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Abstract

Rapid risk-stratification of patients with acute traumatic brain injury (TBI) would inform management decisions and

prognostication. The objective of this serum biomarker study (Biomarkers of Injury and Outcome [BIO]-Progesterone for

Traumatic Brain Injury, Experimental Clinical Treatment [ProTECT]) was to test the hypothesis that serum biomarkers of

structural brain injury, measured at a single, very early time-point, add value beyond relevant clinical covariates when

predicting unfavorable outcome 6 months after moderate-to-severe acute TBI. BIO-ProTECT utilized prospectively

collected samples obtained from subjects with moderate-to-severe TBI enrolled in the ProTECT III clinical trial of

progesterone. Serum samples were obtained within 4 h after injury. Glial fibrillary acidic protein (GFAP), S100B, aII-

spectrin breakdown product of molecular weight 150 (SBDP150), and ubiquitin C-terminal hydrolase-L1 (UCH-L1) were

measured. The association between log-transformed biomarker levels and poor outcome, defined by a Glasgow Outcome

Scale-Extended (GOS-E) score of 1–4 at 6 months post-injury, were estimated via logistic regression. Prognostic models

and a biomarker risk score were developed using bootstrapping techniques.

Of 882 ProTECT III subjects, samples were available for 566. Each biomarker was associated with 6-month GOS-E

( p < 0.001). Compared with a model containing baseline patient variables/characteristics, inclusion of S100B and GFAP

significantly improved prognostic capacity ( p £ 0.05 both comparisons); conversely, UCH-L1 and SBDP did not. A final

predictive model incorporating baseline patient variables/characteristics and biomarker data (S100B and GFAP) had the

best prognostic capability (area under the curve [AUC] = 0.85, 95% confidence interval [CI]: CI 0.81-0.89). Very early

measurements of brain-specific biomarkers are independently associated with 6-month outcome after moderate-to-severe

TBI and enhance outcome prediction.
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Introduction

Traumatic brain injury (TBI) is the leading cause of death

and disability among young adults in the United States and

worldwide.1 Rapid risk-stratification of TBI patients is of great

importance to provide prognostic information and to make treat-

ment decisions soon after TBI.2 However, existing methods to

predict TBI outcome have not had a widespread impact on clinical

practice. Existing methods also depend on clinical and imaging

findings that are not consistently available in the acute setting.
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Elements of the neurological exam are often confounded by in-

toxication, pharmacological sedation or paralysis, or other injuries,

and initial computed tomography (CT) interpretation is often lim-

ited by the experience and specialization of the reader.

Tissue damage after TBI results in the release of structural

proteins into the bloodstream, including astrocytic (S100B protein

[S100B], glial fibrillary acidic protein [GFAP]), and neuronal

(ubiquitin C-hydrolase-L1 [UCH-L1]) and axonal (aII-spectrin

breakdown products [SBDP]) proteins. S100B is a glial-specific

protein expressed predominantly in mature astrocytes.3,4 GFAP is

an intermediate filament protein also expressed in astrocytes.5–7

Leakage of both S100B and GFAP into blood is thought to reflect

blood–brain barrier disruption.8,9 UCH-L1 is a deubiquinating

enzyme highly expressed in neurons whose function regulates

synaptic structure.10–12 Spectrin is a cytoskeletal protein whose

function helps maintain plasma membrane integrity and cytoskel-

etal structure.13,14 Calpain-induced proteolysis of brain aII spectrin

may facilitate cell damage and death in the context of central

nervous system (CNS) insult.15 Previous reports suggest that serum

blood levels of these proteins may correlate with the extent/type of

brain injury and influence prognosis.8,16–18

The goal of this prospective study was to determine whether

acute elevations in serum levels of these biomarkers predict unfa-

vorable clinical outcome assessed 6 months after moderate-to-

severe acute TBI.

