(M) gene expression. Although the specific signaling mechanism needs to
be further studied, LuxS/AI-2 appears to be the main target for preventing the spread
of bacterial resistance.

LuxS/AI-2 affects drug resistance through the VraSR two-component regula-
tory system. The two-component signal transduction system is widely distributed in
bacteria. The VraSR two-component system is an important regulatory system in
Staphylococcus aureus, allowing bacteria to sense changes in the external environment
and to adjust their response to maintain its homeostasis (47, 48). The VraSR two-
component system consists of a histidine kinase sensor protein (VraS) and an effector
regulatory protein (VraR) (49, 50). VraS autophosphorylates in vitro and rapidly transfers
phosphate groups to VraR, which selectively dephosphorylates VlaS-mediated signaling
pathways (51). Mutation or increased expression of the VraSR two-component system
is one of the mechanisms of resistance to vancomycin in Staphylococcus aureus (48).
Xue et al. (52) have shown that the loss of S. aureus luxS gene leads to a decrease in
susceptibility to cell wall synthesis inhibitor antibiotics accompanied by upregulation of
the VraSR two-component system. This revealed that the luxS gene may regulate
bacterial resistance through a VraSR two-component regulatory system (52). In the
presence of exogenous AI-2, the susceptibility of the luxS deletion mutant to cell wall
synthesis inhibitors was restored, demonstrating that LuxS is involved in the antibiotic
susceptibility of S. aureus, which may be primarily due to AI-2 signaling (52). In addition,
as a two-component regulatory system, VraSR is able to detect conditions that may
disrupt bacterial cell wall synthesis and regulate cell wall biosynthesis pathways (51,
53). Higher VraSR levels in the luxS deletion strain indicate that cells can respond to cell
wall structure damage more rapidly than the wild type when exposed to cell wall
synthesis inhibitor antibiotics (52). Therefore, the LuxS/AI-2 system affects the resis-
tance of S. aureus to cell wall synthesis inhibitors through a VraSR two-component
regulatory system.

LuxS/AI-2 affects drug resistance by inhibiting the folate synthesis pathway.
Folic acid refers to substances such as tetrahydrofolate and its derivatives, which are
important cofactors for mediating carbon transfer and participate in many important
reactions in organisms (54). Studies have shown that specific target binding-like
interaction with LuxR may contribute to transcriptional activation and that sulfon-
amides compete with dihydropterylic acid synthetase for binding, which inhibits the
biosynthesis of folate and causes toxicity (55). Yu et al. (56) showed that the presence
of exogenous AI-2 increased the sensitivity of avian pathogenic Escherichia coli strain to
trimethoprim-sulfamethoxazole (SXT) in the folate synthesis-dependent pathway, but
does not rely on the LsrR-dependent pathway. The addition of the exogenous AI-2
precursor molecule DPD triggers product feedback inhibition and then reduces the
expression of luxS and a number of other products of LuxS, such as homocysteine (56).
Homocysteine is a substrate for methionine synthase E (MetE) and methionine synthase
H (MetH), which are important enzymes in the folate synthesis pathway (57). Substrate
inhibition caused by a decrease in homocysteine downregulates the expression of metE
and metH, which in turn leads to a decrease in the intermediate metabolite tetrahy-
drofolate (THF), an important substrate for the synthesis of purines and pyrimidines
(58). In THF metabolism, purines and pyrimidines are two important intermediate
metabolites for the resynthesis of THF, and folA and folC are two important folate
synthase-encoding genes (59). In the absence of SXT, AI-2 downregulates the transcrip-

Minireview Antimicrobial Agents and Chemotherapy

October 2019 Volume 63 Issue 10 e01186-19 aac.asm.org 5

https://aac.asm.org


tional levels of the folate synthase-encoding genes folA and folC only by the folate
pathway (56). However, in the presence of SXT, exogenous AI-2 enhances the growth
inhibition of the APEC strain by SXT by downregulating the transcriptional level of the
folate-related gene (56). Further information is provided on the potential drug targets
for prophylactic and adjuvant antibiotic treatment.