Methods

Design and population

The Progesterone for Traumatic Brain Injury, Experimental
Clinical Treatment (ProTECT) III trial was a Phase III, random-
ized, multi-center trial designed to determine the efficacy of in-
travenous progesterone administration started within 4 h of TBI,
compared with placebo, and was conducted at 49 trauma centers in
the United States.19 Eligible subjects had a moderate-to-severe
TBI, defined by a Glasgow Coma Scale (GCS) score ranging from 4
to 12 (on a scale of 3–15, with lower scores indicating a lower level
of consciousness). Patients with hypoxia (oxygen saturation
<90%), hypotension (systolic blood pressure <90 mm Hg), spinal
cord injury, status epilepticus, or bilaterally unreactive pupils were
not eligible. The ProTECT III protocol was reviewed and approved
by each site’s institutional review board (IRB), including an
amendment allowing blood sample collection, analysis, and stor-
age. The ProTECT III trial began in July 2010 and was stopped
early for futility in November 2013, after 882 subjects had been
randomized.19 Patients included in this trial received protocol-
driven care consistent with the Guidelines for the Management of
Severe TBI.20 Biomarkers of Injury and Outcome in ProTECT III
(BIO-ProTECT) was designed as an ancillary study to evaluate the
association between prospectively collected serum biomarkers of
structural injury and recovery in patients enrolled in the ProTECT
III trial and was fully embedded into the aforementioned trial de-
sign. The first BIO-ProTECT sample was collected in August 2011.

Biomarker sample handling and measurement

Standard operating procedures were used to collect different
blood samples, and serum was used for the biomarker analysis.
Blood samples were collected within 4 h of injury. Immediately
after collection, blood samples were allowed to clot for 15 min on
slush ice and then were separated by centrifugation at 2�C within
60 min of phlebotomy. The samples were stored at -80�C until
shipped on dry ice to Banyan Biomarkers, Inc. for storage and
sample analysis.

All biomarkers’ assay performance followed published meth-
ods21–23 and samples were batched and run in duplicate at Banyan
Laboratories at Banyan Biomarkers, Inc. The lower limit of
quantification (LLOQ) and the upper limit of quantification
(ULOQ) for GFAP and UCH-L1 assays (defined as limits of 20%
precision) are as follows: GFAP: 0.03–50 (ng/mL) and UCH-L1:
0.1–9 (ng/mL). Assay limits for S100B and SBDP-150 represent
lower and upper calibrator values as follows: S100B: 0.015–2
(ng/mL) and SBDP-150: 0.02–6.4 (ng/mL). Results of the bio-
marker analysis were delivered to the Statistical Coordinating
Center at the Medical University of South Carolina, where the
study database was managed and analyzed by the ProTECT III
statistical team (SDY, LF, QP). Clinical investigators and person-
nel at Banyan Biomarkers, Inc. remained blinded to clinical data
and subject allocation.

Outcome measurements

The primary outcome for the ProTECT III study was global
neurological recovery at 6 months post-injury, as determined by
Glasgow Outcome Scale-Extended (GOS-E).24 Scores on the GOS-
E range from 1 (death) and 2 (vegetative state) to 7 and 8 (lower and
upper good recovery, respectively), such that higher scores are asso-
ciated with better outcomes. Unfavorable outcome was defined as a
GOS-E score of 1–4 and a favorable outcome, a GOS-E score of 5–8.

Demographic and clinical injury variables

Baseline patient variables/characteristics used to characterize
the population and for covariate adjustment included: age, sex,
index Glasgow Coma Scale (iGCS) score (highest GCS score
recorded prior to enrollment in the ProTECT clinical trial). CNS
injury type, based on the Rotterdam CT scoring of the admission
head CT,25 was also considered. Polytrauma was identified using
the Abbreviated Injury Score (AIS) derived from the Injury Se-
verity Score (ISS).26 Subjects with an AIS value ‡3 on any body
region other than head were considered to have polytrauma; sub-
jects who did not meet the criteria for polytrauma were designated
as having isolated head injury.

Statistical analysis

Although the ProTECT III trial failed to demonstrate an effect of
progesterone,19 the biomarker analyses were first carried out for the
progesterone and placebo groups separately. Because the estimated
biomarker effects were similar in both groups with no statistically
significant interactions between treatment groups and individual
biomarkers (Supplementary Fig. S1), data from both treatment
groups were pooled together to provide greater power for analyzing
the relationship between biomarkers and the primary outcome.
Results presented are based on subjects for whom the biomarker
levels were within the specified limits of quantification to obtain
consistent estimates of their association with outcome.27,28 As a
sensitivity analysis, prior to the predictive model building, a single
imputation using the ULOQ or the LLOQ was applied to subjects
with biomarker levels above or below the specified limits, re-
spectively. Subjects with missing 6-month GOS-E scores were
excluded from the analysis, given the small percentage (6%) of
missing scores.