LuxS/AI-2 affects drug resistance through biofilm formation. Bacterial biofilms,
which are surface-attached communities of bacterial cells composed of polymers
produced by the microorganisms themselves embedded in an extracellular polymeric
matrix, are a cause of multidrug resistance (60). The ability of S. suis to form biofilm was
significantly increased when a small amount of AI-2 was added during growth, whereas
deleting the luxS gene leads to a decreased ability to form a biofilm (4, 61–63). These
observations suggest that the LuxS/AI-2 QS system modulates the formation of bac-
terial biofilms. Biofilm formation by Helicobacter pylori decreases its susceptibility to
antibiotics, and antibiotic resistance mutations in H. pylori are more frequently gener-
ated in biofilms than in planktonic cells (64). The luxS gene is the only known QS gene
found in the genome sequence of H. pylori (65). Some reports indicated that H. pylori
produces extracellular signaling molecules associated with AI-2 and that AI-2 produc-
tion is dependent on luxS function (66). Bacterial biofilm is associated with increased
antibiotic resistance and is involved in many persistent diseases (67). The main mech-
anisms of bacterial biofilm resistance are QS, activation of efflux pumps, the formation
of biofilms, and the production of inactive enzymes and antibiotic-modifying enzymes
(68). Alone, each of these mechanisms only partially accounts for the increased anti-
microbial recalcitrance observed in biofilms. However, the influence of LuxS/AI-2 on
biofilm formation is likely a combination of various mechanisms and environmental
changes.

TARGET THE LUXS/Al-2 SYSTEM: NEW ANTIBACTERIAL STRATEGY FOR
BACTERIAL RESISTANCE

Inhibition of bacterial QS system represents a novel antibacterial strategy, which not
only prevents the development of bacterial resistance but also eliminates the density-
induced control of bacterial virulence factors that contributes to serious infections (69).
Several strategies developed to prevent bacterial resistance by inhibiting QS systems
are summarized in Fig. 2, while an overview of LuxS/AI-2 QS system inhibition strategies
is summarized in Table 2.

Inhibition of signal molecule synthesis. In QS systems, the synthesis of signal
molecules plays an essential role in the communication between cells (70). Among
them, the signal molecule AI-2 is an important molecule for signal exchange between
different bacterial species (71). The precursor S-ribosyl homocysteine (SRH) of AI-2 is
formed by the action of 5=-methylthioadenosine/S-adenosylhomocysteine nucleosidase
(MTAN) on SAH (72). The inhibition of MTAN results in an accumulation of 5=-
methylthioadenosine (MTA) and SAH and consequently the inhibition of AI-2 produc-
tion (73). The production of AI-2 is significantly reduced in MTAN knockout strains or in
the presence of tight-binding inhibitors of MTAN (74). Since MTAN is not expressed in
humans, it provides a potential target for antibacterial drug design for QS signaling.
5=-Methylthioadenosine phosphorylase (MTAP) plays a role in the polyamine pathway
by circulating MTA and maintaining SAM (75). Its transition state structure is used to
direct the synthesis of MT-DADMe-ImmA, a picomolar inhibitor that blocks QS in Vibrio
cholerae without altering the rate of bacterial growth (73). Transition state analog
inhibitors have shown promise as anticancer agents and antibacterial agents (73).
These results indicate that MTAN inhibition is a possible drug strategy since it provides
a “single injection” target for LuxS/AI-2-controlled bacteria. Guillermo et al. first showed
that hydroxylated pyrrolidine represents a SAH/MTA inhibitor and speculated that
these compounds might be transitional analogs (76). However, inhibition of Pfs is fatal
to cells because the accumulation of MTA and SAH is toxic to cells (77, 78). Excess MTA
levels in cells inhibit growth processes and DNA synthesis by indirectly preventing the
synthesis of polyamines involved in these important processes (79, 80). Few studies
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have focused on the inhibition of S-ribosylhomocysteinase (LuxS). LuxS inhibition
should not affect the processes essential for growth and survival (81–83). This enzyme
is a DPD synthetase and is involved in the detoxification of SAH; it plays a minor role
in the sulfur cycle pathway (84, 85). Han and Lu (86) used phage display technology to
screen for a phage-encoded peptide that specifically interacts with the LuxS enzyme in
S. suis. This LuxS peptide inhibitor (TNRHNPHHLHHV) showed partial inhibition of
enzyme activity (86).

FIG 2 Strategies for QS interception. (1) Signal-generating enzymes (LuxS and Pfs). (2) Signal sequestra-
tion and degradation outside the cell. (3) Receptors and transducers in the signal transduction cascade.

TABLE 2 Overview of LuxS/AI-2 QS inhibition strategies

Inhibitor Action mode Biological effect Reference

Inhibition target: signal generators
MT-DADMe-ImmA (transition

state analog)
Pfs inhibitor Inhibit AI-2 production 73

Hydroxylated pyrrolidines
derivatives

Inhibitors of SAH/MTA
nucleosidase.

Inhibit AI-2 production 76

TNRHNPHHLHHV (peptide) Interact with the LuxS enzyme Inhibit enzyme activity 86

Inhibition target: signal molecule
Ex vivo addition of LsrK and ATP Phosphorylation and

degradation of AI-2
Inhibits bioluminescence in V. harveyi and

lsr expression in E. coli and
S.Typhimurium

90

Imidazole A furan carbocyclic analog of
AI-2

Inhibiting AI-2 function 93

Inhibition target: signal
receptor/transduction

D-Galactose Inhibitor AI-2 activity Targeting AI-2 activity for prevention
biofilm formation.