Associations between each biomarker and the primary outcome
were evaluated with logistic regression models. Biomarker levels
were log-transformed in the analytic models to meet the linearity in
the logit assumption. Effect estimates for a percentage change in
the raw biomarker value (say, e.g., X%) can be obtained by raising
the reported odds ratio (OR) to the power ln(1 + [X/100]); that is,
the OR for a 10% change in the raw biomarker value can be
computed by raising the reported OR to the power ln(1.1). A multi-
variable model was then constructed adjusting for covariates age,
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sex, CT findings according to the Rotterdam CT score and injury
severity strata defined according to the index GCS known at ran-
domization into ProTECT III. These variables were included re-
gardless of statistical significance. The multi-variable model was
then extended to include all biomarkers, and a backward selection
approach was adopted to eliminate biomarkers that failed to sig-
nificantly improve model fit. Receiver operating characteristic
(ROC) curves were constructed, and the area under the curve
(AUC) was estimated to assess the ability of each model to dis-
criminate between favorable and unfavorable outcome. These an-
alyses were conducted under a level of significance of 0.05 and
performed using statistical analysis software SAS version 9.4.

For the predictive model to be generalizable to future patients
with biomarkers outside of quantification limits, model generation
was based on all subjects with all four biomarkers available, with
the imputation specified above applied. Predictive models were first
developed using a split-sample approach based on bootstrapping
samples. A training sample with the same size of the original
sample was first drawn with replacement from the original data set.
Subjects who were not included in the training sample were treated
as a test set. For each training sample, predictive models were built
using logistic regression and classification-tree based methods, and
the AUC, sensitivity, specificity, and predictive error were esti-
mated from the test set. The classification-tree based approaches
include Classification and Regression Trees (CARTs)29 and en-
semble trees (Boosting, Bagging, and Random Forest).30–32 The
CART model recursively partitions a response variable according
to the characteristics of predictors until a certain level of homo-
geneity is achieved within a subgroup, resulting in a single tree.
Each of the ensemble methods builds multiple trees, with each tree
voting for the final prediction. This process was repeated for 100
iterations.33,34 The approach with the largest average AUC over the
100 repetitions was selected and adopted to construct final pre-
dictive models based on all subjects in the data set. An online
format that includes key variables for determining outcome is
available at https://liqiong.shinyapps.io/BioProTECT.

The internal validity of the final predictive models was evaluated
via bootstrapping as described above. This analysis was carried out
using software R version 3.0.2 with packages rpart, adabag, ran-
domForest, and shiny.

Using simple logistic regression, a range of cutoff points for
biomarker values were established for each individual biomarker
among 100 bootstrapping samples of the original data. The cutoffs
are calculated by setting the predicted probability of the outcome
equal to 0.5, which is the default setup to define a predicted out-
come based on logistic regression models.

For each biomarker, a positive exposure was defined as a value
greater than or equal to the mean of the cutoff points derived from
the above 100 bootstrapping samples. The biomarker score was
then calculated as the total number of positive exposures for each
subject. The score ranged from 0 (no positive biomarker exposures)
to 4 (all four biomarker exposures were positive). This score was
used to estimate the likelihood of a poor outcome based solely on
biomarker values.

Results

Population description

A total of 566 subjects had acute biomarker data available. The

percentage of subjects with biomarker values returned within assay

limits varied according to biomarker, as shown in Figure 1; 410

subjects had all four biomarker values within reportable ranges and

were considered as complete cases. Subject characteristics are

described in Table 1. The inclusion of subjects without reportable

biomarker values (Imputed Cases) did not change the distribution

of baseline characteristics. Among the 566 subjects, 39.6% (n = 224)

had poor outcome (GOS-E 1–4), 54.4% (n = 308) had GOS-E 5–8,

and 6% (n = 34) were missing the primary outcome at 6 months

post-injury.

Associations between individual serum biomarker
levels and GOS-E

Figure 2 presents the results for the association between indi-

vidual biomarkers and the outcome with/without adjusting for

baseline patient variables/characteristics ; the ORs are estimated

based on a 1-unit increase in the logarithm of the biomarker levels.

All individual biomarkers are positively associated with the prob-

ability of having an unfavorable outcome.

With a 1-unit increase in log(S100B), log(GFAP), log(UCH-

L1), and log(SBDP), the odds of unfavorable outcome at 6 months

post-injury are increased by 131%, 75%, 120%, and 52%, respec-

tively; alternatively, with a 10% increase in S100B, GFAP, UCH-

L1, and SBDP, the odds of unfavorable outcome are increased by

8.3%, 5.5%, 7.8%, and 4.1%, respectively. Sensitivity analysis

using the imputed values for biomarker levels outside of quantifi-

cation limits does not substantively alter the conclusion. The results

do not change substantively after adjusting for specified covariates.

When multiple biomarkers are considered, after the backward se-

lection approach to choose among the four biomarkers, the final

model includes log(S100B) and log(GFAP) in addition to base-

line patient variables/characteristics. A 1-unit increase in the

log(S100B) or log(GFAP) increased the odds of unfavorable out-

come by 72.4% (OR 1.724, 95% confidence interval [CI]: 1.18-

2.52) and 48.8% (OR 1.488, 95%CI: 1.16-1.90), respectively, after

controlling for all other covariates in the model; alternatively, a

10% increase in S100B or GFAP increased the odds of unfavorable

outcome by 5.3% and 3.9%, respectively, after controlling for all

other covariates in the model. These results were not substantively

altered by restricting the sample to subjects with isolated head

injury (Supplementary Fig. S2).

Comparison of the AUC between the adjusted models for

individual biomarkers and the covariate-only model without bio-

markers revealed that log(S100B) and log(GFAP) provide addi-

tional discriminative capability to a model containing only baseline

patient variables/characteristics (Table 2). However, there is in-

sufficient evidence to demonstrate that discrimination is improved

with the addition of either log(UCH-L1) or log(SBDP) to the model

containing only baseline patient variables/characteristics. The final

model (biomarkers plus covariates) outperforms the covariate-only

model but is not significantly better than the model that contains

one of either log(S100B) or log(GFAP). Thus, excluding either

S100B or GFAP from the final model does not significantly de-

crease discrimination, as long as the other biomarker remains.

Sensitivity analysis using the imputed values for biomarker levels

outside of quantification limits does not substantively change the

reported conclusions; the final model using the imputed data has the

same components and similar estimates of association.

Predictive regression and classification-tree models

The average AUC, predictive error, sensitivity, and specificity of

five candidate predictive model approaches over 100 bootstrapping

samples revealed that the logistic regression model outperformed

all the other tree-based models. The average AUC of the logistic

regression model is 0.85 (95% CI: 0.81-0.89) with sensitivity 0.68

(95% CI: 0.58-0.76) and specificity 0.84 (95% CI: 0.78-0.89). It

also has the smallest predictive error: 0.23 (95% CI: 0.18-0.27).
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FIG. 1. Biomarker availability. Flow chart depicting the number of subjects with acute biomarker data available, within range, and
with primary outcome.
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After excluding patients with missing data, a total of 509 sub-

jects were included in the predictive model, developed via logistic

regression. Three final predictive models were then defined as: 1) a

full model, which includes age, sex, Rotterdam CT score, GCS

score, S100B, and GFAP; 2) a reduced model, which excludes the

Rotterdam CT score and GCS score; and 3) a reduced model, which

excludes the biomarker values. Results for each predictive model

are presented in Table 3. Predictive ability is increased as the

complexity of the model increases. The full model has the best

average AUC (0.84). Reduced models, which exclude the GCS and

Rotterdam CT score (AUC = 0.79) or the biomarker values

(AUC = 0.80), have similar predictive capability.

Table 1. Cohort Characteristics

Complete case Imputed casea

N = 410 N = 566

Age (median [IQR]) 33 (23 - 50) 34 (23 - 52)
Sex (men, n [%]) 317 (77.32%) 426 (75.27%)

Race White 311 (75.85%) 425 (75.09%)
Black/African American 65 (15.85%) 84 (14.84%)
Others 34 (8.29%) 57 (10.07%)

Initial injury severity Moderate (iGCS 9-12) 137 (33.41%) 179 (31.63%)
Moderate severe 203 (49.51%) 289 (51.06%)
(iGCS 6-8 / iMOTOR 4-5)
Most severe 54 (13.17%) 81 (14.31%)
(iGCS 4-5 / iMOTOR 2-3)
Missing 16 (3.9%) 17 (3.00%)

Rotterdam CT scoreb 1&2 158 (38.54%) 203 (35.87%)
3 188 (45.85%) 249 (43.99%)
4 36 (8.78%) 54 (9.54%)
5&6 28 (6.83%) 60 (10.60%)