99

Small peptide, 5906 Prevents LuxS homodimer
formation

Inhibits LuxS activity by binding
specifically to LuxS

100
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Inhibition of signaling molecules. Inactivation or denaturation of the signal
molecule itself, which can be achieved by various mechanism, is the most basic way to
use the QS system to prevent bacterial resistance and to study new antibacterial
strategies (87). Some microorganisms have the ability to metabolize AI-2 and conse-
quently to inhibit QS function. Signal molecule degradation can be achieved by adding
LsrK (AI-2 kinase) and ATP into the bacterial culture, in which AI-2 is phosphorylated
outside the cell; the bacterial cross talk controlled by AI-2 is then significantly reduced
(88, 89). In vitro-phosphorylated AI-2 quenched the QS response in E. coli, Salmonella
Typhimurium, and Haber’s bacillus (90). Phosphorylated AI-2 is more hydrophilic and is
thought to fail to cross the cell membrane and act as a QS signal (89). This strategy
might be particularly effective in mixed infections because LsrK can phosphorylate DPD
(the precursor molecule of AI-2) (91). Moreover, it may be effective regardless of the
AI-2 structure and transport/sensor mechanism used by different bacterial QS systems
(92). Yu et al. (93) and others reported that exogenous imidazole, a furan carbocyclic
analogue of AI-2, reduced the antibiotic resistance of clinical E. coli strains to �-lactam
antibiotics by inhibiting the function of AI-2.

Inhibit signal molecule conduction or binding to receptors. In the activated
methyl cycle, S-adenosylmethionine acts as a methyl donor, resulting in the accumu-
lation of the toxic intermediate S-adenosylhomocysteine (SAH) in bacterial cells (94).
The LuxS enzyme plays a role in the detoxification of SAH with homocysteine and DPD
(19, 95). DPD is a highly active pre-AI-2 molecule. Destruction of the activated methyl
cycle by inactivation of luxS may result in a series of chemical reactions (96). Therefore,
further complementary studies were performed using synthetic DPD. Recently study
showed a correlation between threshold DPD concentration and antibiotic suscepti-
bility in Streptococcus anginosus (97, 98). These results are consistent with other studies
on DPD and AI-2 and show the importance of achieving appropriate AI-2 threshold
levels in bacterial populations (97). AI-2 does not have a specific structure; rather, it
represents a class of molecules. The precursor DPD of AI-2 is cyclized in solution to form
various isomers. The most significant inhibitory effect of propyl and butyl-DPD relates
to Salmonella Typhimurium QS (99). Ryu et al. showed that D-galactose, as an inhibitor
of AI-2 activity, inhibits biofilm formation by periodontal pathogens (99). The D-galactose-
binding protein shows high sequence similarity to ribose-binding protein (RbsB), a
known AI-2 receptor of Actinobacillus sp. (99). Sun et al. (100) identified the small
peptide 5906 that inhibits Edwardsiella tarda LuxS activity by specifically binding LuxS
in a manner that may prevent the formation of a functional LuxS homodimer. Further-
more, the AI-2 activity of Aeromonas hydrophila and Vibrio harveyi can be inhibited, and
fish supplemented with DH5�/p5906 exhibit enhanced resistance to both bacteria. The
results indicate that 5906 or an analog/derivative thereof can be used to develop a
broad-spectrum antimicrobial agent for the prevention and control of bacterial diseases
in fish (100). Bacterial QS responses are not necessarily triggered by AI-2 produced by
organisms of the same species, genus, or even classes (20). AI-2-mediated QS typically
occurs in bacterial communities composed of many different types of microorganisms.
Several studies have demonstrated the QS phenotype in multimicrobial communities,
including LuxS/AI-2, mediates activity between normal microflora and pathogens (101).
Since LuxS/AI-2 regulates pathogen virulence in multimicrobial communication net-
works, disrupting signaling in these networks provides another goal for QS quenchers
(102).

CONCLUSION

The LuxS/AI-2 QS system plays a key role in antibiotic resistance in bacteria. The
LuxS/AI-2 system controls the expression of a variety of genes and then regulates the
cellular activities of bacteria to adapt to different environments (97, 103–105). Since QS
controls the expression of many virulence factors and drug-resistant genes in bacteria,
any process that blocks QS signaling molecules or receptor-recognizing signaling
molecules can attenuate the virulence and resistance gene expression of bacterial
QS-dependent genes (106–109). The concerns regarding the rising in antibiotic resis-
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tance require an alternative approach to antibacterial therapy. Extensive AI-2 commu-
nication between bacteria makes it a possible therapeutic target. Therefore, under-
standing the role of AI-2 QS in antibiotic susceptibility is of great interest.
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