Mechanism of injury Motor vehicle crash 153 (37.32%) 201 (35.51%)
Pedestrian struck by moving vehicle 44 (10.73%) 69 (12.19%)
Motorcycle/Scooter/ATV crash 77 (18.78%) 113 (19.96)
Other 136 (33.17%) 183 (32.33%)

AIS head score Missing 1 (0.24%) 1 (0.18%)
No injury 13 (3.17%) 20 (3.53%)
Minor injury 3 (0.73%) 5 (0.88%)
Moderate injury 41(10.00%) 55 (9.72%)
Serious injury 124 (30.24%) 153 (27.03%)
Severe injury 108 (26.34%) 153 (27.03%)
Critical injury 120 (29.27%) 178 (31.45%)
Non-survivable injury 0 (0%) 1 (0.18%)

Injury Severity Score - mean (SD) 23.57 (11.08) 24.62 (11.39)
Hours from injury to sample collected 3.37 (0.66) 3.32 (0.67)

S100B Raw (median [IQR]) 0.22 (0.11-0.38) 0.28 (0.13-0.55)
Log(S100B) (mean – SD) -1.59 – 0.86 -1.34 – 1.04

GFAP Raw (median[IQR]) 2.29 (0.85-5.46) 2.86 (0.91-8.56)
Log(GFAP) (mean – SD) 0.74 – 1.40 0.98 – 1.69

UCH-L1 Raw (median[IQR]) 2.67 (1.66-4.70) 3.52 (1.89-8.16)
Log(UCH-L1) (mean – SD) 0.95 – 0.77 1.30 – 1.07

SBDP SBDP Raw (median [IQR]) 0.13 (0.07-0.21) 0.16 (0.08-0.29)
Log(SBDP) (mean – SD) -2.02 – 0.85 -1.83 – 0.93

GOS-E Missing 25 (6.01%) 34 (6.01%)
Dead 45 (10.98%) 98 (17.31%)
Vegetative state (vs) 6 (1.46%) 7 (1.24%)
Lower severe disability (lsd) 52 (12.68%) 76 (13.43%)
Upper severe disability (usd) 34 (8.29%) 43 (7.60%)
Lower moderate disability (lmd) 42 (10.24%) 51 (9.01%)
Upper moderate disability (umd) 87 (21.22%) 105 (18.55%)
Lower good recovery (lgr) 77 (18.78%) 95 (16.78%)
Upper good recover (ugr) 42 (10.24%) 57 (10.07%)

Favorable outcome (good recovery or moderate disability) 248 (60.49%) 308 (54.42%)

aBiomarker values out of reportable range are imputed with ULOQ or LLOQ as appropriate.
bDue to data sparsity, Rotterdam CT scores are regrouped as 1&2, 3, 4, 5&6.
AIS, abbreviated injury score; ATV, all terrain vehicle; CT, computed tomography; GFAP, glial fibrillary acidic protein; GOS-E, Glasgow Outcome

Scale-Extended; iGCS, index Glasgow Coma Scale score; iMotor, index Motor Score, IQR, interquartile range; LLOQ, lower limit of quantification;
SBDP, spectrin breakdown product; SD, standard deviation; UCH-L1, ubiquitin C-terminal hydrolase-L1; ULOQ, upper limit of quantification.
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Cutoff points for individual biomarkers

Cutoff points for individual biomarkers were derived based on

100 bootstrapping samples. The range of the cutoff is (-0.95 to

-0.76), (1.47-1.69), (1.54-1.73), and (-1.30 to -0.45) for

log(S100B), log(GFAP), log(UCH-L1), and log(SBDP), respec-

tively (or [0.39-0.47], [4.35-5.42], [4.66-5.64], and [0.27-0.64],

respectively, on the original scale).

Biomarker score and risk of unfavorable outcome

Figure 3 illustrates the risk of unfavorable outcome (GOS-E 1–4)

based on the total number of positive biomarker exposures per

subject (0–4). Mean cutoff points upon which exposures are defined

are: log(S100B) = -0.8697, log(GFAP) = 1.575, log(UCH_L1) =
1.633, and log(SBDP) = -1.005 (S100B = 0.42, GFAP = 4.83,

UCH-L1 = 5.12, and SBDP = 0.37 on the original scale). The per-

centage of subjects with unfavorable outcome at each biomarker

score is shown. For subjects with all four positive biomarker values,

77% experienced unfavorable outcome (95% CI: 0.63-0.92;

p < 0.001). Among subjects with 0 biomarker exposures, only 22%

(95% CI: 0.17-0.28; p < 0.001) had unfavorable outcome.

Discussion

In this prospective study of serum proteins, we found that very

early elevations of S100B, GFAP, UCH-L1, and SBDP150 inde-

pendently predicted outcome in patients with moderate-to-severe

TBI. Among these proteins, S100B and GFAP improved outcome

prediction above baseline patient variables/characteristics includ-

ing age, sex, GCS, and CT findings. A final predictive model that

includes both biomarkers and baseline patient variables/charac-

teristics provides an AUC of 84% with sensitivity of 67% and

specificity of 83% in predicting poor outcome. In consideration of

biomarker levels alone, poor outcome occurred in 77% versus 22%

of subjects when all four biomarkers were above or below a cutoff

threshold, respectively.

FIG. 2. Forest plot depicting the unadjusted and adjusted association between individual biomarkers and unfavorable outcome
(Glasgow Outcome Scale-Extended [GOS-E] 1–4). The adjusted association includes age, gender, Rotterdam computed tomography
(CT) score, and Glasgow Coma Scale (GCS) score.

Table 2. Comparison of AUC for Individual Biomarkers before and after Adjusting for Prognostic Covariates

Models AUC SE

95% Wald
P-value (comparing
with covariate only)confidence limits

Covariate only 0.8087 0.0237 0.7622 0.8551
Log(S100B) Unadjusted 0.6743 0.0292 0.6171 0.7316

Adjusted 0.8310 0.0222 0.7874 0.8745 0.0500
Log(GFAP) Unadjusted 0.7030 0.0275 0.6492 0.7569

Adjusted 0.8384 0.0212 0.7968 0.8800 0.0156
Log(UCH-L1) Unadjusted 0.6605 0.0297 0.6023 0.7187

Adjusted 0.8155 0.0234 0.7696 0.8614 0.3733
Log(SBDP) Unadjusted 0.5402 0.0308 0.4798 0.6006

Adjusted 0.8127 0.0236 0.7665 0.8589 0.4276
Final modela 0.8437 0.0208 0.8030 0.8844 0.0075

aThe final model includes log(S100B) and log(GFAP) in addition to prognostic covariates among complete cases.
AUC, area under the curve; GFAP, glial fibrillary acidic protein; SBDP, spectrin breakdown product; SE, standard error; UCH-L1, ubiquitin C-terminal

hydrolase-L1.

2868 FRANKEL ET AL.



It is of particular interest that the combination of S100B and

GFAP biomarker levels remain highly predictive even without

baseline patient variables/characteristics in the predictive model.

Whereas the combination of baseline patient variables/character-

istics and biomarker levels improves outcome prediction, it is more

clinically important that very early biomarkers may remain pre-

dictive in patients in which reliable clinical exam findings or expert

CT interpretation may be limited or variable. Most TBI prognostic

models include factors such as age, clinical severity (GCS), pupil

reactivity, and CT findings.35 All CT scans in this study were in-

terpreted centrally by the same diagnostic neuroradiologist. Be-

cause variability in imaging interpretation will diminish the

predictive ability of the CT scan in TBI, biomarker levels may

provide clinical utility through greater measurement reliability,

particularly in settings where centralized radiological expertise is

not readily available 24 h a day.

Similarly, pre-hospital resuscitation interventions (e.g., seda-

tion, pharmacological paralysis and intubation) interfere with the

determination of GCS total and subscores and confound clinical

prediction tools. In addition, the frequent coexistence of TBI with

drug or alcohol intoxication further confounds accurate diagnosis

and assessment of TBI severity. Biomarkers appear to provide a

less ambiguous assessment of injury and prognosis.

Previous studies have shown an association of these serum

proteins with outcome after TBI. Wagner and Zitelli36 have dem-

onstrated a relationship between serum S100B and acute mortality

among 80 individuals with severe TBI, whereas Vos and col-

leagues16 have shown in 79 patients with TBI that, similar to the

current study, GFAP and S100B are predictive of global outcome

when used together in the same multi-variate model. In addition to

outcomes, others have demonstrated some potential utility of serum

GFAP and S100B with characterizing injury type and secondary

TBI pathophysiology. For example, Herrmann and associates37

found elevated S100B levels correlated with CT imaging findings,

whereas Pelinka and co-workers38 found elevated GFAP levels

were related to intracranial injury and the development of inflam-

mation, edema, and gliosis. However, none of these previous as-

sessments were limited to consistent, very early sampling.

Although the current study focused on the prognostic value of these

markers for long-term outcome, future studies may consider large

population assessments of how serum GFAP and S100B perform

regarding predicting neurological deterioration and other adverse

events.

There are several potential study limitations. The choice of

biomarkers to measure in this study was not systematic. Instead, we

selected four biomarkers with promising published data supporting

their predictive ability in TBI. Variability in the kinetics of the

expression of the biomarkers may be attributed to both injury

phenotype and individual biomarker metabolism.39 Specifically,

S100B is known to be released after extracranial injury. Future

study may further characterize injury phenotype and expression of

individual biomarkers. Additional study is needed to determine if

other serum biomarkers not measured in this study, including non-

brain specific biomarkers, may further improve outcome predic-

tion. Although this study included subjects with severe TBI, those

with a GCS score of 3, hypoxia (oxygen saturation <90%), hypo-

tension (systolic blood pressure <90 mm Hg), spinal cord injury,

status epilepticus, or bilaterally unreactive pupils were excluded

from the parent study. Likewise, subjects with mild TBI were also

Table 3. Final Predictive Models

Predictors Coding

Odds ratio (95% CI)a

Full model W/o CT and GCS W/o biomarkers

Age 1.05 (1.04-1.07) 1.05 (1.03-1.06) 1.05 (1.03-1.06)
Sex Male 1.10 (0.66-1.85) 1.22 (0.75-1.97) 0.79 (0.49-1.28)

Female Reference (1.0) Reference (1.0) Reference (1.0)
Rotterdam 1&2 0.12 (0.04-0.31) – 0.05 (0.02-0.11)

3 0.24 (0.10-0.60) – 0.15 (0.06-0.34)
CT score 4 0.41 (0.14-1.20) – 0.33 (0.12-0.92)

5&6 Reference (1.0) – Reference (1.0)
Severityb Moderate 0.13 (0.06-0.27) – 0.14 (0.07-0.29)

Moderate-to-severe 0.29 (0.15-0.55) – 0.29 (0.16-0.54)
Most severe Reference (1.0) – Reference (1.0)

Log(S100B) 1.59 (1.20-2.10) 1.67 (1.28-2.17) –
Log(GFAP) 1.50 (1.23-1.82) 1.70 (1.43-2.03) –
AUC 0.84 (0.79-0.88) 0.79 (0.75-0.83) 0.80 (0.75-0.84)
Sensitivity 0.67 (0.56-0.78) 0.60 (0.50-0.72) 0.64 (0.52-0.75)
Specificity 0.83 (0.74-0.91) 0.80 (0.70-0.88) 0.82 (0.72-0.90)

aOdds ratios for continuous variable are calculated based on 1-unit increase of the variable.
bSeverity is defined by GCS (Table 1).
AUC, area under the curve; CI, confidence interval; CT, computed tomography; GCS, Glasgow Coma Scale; GFAP, glial fibrillary acidic protein.

FIG. 3. Rate of unfavorable outcome (Glasgow Outcome Scale-
Extended [GOS-E] 1–4) as a function of the biomarker risk score.
Rate of unfavorable outcome is the percentage of patients with a
GOS-E score of 1–4 at 6 months after acute traumatic brain injury
(TBI). The risk score is derived for each patient based on the
number of high biomarker values.
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excluded. Thus, the findings from this study may not be applicable

to patients with TBI who have these clinical characteristics. Al-

though rapid measurements of these biomarker levels are not yet

readily available, point-of-care assay platforms may provide access

to timely results.

In conclusion, serum biomarkers, particularly S100B and GFAP,

may provide clinicians with incremental information, above that

obtained by baseline patient variables/characteristics alone, for a

more reliable estimate of injury prognosis that will assist in clinical

decision making and treatment approach for individuals with

moderate-to-severe TBI. Future work should focus on how high

biomarker levels may identify patients who are at risk for early

neurological deterioration. Such patients might benefit from in-

creased surveillance or novel therapeutics. Lastly, the design of

future acute TBI clinical trials may benefit from improved classi-

fication of individuals based on the additional information gained

from assessing biomarker levels.
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